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Inverse form finding aims to determine the optimum blank design of a workpiece whereby the desired
spatial configuration that is obtained after a forming process, the boundary conditions and the applied
loads are known. Inputting the optimal material configuration, a subsequent FEM computation then has
to result exactly in the nodal coordinates of the desired deformed workpiece. Germain et al. [1] recently
presented a new form finding strategy for isotropic elastoplasticity. Switching between the direct and the
inverse mechanical formulation, while fixing the internal plastic variables in the inverse step, uniquely
detects the undeformed configuration iteratively. In this contribution, the developed recursive algorithm
is extended to anisotropic plasticity. In particular the orthotropic Hill yield function is considered. A load
and a displacement-controlled example demonstrate that this new strategy requires only a few iterations
to determine the optimal initial design whereby an almost linear convergence rate is obtained.

Keywords: inverse FEM, inverse form finding, orthotropic Hill’s yield criterion, logarithmic strain space,
optimum blank design.

1. INTRODUCTION

The overall goal of inverse form finding is to determine an optimum blank design for forming
processes. Consequently, time and costs could be saved during development process of functional
components. The scope of this work is finding a proper undeformed material configuration to a
desired deformed shape of a workpiece. This is illustrated in Fig. 1.

Fig. 1. Inverse form finding: the material configuration B0 is sought while the desired spatial configuration
Bt is given; illustration of the direct (blue) and inverse (red) mechanical formulation.

Recalculating the (direct) forming simulation, by inputting the optimal material node positions,
results exactly in the desired nodal coordinates of the spatial configuration. To describe the problem
of inverse form finding in analytical way, an objective function δ(X) is used as in [2], see Eq. (1).
The solution is found, if the squared summed differences between the currently computed node
positions xcurrent and the given desired node positions xtarget are less than a certain tolerance limit.
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The objective function δ(X) has to be minimized with respect to the nodal coordinates X of the
undeformed workpiece, whereas the corresponding direct FEM simulation serves as a state equation

min
X

δ(X) = ‖xtarget − xcurrent(X)‖2. (1)

There exist different approaches to solve the minimization problem, in particular, various meth-
ods from sensitivity analysis, e.g., [2] and [3]. Gradient-based approaches often suffer from high
computational costs as well as from mesh distortions, see [4] and [5]. On the contrary, the algo-
rithm presented in Germain et al. [1] works in a totally different way. This new approach is based
on an inverse finite element method, which formulates the mechanical weak form in the spatial
configuration Bt and solves it with respect to the coordinates in the material configuration B0.
The inverse mechanical formulation was first proposed by Govindjee and Mihalic [6] for neo-

Hookean type materials. In the last two decades the inverse computation was applied to a wide
range of problems. Govindjee and Mihalic [7], for example, extended the method also to temperature
changes and orthotropic nonlinear elasticity, while using a Saint Venant type material.
Germain and Steinmann [8] showed that the inverse approach also works for anisotropic hy-

perelasticity in the logarithmic strain space. Furthermore, in [9] the efficiency of the inverse FEM
in comparison to a gradient-based sensitivity analysis in an example of stamping of a hyperelas-
tic sheet was demonstrated. Ask et al. [10] recently presented an inverse formulation within the
application to electroelasticity.
Concerning inverse form finding problems in metal forming, Germain and Steinmann [11] applied

this approach to elastoplasticity, in particular, to a cubic elastic material behavior in addition to
the isotropic von Mises yield criterion. Thereby, an inverse FEM simulation recalculated exactly
the material configuration, when the spatial configuration, the plastic strains and the hardening
parameters were known. The drawback for calculating a unique undeformed material configuration
is that the internal (plastic) variables are in general not previously given at each Gauss point.
Recently, Germain et al. [1] presented a recursive algorithm to circumvent this drawback with
application to isotropic plasticity. While using the inverse formulation in addition to the direct
solution in the sense of a fixed-point iteration, the material configuration is updated iteratively
until an admissible solution is found.
In this contribution, the work of [1] is extended to the anisotropic Hill yield function. The Hill

yield criterion is frequently used in metal forming, since rolled sheets have a different yield stress in
and perpendicular to the rolling direction. In order to approximate contact problems, it is shown
in this paper that the new strategy also works for displacement controlled problems.
The paper is structured as follows: Sec. 2 describes the numerical background for the material

behavior and the mechanical formulation. The stress-strain relationships in the logarithmic strain
space, utilized to capture large inelastic deformations, are characterized in Subsec. 2.1. The inte-
gration algorithm employed to model the orthotropic Hill plasticity is presented in Subsec. 2.2.
The different mechanical formulations, as the basic elements of the form finding algorithm, are
explained in detail in Subsec. 2.3. The corresponding algorithm to solve the form finding problem
is shown in Sec. 3. Two examples under load and displacement control are provided in Sec. 4 to
demonstrate the capability of the advocated algorithm. Finally, Sec. 5 concludes the work.

2. COMPUTATIONAL MATERIAL MODELING

2.1. Logarithmic strain space formulation for large inelastic deformations

To capture large inelastic deformations as occurring in metal forming applications, a transformation
to the logarithmic strain space was proposed by Miehe et al. [12] and Apel [13] in terms of a three-
step approach.
The preprocessing into the logarithmic strain space is performed based on the spectral decom-

position of the right Cauchy-Green tensor C as defined in [14]. Due to its symmetry property, the
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Cauchy-Green tensor C can be decomposed into its eigenvalues λi ∈ R (i = 1, 2, 3) and eigenbases
M i ∈ R

3×3 (i = 1, 2, 3), as proposed in, e.g., [11] and [15]. Correspondingly, the logarithmic strains
read

E =
1

2
ln(C) =

1

2
ln(F⊤ · F ) =

1

2

3∑

i=1

ln(λi)M i. (2)

Thus, the obtained logarithmic strain tensor corresponds to the Hencky strain tensor, which
is widely used in the metal forming context. As proposed in [12] an additive decomposition of
the logarithmic strain tensor E into an elastic and a plastic part is assumed. Thus, the additive
structure for the strains as postulated in the geometrically linear theory is assumed.

Ee = E −Ep. (3)

From their counterparts T and E
ep in the logarithmic space a postprocessing step is required

to obtain the 2nd Piola-Kirchhoff stress S and the corresponding elastoplastic tangent Cep. This
transformation from the logarithmic space is accomplished by the following relations:

S = T : P and C
ep = P

⊤ : Eep : P+ T : L. (4)

More details on the calculation of the transformation tensors P = 2
∂E

∂C
and L = 4

∂2E

∂C∂C
can

be found in [14] and [12].

Table 1. Geometrically nonlinear orthotropic Hill-type elastoplasticity in a nutshell

Input / Preprocessing

log. strain tensor E =
1

2
ln(C) =

1

2
ln(F⊤

· F )

Constitutive modeling in the log. strain space

add. decomposition Ee = E −Ep

energy storage function Ψ(Ee, α) = Ψe(Ee) + Ψp(α)

stress tensor T = ∂EeΨe(Ee) = E : Ee

yield stress y(α) = −∂αΨ
p(α)

(Hill) yield function Φ(T , α) = ‖T ‖H −
√

2

3
y(α)

flow rule Ė
p
= λ∂TΦ = λ

H : T

‖T‖H

evolution equation α̇ = λ∂yΦ = λ

√
2

3

Output in the log. strain space

stress tensor T

tangent tensor Eep =
∂T

∂E

internal plastic variables {Ep, α}

Postprocessing

2nd P.-K. stress tensor S = T : P

tangent tensor Cep =
∂S

∂C
= P⊤ : Eep : P+ T : L
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References [12] and [16] additionally demonstrated that the results obtained by an additive
framework of plasticity in the logarithmic space are close to those obtained by the common mul-
tiplicative decomposition even in the case of non-coaxial deformations. A further strong argument
for the use of additive plasticity in the logarithmic space is the much simpler structure compared to
that of multiplicative plasticity, see Miehe et al. [12]. The basic equations of the used constitutive
model are listed in Table 1.

2.2. Integration algorithm for the orthotropic Hill yield criterion

As the prototype of anisotropic plasticity, the quadratic orthotropic Hill yield criterion, see Hill [17],

Φ(T , α) = ‖T ‖H −
√

2

3
y(α), (5)

whereby

‖T ‖H =
√

T⊤ : H : T (6)

is used in the subsequent examples in Sec. 4.
The Hill-tensor H is defined in Voigt’s notation by Eq. (7), whereby the diagonal entries are

defined in Eq. (8). These entries describe the ratio of the reference yield stress y0 to the yield stress
yij ∈ R (i, j = 1, 2, 3) for each direction. The non-diagonal entries are given by Eq. (9). Furthermore,
by setting all coefficients αi ∈ R (i = 1, 2, . . . , 9) equal to 1, the Hill yield criterion reduces to the
isotropic von Mises yield criterion.

H =




α1
1

2
α4

1

2
α6 0 0 0

1

2
α4 α2

1

2
α5 0 0 0

1

2
α6

1

2
α5 α2 0 0 0

0 0 0
1

2
α7 0 0

0 0 0 0
1

2
α8 0

0 0 0 0 0
1

2
α9




, (7)

α1 =
2

3

y20
y211

, α2 =
2

3

y20
y222

, α3 =
2

3

y20
y233

,

α7 =
1

3

y20
y212

, α8 =
2

3
y20
y223

, α9 =
2

3

y20
y213

,

(8)

α4 = α3 − α1 − α2,

α5 = α1 − α2 − α3,

α6 = α2 − α1 − α3.

(9)

To integrate the elastoplastic rate equations a fully implicit Euler backward method is taken
into account, in which the gradient to the yield function is evaluated at the end of each loading
step. When dealing with the orthotropic Hill yield function, the Newton algorithm for finding the
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appropriate plastic multiplier increment λ ∈ R must be able to capture the changing flow direction
in each Newton step:

N (T ) =
H : T

‖T ‖H
. (10)

The integration algorithm, proposed by de Borst and Feenstra [18] for the geometrically linear
and anisotropic quadratic Hill criterion, is here applied to the constitutive model in the logarithmic
space, see Subsec. 2.1. The current logarithmic stress tensor T is expressed dependent on the trial
stress T ∗ as

T (λ,T ∗) = T ∗ − λE : N
(
T (λ)

)
. (11)

With the requirement

Φ(T , α) = 0 (12)

one obtains

T (λ,T ∗) =
[
Isym + λ

1√
2
3y(α)

E : H
]−1

: T ∗ = A(λ)−1 : T ∗. (13)

Inserting Eq. (13) into Eq. (12) leads to

Φ(λ,T ∗, α) = ‖A−1 : T ∗‖H −
√

2

3
y(α) = 0. (14)

This equation can then be solved for λ with the Newton method. The corresponding derivative
of the residual Eq. (14) reads as

∂λΦ =
T ∗⊤ : [B⊤ + B] : T ∗

2
√

2
3y(α)‖A−1 : T ∗‖H

(15)

whereby

B = E : H : A−2 : H : A−1. (16)

Applying this integration algorithm to the orthotropic Hill yield function, a quadratic rate of
convergence for computing the plastic multiplier increment λ can be obtained. The elastoplastic
tangent

E
ep =

∂T

∂E
= E

# − [E# : N ]⊗ [E# : N ]

N : E# : N + 2
3y(α)

(17)

whereby

E
# =

[
E
−1 +

λ

‖T ‖H
[H−N ⊗N ]

]−1
, (18)

consistent with the Euler backward integration method, is then utilized for the linearization of the
stress-strain relationship in the approach based on logarithmic strain measures. The elastoplastic
tangent Cep in the total strain space is finally provided by the postprocessing step, see Eq. (4) and
Table 1.
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2.3. The direct and inverse mechanical formulation

As illustrated in Fig. 1, FE analysis can be performed either starting at the material configuration
B0 parameterized in X or at the spatial configuration Bt parameterized in x. This was exploited,
e.g., in [6–8] to solve the inverse form finding problem.
Considering the usual direct FEM, the boundary value problem (BVP) is formulated in the

material configuration B0. The goal is to determine the deformation map ϕ(X) to obtain the
spatial coordinates x of the spatial configuration Bt. The deformation gradient F = ∇ϕ(X) leads
to the logarithmic strain tensor E as in [11], see Eq. (2). The equilibrium equation in this case
depends on the 1st Piola-Kirchhoff stress P = F · S as proposed in [8]. As also denoted in [8],

the weak form employs test functions η ∈ V0 = {η|η = 0 on ∂Bϕ
0 } according to the boundary

conditions (BC) of the material configuration B0. To solve the weak form of equilibrium via the
Newton-Raphson method, its linearization, as depicted in Table 2, is required. Therein, the total

elastoplastic tangent Cep from the relationship
∂P

∂F
, see Table 2, is obtained by the postprocessing

of the three-step approach, see Eq. (4).

Table 2. The direct mechanical formulation at fixed material coordinates X [19].

BVP in the material configuration B0

Equilibrium equation DivP = 0 on B0

stress BC P ·N = T on ∂BT
0

displacement BC ϕ = ϕ on Bϕ
0

Weak formulation of equilibrium

G(ϕ,η;X) =

∫

B0

η ·DivP dV =

∫

∂BT

0

η · T dA−
∫

B0

Gradη : P dV = 0 ∀ η ∈ V0

Linearization for Newton-Raphson method

DϕG(ϕ,η;X) =
d

dε
G(ϕ+ ε∆ϕ,η;X)

∣∣
ε=0

=

=

∫

B0

Gradη :
∂P

∂F
:
d

dε
F (ϕ+ ε∆ϕ,η;X)

∣∣
ε=0

dV =

∫

B0

Gradη :
∂P

∂F
: Grad∆ϕdV ∀ η ∈ V0

whereby
∂P

∂F
= [F⊗I] : Cep : [F⊤⊗I] + I⊗S

and ⊗ a non-standard dyadic product: [A⊗B]ijkl = AikBjl

On the contrary, within the inverse type of the FEM, the mechanical problem is formulated
in the spatial configuration Bt, as in [6]. The Cauchy stress σ is obtained by a push forward
from the 2nd Piola-Kirchhoff stress S as proposed in [11]. The weak form employs test functions

η ∈ Vt = {η|η = 0 on ∂Bφ
t } according to the boundary conditions of the spatial configuration

Bt. Determination of the inverse deformation map φ(x) = ϕ−1 results in the material coordinates
X of the material configuration B0, which can also be found in [11]. The deformation gradient
f = ∇φ(x) is again utilized to compute the logarithmic strain tensor E. In Table 3 the inverse
mechanical formulation and the linearization of the weak form for applying the Newton-Raphson

method are depicted. The elastoplastic tangent Cep from the relationship
∂σ

∂f
is obtained by the

postprocessing of the three-step approach as in the direct formulation. A detailed description of
the direct and the inverse mechanical formulation in the logarithmic strain space can be found in
Germain [19].
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Table 3. The inverse mechanical formulation at fixed spatial coordinates x [19].

BVP in the spatial configuration Bt

Equilibrium equation divσ = 0 on Bt

stress BC σ · n = t on ∂Bt
t

displacement BC φ = φ on ∂Bφ
t

Weak formulation of equilibrium

g(φ,η;x) =

∫

Bt

η · divσdv =

∫

∂Bt

t

η · tda−
∫

Bt

gradη : σdv = 0 ∀ η ∈ Vt

Linearization for Newton-Raphson method

Dφg(φ,η;x) =
d

dε
g(φ+ ε∆φ,η;x)

∣∣
ε=0

=

=

∫

Bt

gradη :
∂σ

∂f
:
d

dε
f (φ+ ε∆φ,η;x)

∣∣
ε=0

dv =

∫

Bt

gradη :
∂σ

∂f
: grad∆φdv ∀ η ∈ V0

whereby
∂σ

∂f
= σ ⊗ F⊤ − F⊗σ + jF ·

[
1

2
Cep :

∂C

∂f

]
· F⊤ − σ⊗F

⊗ and ⊗ non-standard dyadic products: [A⊗B]ijkl = AikBjl and [A⊗B]ijkl = AilBjk

Although the inverse approach is based on a different kinematic description, nearly all subrou-
tines of an existing FEM code can be reused, even the pre- and post-processor of the three-step
approach to the logarithmic strain space and the integration algorithm for plasticity. The numerical
costs and therefore the time for computations are also comparable to each other. Combining the
three-step approach, the integration algorithm for plasticity and the consistent tangent matrix Cep,
a global quadratic convergence rate in the direct and inverse computations is achieved.

3. FORM FINDING ALGORITHM

The procedure of the advocated algorithm is in accordance with the algorithm proposed by Germain
et al. [1] for isotropic plasticity. For the purpose of better understanding, Fig. 2 illustrates the form
finding strategy graphically.

Fig. 2. A sketch of the recursive form finding algorithm as proposed in [1].
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The algorithm to determine the optimum blank design starts with the desired spatial configura-
tion Bt, whereby xtarget are the given node positions of the desired deformed shape of the workpiece.
FEM computation based on the inverse mechanical formulation (multi-step) with initial values for
the internal plastic variables {Ep, α} set to zero is performed. This inverse elastoplastic calcula-
tion results in the first approximation Xcurrent of the sought material configuration B0. Applying
afterwards the direct FEM by starting at the current material configuration renders the correspond-
ing spatial configuration Bt with coordinates xcurrent. The fitting accuracy of the so found spatial
configuration can be tested by the objective function δ, see Eq. (1).

For the case in which only elastic deformations are occurring, the first direct computation re-
computes exactly the desired node positions xtarget. Hence, the optimal material configuration is
already found, as proposed in [6] for the case of elasticity.
On the contrary, if the inverse computation (multi-step) starting at the target configuration

computes plastic deformations, the testing after the first subsequent direct computation does not
satisfy the given tolerance limit in general. The optimal material configuration is therefore not found
in the first iteration loop as in the case of elasticity. This becomes clear by considering that the
first direct computation for testing the fitting accuracy starts at the current material configuration
with the plastic variables reset to zero. As a consequence, the plastic deformations obtained by the
first direct computation cannot equal those of the first inverse computation.
Due to that the form finding algorithm exploits a result, which was already mentioned in Sec. 1.

Germain and Steinmann [11] showed that for the case where the plastic variables {Ep, α} are given,
the material configuration is recalculated exactly by the inverse computation. Therefore, one starts
again with the desired configuration xtarget, see Fig. 2. By starting a new inverse computation
the plastic variables {Ep, α}current of the previous direct calculation are inserted when formulating
the inverse weak form. With this update of the plastic variables, a better approximation to the
optimal material configuration is found after resolving the inverse procedure. A subsequent direct
computation results in a reduced objective function δ. This recursive approach is performed in the
spirit of a fixed-point iteration with respect to the plastic variables {Ep, α}current until the error
measured by δ decreases below a certain tolerance. If this is the case, the optimum blank design to
the forming process is found.

The inverse computations for updating the material coordinates Xcurrent are performed within
only one step. The problem remains elastic because the plastic strains are given, see [1]. Therefore,
the inverse one-step solutions are faster than the very first multistep computation in the form
finding algorithm, see Fig. 2.

4. NUMERICAL EXAMPLES

The algorithm for inverse form finding is demonstrated by two examples. Regarding the adaptability
to different metal forming processes, a displacement-controlled computation can be seen as the
simplest approximation to a metal forming with contact, e.g., stamping or expanding a workpiece.
On the other hand, a force controlled computation appears, e.g., in the case of forming due to
internal pressure. Thus, the first example is carried out by displacement control, while the second
example is computed by force control.

The same target configuration of the deformed workpiece is used in both examples, see Fig. 3.
Its deformed shape has an external radius of 20 mm, an internal radius of 10 mm and a thickness
of 2 mm.
The boundary constraints are identical for both examples. The displacements of the bottom

nodes are set to zero in vertical direction. The perpendicular symmetry planes in horizontal direction
are clamped by setting the displacements on the one hand in x1-direction and on the other hand
in x2-direction to zero. The applied constraints are additionally illustrated in Fig. 3 (red).
The material data used in both examples, see Table 4, are in accordance with a DC04-steel. As

proposed in [20], DC04 is a mild deep drawing steel, which is frequently used in the sheet metal
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Fig. 3. Boundary constraints (red) for both examples depicted in the target spatial configuration.

forming industry and is characterized by a low yield stress as well as a large fracture strain. To
model hardening, a nonlinear Hockett-Sherby function is used, see Table 4. The orthotropic Hill
yield criterion, described in Subsec. 2.2, was utilized in both examples to demonstrate that the
inverse form finding algorithm, see Sec. 3, is also applicable to anisotropic plasticity.

Table 4. Material parameters for both examples.

Elastic constants

E-module E = 210000 [MPa]

Poisson’s ratio ν = 0.33 [ - ]

Hardening: Hockett-Sherby function

hardening function y(α) = y∞ − [y∞ − y0] · eAαB

inifinite yield stress y∞ = 680 [MPa]

initial yield stress y0 = 180 [MPa]

parameter A = −2.1771 [ - ]

parameter B = 0.667 [ - ]

4.1. Example 1: enlarging the internal radius by displacement control

The first example is carried out under displacement control by enlarging the internal radius from
6 mm to 10 mm. The total displacements are applied in 10 equidistant load steps. The yield stresses
yij in each direction are, in relation to the initial reference yield stress y0, set to

y11 = y22 =
1

2
y0, y33 = y0,

y12 = y23 = y13 =
√
3y0.

(19)

The anisotropy ratios of y11 and y22 to y0 are therefore reduced in comparison to the isotropic von
Mises plasticity, see Eq. (19). Consequently, the plastic flow in {1,1}- and {2,2}-direction starts at
an earlier stage. As a consequence an orthotropic plastic behavior can be observed and the optimal
material configuration turns out to have a square-like form, see Fig. 4.
At the first iteration an error value of 2.3 ·10−1 mm2 was obtained, see Table 5. The form finding

algorithm, presented in the previous section, reduces this value monotonically. Only six iterations
are needed until the error in the objective function decreases below the tolerance of 1 · 10−9 mm2.
Table 5 demonstrates an almost linear rate of convergence for finding the optimum blank design.

The maximum equivalent plastic strain in this example has a value of 54.55%, see Fig. 4.
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Fig. 4. Example 1: the found optimal material configuration (XOpt = Xcurrent) of the workpiece (left).
The target spatial configuration of the workpiece (xcurrent = xtarget) after the final direct simulation based on

the determined optimal material configuration (right).

Table 5. Convergence rate (Example 1).

Iteration Error δ [mm2]

1 2.3031 · 10−1

2 3.2264 · 10−3

3 5.1591 · 10−5

4 5.5502 · 10−7

5 4.2022 · 10−9

6 7.0821 · 10−11

4.2. Example 2: enlarging the internal radius by force control

In the second example, the desired workpiece is loaded by forces of magnitude 800 N applied at
each node of the internal radius. The direction of the load application is chosen normal to the
surface of the internal radius in the spatial target configuration. In this example, the total forces
are applied in 20 equidistant load steps. The initial yield stresses in the orthotropy directions are
set to

y11 = y22 =
3

2
y0, y33 = y0,

y12 = y23 = y13 =
√
3y0.

(20)

By enlarging the anisotropy ratios of y11 and y22 in comparison to the isotropic von Mises plasticity,
see Eq. (20), the plastic flow in {1,1}- and {2,2}-direction in this case starts at later stage. Due
to the orthotropic plastic behavior the optimal material configuration turns out again to have a
square-like form. In contrast to the displacement controlled example, the inner hole of the optimal
material shape also has a square-like form. Additionally, the top nodes of the inner hole have the
same height in contrast to the wavy surface in the previous example, see Figs. 4 and 5.
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Fig. 5. Example 2: the found optimal material configuration (XOpt = Xcurrent) of the workpiece (left).
The target spatial configuration of the workpiece (xcurrent = xtarget) after the final direct simulation based on

the determined optimal material configuration (right).

For the first iteration, the error value is equal to 1.18 · 101 mm2, see Table 6, which is higher in
comparison to the previous example. This is caused by the fact that the nodes of the internal radius
where the largest plastic strains appear are not displacement-fixed as in the previous case. However,
the form finding algorithm decreases the error value monotonically. Again only six iterations are
needed until the value of the objective function decreases below the tolerance of 1 · 10−9 mm2.

Table 6. Convergence rate (Example 2).

Iteration Error δ [mm2]

1 1.1773 · 101
2 4.4566 · 10−3

3 1.3130 · 10−4

4 1.8014 · 10−6

5 3.7573 · 10−7

6 9.1649 · 10−10

Table 6 demonstrates again a nearly linear rate of convergence for finding the optimum blank
design. The maximum equivalent plastic strain in this case has a value of 41.21%. The plastic
strains appear, due to enlarging the anisotropy ratios of y11 and y22, rotated by 45

◦ as compared
to the first example, see Fig. 5.

5. CONCLUSION

By extending the constitutive modeling to anisotropic plasticity, the recursive strategy proposed
by [1] is also applicable for inelastic anisotropic inverse form finding problems. The ability of ap-
plying force and displacement controlled loads shows, that this method can be used for a couple of
applications in metal forming. This was demonstrated by computing two optimal material config-
urations of a workpiece subject to specific forming processes. The anisotropic Hill yield criterion,
which is frequently used in metal forming, was employed for both examples. In both cases, the op-
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timum blank design was found with an almost linear convergence rate, even for strong anisotropy
ratios and large plastic strains. The problem of mesh distortions, often occurring in sensitivity anal-
ysis, does not occur in this proposed recursive strategy. A great advantage of this algorithm is its low
computational costs in comparison to other form finding methods. An additional benefit is that the
first elastoplastic inverse step results already in a good approximation of the optimum blank design.
In case of elasticity, the optimum material configuration is even found within the first iteration.
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