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Knowledge of a material thermal conductivity is essential in several engineering applications. This mate-
rial property serves also as a measure of the quality of manufactured materials. Nowadays, a lot of effort
is directed into development of non-destructive, fast and reliable measurement techniques. In the works
of Adamczyk et al. [1] and Kruczek et al. [10], a new in situ conductivity measurement technique for an
anisotropic material was developed. This method, due to its rapidity and nondestructive character, can
be embedded in a manufacturing process. However, despite many advantages, the developed measuring
technique has some drawbacks corresponding to the applied mathematical model, which is used for de-
termining the material thermal conductivities. It neglects the effect of heat losses due to radiation and
convection phenomena on the calculated values of thermal conductivities. In this work, the computational
fluid dynamic (CFD) modeling was applied to estimate heat losses due to radiation and convection. The
influence of omitting the radiative and convective heat transfer on the predicted temperature field and
calculated thermal conductivities was investigated. Evaluated numerical results were compared against
experimental data by using the developed in situ measurement technique for the thermal conductivity of
anisotropic materials.
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1. INTRODUCTION

The thermal conductivity assessment is essential in several engineering applications. Simulations of
heat conduction in solids, estimation of heat losses, inspection of material’s admissible temperature
levels, and calculation of thermal stresses are a few examples of industrial cases, where the value of
heat conductivity is needed. This material’s property is also often used as a measure of the quality
of manufactured materials. The production of insulating or carbon materials is a good example
of such applications. Specialized laboratories perform the heat conductivity measurements using
a commercially available equipment. Nevertheless, in spite of a large number of such sites and
variety of measurement methods available, a lot of effort is directed into the development of non-
destructive, fast and reliable measurement techniques. Moreover, there is no universal technique
which is applicable to all materials and temperature ranges.
The current state of the art for heat diffusivity and conductivity measurements is described

in [5] and [7], where the existing methods are discussed in terms of their advantages, disadvantages
and fields of application. Nowadays, the Parker flash method [12] is well-known and widely used for
determining the thermal diffusivity, heat capacity and thermal conductivity. It is a transient-state
technique which main advantage is a short time of measurement. Nevertheless, this method has
also disadvantages, namely it destructive character and its 1D model assumption, which in the case
of anisotropic (orthotropic) material require additional probes and experiments. Even though the
technique was extended to deal with anisotropic medium [9], it still cannot be applied for in situ
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measurements. Nonetheless, the Parker flash technique is still being improved [3] by accounting
for heat losses, nonhomogeneous heat distribution of the laser beam, etc. In order to reduce the
time required for the sample preparation and measuring process, a new and non-destructive in situ
measurement technique was proposed in [10]. The entire time required for the measurement and
results evaluation is of the order of a minute. Thus, the technique may be used for on-line material
property measurements, that are embedded in the manufacturing process. The thermal conductivity
is retrieved by processing of the temporal and spatial distribution of the temperature field, which
is recorded by a fast infrared (IR) camera. Perturbations of the temperature field are induced by a
short laser impulse absorbed within a small surface area of the sample. The characteristic feature
of the developed technique is that the laser and the IR camera are located on the same side of the
sample, which is different from the configuration in the standard Parker flash method [12]. Such
a configuration is known in the literature as the front face technique. Detailed information about
this measuring approach can be found in [10].
The proposed in situ technique can be applied for both, orthotropic and isotropic materials. The

laser impulse impinges on the one plane surface of the examined material, which is further referred
as the measurement surface. The measuring procedure is based on the inverse analysis, where the
mathematical model is used to solve a boundary value problem, known as the Green’s function [4, 8],
for a semi-infinite domain with the Neumann boundary condition. The major disadvantage of the
developed in situ technique is that it neglects heat losses from the measured surface, which are
driven by the thermal radiation and convection phenomena. In the present work, the total amount
of heat transferred from the measured surface to the surrounding air was calculated using the
ANSYS/Fluent computational fluid dynamics (CFD) software. The influence of heat losses on the
calculated temperature field and retrieved thermal conductivities of the anisotropic material was
investigated. The experimental data used for the model validation was carried out using the in situ
measurement procedure.

2. EXPERIMENT

The schematic diagram of the experimental facility used for thermal conductivity measurements
is depicted in Fig. 1. The detailed description of the measuring device, control equipment used,
and methodology can be found in work of Kruczek et al. [10]. An anisotropic sample with known
material density (1091 kg/m3) and heat capacity (900 J/kgK) was selected for tests as a benchmark.
The geometry of the manufactured sample has a cubic shape with edge size equal to 25 cm.

Fig. 1. Schematic diagram of the experimental facility used for measuring thermal conductivities.

Using the in situ technique [10], the material thermal conductivity was measured at five ran-
domly selected locations on the external surface of the sample. The measurements were performed
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in laboratory conditions, where the ambient temperature was equal to 29◦C. In order to even out
the differences between sample and ambient temperatures, the sample was exposed to laboratory
conditions before the measurement process. Resulting values of thermal conductivities obtained
in measurements at five arbitrarily selected points are shown in Table 1. The calculated average
value of thermal conductivity in x, y and z direction was equal to 5.15 W/mK, 5.2 W/mK, and
5.2 W/mK, respectively. Retrieved thermal conductivities are kept in the certain range of error,
which in the case of the in situ technique was calculated as 5% [10].

Table 1. Thermal conductivities measured using in situ measurement technique.

Measurement λx λy = λz

point W/mK W/mK

1 5.1 5.0

2 4.9 5.2

3 5.4 5.4

4 5.3 5.3

5 5.1 5.1

3. NUMERICAL MODEL

The geometry used for numerical simulations is shown in Fig. 2. The geometry was split into two
main zones. The upper zone represents the surrounding air, whereas the bottom zone defines the
material. The numerical mesh consist of 930 000 hexahedral elements, with the skewness parameter
smaller than 0.05 and element size 0.45 mm. The energy of the laser impulse was simulated using an
energy source prescribed to the selected range of the material zone using the user defined function
(UDF) tool. The diameter of the laser beam was equal to 1 mm, where the overall laser power
was equal to 67.32 W. The laser emission time was set to 0.2 s and it was controlled by the
UDF. Figure 2 presents the location where the energy source was prescribed to the model. Due to
long calculation time required for the transient simulation, the numerical model of the sample was
limited to a quarter with defined symmetry boundary conditions for both air and material zones.

Fig. 2. Numerical model geometry with depicted boundary conditions and characteristic dimensions.
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Moreover, its geometrical size was reduced to the range in which the temperature field propagate
after the laser emission. During experiments it was observed that after 2 s since the laser energy
has been absorbed, the temperature field tends to the initial temperature value. For this time the
noticeable changes of the temperature field were observed in the distance of 0.7 cm from the laser
emission point. Thus, the computational domain of the sample was limited to 2.5 × 2.0× 2.5 cm.
Numerical model is based on the solution of the continuity, energy and momentum transport

equations. The turbulence was modeled using the k-ε realizable model with the enhanced wall
treatment. The y+ parameter for cells adjacent to the surface was smaller than 1, which justified
the usage of the advanced models for flow calculations near the wall surface. The radiative heat
transfer between walls was modeled using the surface-to-surface (S2S) radiation model implemented
as the UDF. Required view factors were calculated using the built-in procedure in the ANSYS
Fluent CFD code [2].
The proper buoyancy effect modeling in the natural convection requires additional effort [6].

The body force term in the momentum equation has to be slightly modified in order to take into
account buoyancy forces. This modification is included only in the momentum equation and acts
in the direction of gravitational acceleration. The modified body force term due to buoyancy takes
the form

(ρ− ρop)g, (1)

where ρop is the operating density calculated for initial temperature 29◦C, g is the gravitational
acceleration, ρ is the local density calculated using ideal gas law defined as

ρ =
popMgas

TR
, (2)

where pop is the operating pressure equal to 101.3 kPa, T is the temperature, R defines the universal
gas constant (8314.4 J/kmolK), and Mgas is the atomic weight equal to 28.966 kg/kmol. For the
gravitational acceleration equal to gy = −9.81 m/s2 and local density ρ, which is greater than the
operating density ρop, the fluid is moved upward due to the buoyancy force. During the simulations
the density difference at the pressure boundary condition has to be near to zero. This ensures
the normal to the boundary wall direction of velocity vectors of the air, which is incoming to the
computational domain (reverse flow).
In order to determine the influence of heat losses due to the radiation and convection on the

calculated temperature field, a set of numerical simulations was carried out for three model config-
urations. In Case A both, the radiation and convection were included in the numerical model, in
Case B the radiation was not taken into account, whereas in Case C neither the radiation nor con-
vection was considered. The heat losses for Case A and Case B were calculated during simulations
in subsequent time steps. The radiative heat transfer was calculated for an enclosure filled with the
medium transparent to the radiation. The enclosure was configured from three surfaces, which are
numbered and depicted in Fig. 3. The amount of radiative heat, which was removed from surface
1 and 2, was calculated as

Qr,1−3 = A1F1−3(b1 − b3), (3)

Qr,2−3 = A2F2−3(b2 − b3), (4)

where A is the surface area, F1−2 and F2−3 are the view factors between surface 1–2 and 2–3, b is
the radiosity. Unknown radiosities in Eqs. (3) and (4) were calculated using the radiosity balance
formulated as the set of equations defined as

A1b1 = A1ε1σT
4
1 + (1− ε1)A3F3−1b3, (5)

A2b2 = A2ε2σT
4
2 + (1− ε2)A3F3−2b3, (6)
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Fig. 3. Surface configuration used for the heat losses calculation due to the thermal radiation.

A3b3 = A3ε3σT
4
3 + (1− ε3)[A1F1−3b1 +A2F2−3b2], (7)

where ε is the surface emissivity and σ stands for the Stefan-Boltzmann constant.
During simulations the ratio of Grashof and Reynolds numbers, defined as Gr/Re2, was greater

than 16. This indicates that inertia forces were negligible and the flow was dominated by the natural
convection. The convective heat transfer for both Case A and Case B can be calculated as

Qcon = Aiα∆Ti, (8)

where subscripts i assume value 1 and 2 for two flat surfaces (see Fig. 3), ∆T is the difference
between the surfaces temperature Ti and the temperature of surrounding air T∞. The heat transfer
coefficient, denoted by α, is defined as

α =
Nuλf

l0
, (9)

where Nu is the Nusselt number, λf is the thermal conductivity calculated for the air film temper-
ature Tf = (Ti + T∞)/2, and l0 is the characteristic dimension which is given by the relation

l0 =
Ai

Ui
, (10)

where Ai and Ui stands for the area and perimeter of the i-th surface, respectively. The Nusselt
number in Eq. (9) was calculated using the empirical correlation in the function of the Rayleigh
number (Ra), which is defined as the product of the Grashof (Gr) and Prandtl (Pr) numbers, valid
in the range from 104 to 107 [1]

Nu = 0.54 Ra0.25. (11)

The Grashof number which defines the ratio of buoyancy forces and viscous forces acting on the
fluid is defined as

Gr =
gβl30ρ

2
f∆T

µ2
f

, (12)

where ρf is the density calculated for the film temperature Tf , β is the thermal expansion coefficient
defined as 1/Tf , and µf is the dynamic viscosity.
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4. NUMERICAL RESULTS

Figure 4 illustrates the calculated heat losses obtained during simulations applying the set of UDFs
for Case A and Case B. The overall heat loses from the measured surface for both Case A and
Case B were calculated using the square integration procedure which calculates the field under
evaluated curves, as it is shown in Fig. 4. The integration procedure is given by the following
formula:

Q =

τk∫

τ0

Q(τ)dτ =

N−1∑

i=1

Qi +Qi+1

2
∆h, (13)

where N is the number of integration points (29), τ0 is the initial time (0.025 s), τk is the final
integration time (0.725 s), and ∆h is the integration step defined as (τk − τ0)/N (0.0241). The
calculated heat losses were equal to 2.2 W and 1.7 W for Case A and Case B, respectively.

Fig. 4. The changes of heat loses during simulations for Case A and Case B.

To determine the influence of omitting the radiative and convective heat losses to the temper-
ature field, the position of the selected isotherm (33.1◦C) was compared for the measured and
calculated temperature field after 0.63 s. Temperature fields acquired using the IR camera consist
of temporal and spatial variation of temperature values. The recorded temperature field was lim-
ited to the range of 100× 100 pixels in order to decrease the calculation time. Each pixel registers
the intensity leaving a small square located on the measured surface. These intensities were next
transformed to temperature values, which were assigned to centers of the mentioned squares. In the
first step of the calculation procedure, the location of the isotherm was determined by the bilinear
interpolation performed at four of recorded pixels, as it is illustrated in Fig. 5. As a result of this

Fig. 5. Bilinear interpolation used for determining the isotherm coordinates.
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procedure, a set of points corresponding to the selected value of the isotherm was obtained. Figure 6
shows an exemplary set of such points for a quarter of the temperature field. The square points
correspond to pixel locations where temperatures bracketing the isotherm are recorded, whereas
the diamond points represent locations determined by the isotherm. The same calculation proce-
dure was used for retrieving the position of isotherm points for simulated temperature fields. Both
calculation procedures were written using the Fortran 90 programming language and LabVIEW
2011.

Fig. 6. Evaluated isotherm coordinates (diamond points).

The schematic diagram of the algorithm used for isotherm retrieval procedure for both, measured
and calculated data, is shown in Fig. 7. Evaluated positions of isotherms obtained from experiment
and simulations are presented in Fig. 8.

Fig. 7. Schematic diagram of the algorithm used for isotherm retrieval procedure.

Results of calculations show that isotherm positions for all investigated cases were shifted to
the right side of experimental results. With increasing simplifications of the numerical model the
amount of heat released to the surrounding air decreases, which causes that the isotherm position
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Fig. 8. Evaluated positions of isotherms obtained from experiment and simulations.

is moved farther from the laser emission point. Temperature isotherm in case of the anisotropic
(orthotropic) material is of the shape of an ellipse, which can be described by

x2

a2
+

y2

b2
= 1, (14)

where x, y are the coordinates of the ellipse points and a, b are ellipse’s half axes lengths. In order
to estimate the discrepancies between carried out results, the ellipse equation given by Eq. (14)
was fitted into the isotherm points for all investigated cases using the Levenberg-Marquardt tech-
nique [13]. The obtained lengths of ellipse’s half axes are shown in Table 2, whereas the resulting
ellipses are depicted in Fig. 9.

Table 2. Calculated ellipse’s half axes lengths for all investigated cases.

Ellipse axis a, mm b, mm

Exp. 5.70 5.81

Case A 6.18 6.19

Case B 6.31 6.30

Case C 7.12 7.02

Fig. 9. Isotherms fitted to ellipse equations for all investigated cases.
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Interesting situation was observed for Case A, where the evaluated numerical results should be
comparable with the measured data because both, the radiative and convective heat transfer, were
taken into account. The discrepancies could be caused by thermal conductivities specified in the
numerical model. Values of thermal conductivities measured by the in situ procedure were probably
higher than real values of the sample material. It should be kept in mind that each of measurement
procedures is laden by an error which influences the level of measured thermal conductivity value.
The estimated measuring error for the in situ procedure was lower than 5% [4], which means that the
exact value of thermal conductivities can change within the range from 4.94 W/mK to 5.46 W/mK.
In order to check the impact of thermal conductivity values on the evaluated isotherm position, an
additional simulation was performed. Case D includes the radiation and convection modeling, but
values of thermal conductivities were decreased by 5% of the measured ones. The obtained solution
is presented in Fig. 8. It can be seen that this treatment caused shifting of the isotherm position to
the left side of experimental data. The exact values of thermal conductivities can be determined by
an inverse analysis application, where selected isotherm positions are compared with experimental
data by an optimization procedure. The implementation of the inverse analysis for retrieving heat
conductivities is the subject of the future model development.

5. CONCLUSIONS

The overall heat losses calculated during the numerical simulation, which included the heat transfer
due to the radiation and convection from the measured surface, attained the level of 3 W. Small
values of the predicted heat losses justify the assumption made in the developed mathematical model
for the in situ measurement technique, where the heat dissipation from the measured surface is
neglected.
The influence of the radiative and convective heat transfer on a rate of temperature field prop-

agation was investigated for three numerical model configurations. The obtained numerical results
show that omitting of heat losses influence the rate of sample cooling and propagation distance
of the selected isotherm from the laser emission point. In all investigated cases, positions of the
selected isotherm were moved away from experimental data and they were shifted to the right
side from the isotherm measured position. The rate of temperature field propagation is affected
by values of measured thermal conductivities obtained using the mathematical model employed
in the in situ measurement technique. Due to the reason that the mathematical model uses the
square ratio of half axis of the ellipse for retrieving thermal conductivities, the carried out distance
is crucial. Without considering heat losses from the measured surface, the proposed mathematical
model slightly overpredicts measured values of thermal conductivities.
The exact effect of the radiation and convection on the level of evaluated thermal conductivities

can be investigated by applying the inverse analysis. The inverse model development is the subject of
future work, where the CDFmodel combined with the Levenberg-Marquardt optimization technique
will be used for retrieving thermal conductivities of an anisotropic material.
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