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A model integrated meshless solver (MIMS) tailored to solve practical large-scale industrial problems is
based on robust meshless methods strategies that integrate a native model-based point generation proce-
dures. The MIMS approach fully exploits strengths of meshless methods to achieve automation, stability,
and accuracy by blending meshless solution strategies based on a variety of shape functions to achieve
stable and accurate iteration process that is integrated with a newly developed, highly adaptive model
generation employing quaternary triangular surface discretization for the boundary, a binary-subdivision
discretization for the interior, and a unique shadow layer discretization for near-boundary regions. To-
gether, these discretization techniques provide directionally independent, automatic refinement of the
underlying native problem model to generate accurate adaptive solutions without need for intermediate
user intervention. By coupling the model generation with the solution process, MIMS addresses issues
posed by ill-constructed geometric input and pathologies often generated from solid models in the course
of CAD design.

Keywords: meshless methods, heat transfer, large-scale problems.

1. INTRODUCTION

Mesh-based finite difference, finite element, and finite volume methods all share the requirement
to define connectivity of the nodal unknowns within the solution domain, and, despite efforts
to automate the mesh generation process, a considerable amount of time and human effort is
expended in preparing and meshing the computational model for complex problem geometries.
Meshless and mesh-reduction methods [1–7] seek to replace the underlying structured connectivity
with an unstructured interpolation scheme inherently affording automation in the mesh generation
and refinement process. These schemes have shown considerable promise in many application areas.
However, much of meshless methods research is focused on generating new meshless techniques,
while failing, with some notable exceptions [8, 9] to address the underlying cause for concern in
model discretization relegating this class of techniques to rather specialized endeavors. Although
meshless methods have not out-competed mesh-based techniques, considerable advances within the
field have led to implementations that are generally at least as efficient as unstructured mesh-based
techniques.
In this paper, we present model integrated meshless solver (MIMS) that is a meshless methodol-

ogy building upon current meshless research aimed at analysis of industrially-relevant problems. At
its core, MIMS is a strong-form localized collocation-based meshless method [7–26] which has been
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developed to be both robust as well as accurate under a variety of nodal configurations through
a unique blend of existing meshless shape functions and a specialized point distribution process.
MIMS specifically address the underlying issues which make mesh generation such a time consum-
ing and tedious process by close integration of the model generation and solution process in an
efficient adaptive process that does not require user interaction.

Fig. 1. The MIMS strategy.

The MIMS method utilized radial basis functions (RBF) interpolation in its discretization pro-
cess. We present an overview of MIMS which consists of an engine that decides upon the underlying
meshless discretization scheme with an automated adaptive model integrated point generation strat-
egy and an automated shape function selection process. Case studies are then presented and MIMS
results will be compared to a commercially available solution packages.

2. MESHLESS IMPLEMANTATION OVERVIEW

We use a localized meshless approach to as the foundation of the solution mechanism [7–27] that
is applied directly to a solution domain without special consideration for boundary condition ap-
plication, as it is often the case when utilizing a non-interpolating approximation [1]. Localized
implementation provides a minimum of computational and memory burden, and when used with
collocation, permits use of a variety of interpolation schemes to develop the underlying shape
functions for field and derivative evaluation. It is in the latter respect that the current method
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departs from current techniques in that no single interpolating method is used to construct the
necessary shape functions. Instead, a blend of localized collocation meshless method based on
radial basis function with polynomial reproduction (RBFP) interpolation [5–13], moving least
squares (MLS) [4], and RBF-enhanced virtual finite differencing (VML) [20–26] is utilized to ob-
tain a method that is both stable and accurate. This departure allows for a method which is not
married to any particular interpolation scheme, and as such may take advantage of the relative
strengths and weaknesses of each technique. We now briefly review all three methods as they apply
to MIMS.

2.1. The localized meshless method framework

The meshless formulation begins by defining a set of data centers NC comprised of points on the
boundary NB and points on the interior NI. These data centers will serve as collocation points
for the localized expansion of the different field variables in the domain Ω and on the boundary
Γ, see Fig. 2. The essential difference between boundary points and internal points is simply that
boundary conditions will be applied at the boundary points while governing equations will be
applied in strong form at the internal points. A localized expansion over a group or topology of
influence points NF around each data center is sought such that

ϕ(x) =

NF∑

j=1

αjχj(x) +

NP∑

j=1

αj+NFPj(x). (1)

The terms αj are the unknown sought-after expansion coefficients while the terms χj(x) are ex-
pansion functions defined a-priori and we use inverse multiquadric radial basis functions [28–30] for
the NF expansion functions χj(x). NP is a number of additional polynomial functions Pj(x) added
to the expansion to guarantee that constant and linear fields can be retrieved by the expansion
exactly, thus the term radial basis function with polynomial reproduction (RBFP) is associated
with this expansion. The time dependency has been dropped as a different expansion will be per-
formed for each time level and, therefore, the expansion coefficients αj will vary as time progresses.
The selection of an influence region or localized topology of expansion around each data center is
easily accomplished by a circular (spherical in 3D) search around each data center. The search is
automated to guarantee that a minimum number of points will be included and additional criteria,
such as including all directions around internal data centers, are met. In addition, this search must
guarantee that topologies around boundary data centers do not include opposing boundaries or
points around a re-entry corner.

Fig. 2. Scattered point distribution in a generalized domain.

Figure 3 shows typical collocation topologies for internal and boundary data centers including re-
entry corners and opposing boundaries and an example of the circular search to build the topology
around an internal data center of a typical non-uniform point distribution The collocation of the
known field variable ϕ (from previous time level or iteration step) at the points within the localized
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Fig. 3. Collocation topology for internal, boundary and corner data centers on uniform and non-uniform
point distributions.

topology, leads to the matrix-vector form {ϕ} = [C]{α}, so that the the expansion coefficients can
be determined as {α} = [C]−1{ϕ}. The collocation matrix is

[C] =




χ1(x1) . . . χNF (x1) P1(x1) · · · PNP (x1)
...

. . .
...

...
. . .

...
χ1(xNF ) · · · χNF (xNF ) P1(xNF ) · · · PNP (xNF )

P1(x1) · · · P1(xNF ) 0 · · · 0

· · ·
. . . · · ·

...
. . .

...
PNP (x1) · · · PNP (xNF ) 0 · · · 0




NF+NP,NF+NP

. (2)

A simple optimization search is employed to determine the value of the shape parameter c for
every expansion over the different local topologies that cover the entire field. An initial guess for c
is based on the ratio of the average distance between data centers in a topology to the number of
points in the topology. A line search is performed to adjust the shape parameter c until the resulting
collocation matrix [C] yields a condition number in the range between 1011 and 1012 (in double-
precision). This range of condition number for the collocation matrix [C] has been documented to
produce interpolations that render smooth derivative fields for a wide range of test functions. It
is important to mention that the resulting collocation matrix [C] depends only on the geometrical
distribution of the points within each localized topology and therefore, the optimization of the
shape parameter c is performed at a setup stage before the solution process begins. However, there
may be instances when running-time optimization of the shape parameter c may be necessary as,
for example, when adaptive refinement is performed or when sharp discontinuities in the solution
field are found. In the latter caser the conditioning number should be reduced to capture the
discontinuity. The real advantage of the localized collocation approach is capitalized in the way the
derivatives of the field variable are calculated at the data center xc of each topology. For instance,
any linear differential operator L can be applied over the localized expansion equation as

Lφ(xc) =

NF∑

j=1

αjLχj(xc) +

NP∑

j=1

αj+NFLPj(xc) (3)

or

Lφc = {Lc}
T {α},

where

{Lc}
T =

{
Lχ1(xc) . . . LχNF (xc) LP1(xc) . . . LPNP (xc)

}
NF+NP,1

.
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Substitution of the expansion coefficients {α} leads to the key equation:

Lφc = {L}T {φ}, (4)

where the operator vector is given by {L}T = {Lc}
T [C]−1. The coefficients of the vector {L} of

size (NF, 1) directly interpolate the derivative of the field variable distribution {φ} at the data
center of the topology xc. Therefore, evaluation of the field variable derivatives at every and each
of the data centers xc is provided by a simple inner product of two small vectors: {L} which can
be pre-built and stored and {φ} which is the updated field variable distribution in the topology of
the data center. Applying this approach to time marching, for example, using explicit first order
finite differencing in time, the localized RBF interpolation is

φk+1
c = φk

c + Γ∆t{L}T {φ}k, (5)

where the superscript k denotes the time level, Γ is some material property, and ∆t denotes the
size of the time step. Given the solution {φ} at every point at the previous time level k can very
efficiently yield the updated field variable value at each data center xc through a simple inner
product of small vectors. Imposing boundary conditions at the boundary data center xc can be
accomplished in a similar fashion. For Neuman and Robin’s condition a normal derivative inter-
polation vector {∂n} is required to compute the normal derivative of the field variable {φ} at the
boundary topology data center xc. This normal derivative interpolation vector may be pre-built
in one of two ways: (1) a simple approach is to express this vector as a combination of derivative
vectors in all directions multiplied by their corresponding unit normal vector components, for in-
stance, in 3D Cartesian coordinates, this is {∂n} = {∂x}nx + {∂y}ny + {∂z}nz ; and (2) generate
additional internal points that “shadow” each boundary point in the direction of the normal vector
into the domain Ω to directly approximate the normal derivatives at each boundary data center as
illustrated in Fig. 4. We use the latter and more accurate “shadow point method” as it mitigates the
inherent inaccuracies of the directional derivative interpolation vectors of the truncated topologies
of boundary data centers especially of those around corners and highly curved boundaries. Fol-
lowing this approach, the normal derivative interpolation vector {∂n} can be computed simply as
{∂n} =

{
1/rs 0 . . . 0 −1/rs 0 . . . 0

}T
, where rs is the distance from the boundary data

center to its corresponding internal shadow point. Additionally, higher order differentiation can be
accomplished by simply inserting multiple rows of internal shadow points in normal direction. In
addition, this approach can be implemented to estimate not only the normal derivatives but the
tangential derivatives as well.

Fig. 4. Distribution of internal shadow points to compute normal derivatives.

The localized expansion approach reduces the burden of the more common global interpolation
methods [31–33] by expanding the field variable locally around each data center to obtain its
derivatives that can then be used if necessary in time-marching or iterative schemes. This approach
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yields the generation of multiple but small interpolation matrices rather than the large and fully-
populated global interpolation matrix of the standard global interpolation methods. However, since
the approach relies on expanding known values of the field variables, it is applicable as long as
an explicit time-marching or iterative scheme is formulated and inapplicable directly to steady
problems. This is not a drawback, as time marching can always be considered as a relaxation
scheme for the iterative solution of steady-state problems.
Estimation of the field variables and their derivatives is accomplished by simple inner products

of vectors that can be pre-built and the multiquadrics RBF only need to be evaluated at a setup
stage when these vectors are being built. This reduces the CPU burden of having to evaluate
fractional powers and complicated functions at every step of an iteration or time-marching scheme.
In addition, the memory demands of this approach are minimal, as no global collocation matrix is
allocated and only very small vectors are stored for each of the data centers. This offers tremendous
advantages in terms of data preparation over global methods.

2.2. The moving least-squares (MLS) smoothing scheme

Despite the efforts in optimizing the shape parameter c of the RBF expansion for every topology, it is
found that derivative fields, in particular odd one-sided derivatives, such as those found in convective
terms of transport equations as well as in divergence operators, tend to oscillate specially towards
the areas of large gradients such as re-circulating zones, corners, impingement zones, etc. For this
reason, additional care must be taken when formulating the derivative expansion vectors within each
topology. An effective method consists in the application of moving least-squares smoothing over
the data center topology to approximate the derivative value at the data center. This method can
be easily adapted to the localized meshless technique and, in addition, extended to be formulated
in the same form where the derivative value at the data center of the topology is retrieved by a
simple inner product of a vector that can be pre-built and stored, and the vector of field variable
within the topology. This particular scheme retains the attractive efficiency feature of the localized
meshless method. For instance consider the topology of NF influence points around the data center
xc, then, a least-squares expansion of the field variable φ(x), using NP polynomials Pj(x), (where
NP < NF ) may be formulated as

φ(x) =

NP∑

j=1

αjPj(x), (6)

with the expansion coefficients αj found through a least-squares minimization process over all the
NF influence points, leading to the standard normal equations:

NP∑

j=1

αj

[
NF∑

k=1

Pi(xk)Pj(xk)

]
=

NF∑

k=1

Pi(xk)φ(xk) (7)

or, in matrix-vector form: [C]NP,NP{α}NP,1 = [P ]NP,NF {φ}NF,1, where the coefficients Ci,j of the

least-squares matrix [C] of size (NP,NP ) are given by Ci,j =
NF∑
k=1

Pi(xk)Pj(xk). The expansion

coefficients αj are determined as {α}NP,1 = [C]−1
NP,NP [P ]NP,NF {φ}NF,1. Applying a linear differ-

ential operator L over the field variable φ(x) at the data center xc and substituting for the MLS
expansion coefficients αj leads to

Lφc = {Lls}
T
1,NF {φ}NF,1, (8)

where the least-squares operator vector {Lls} is explicitly built as

{Lls}
T
1,NF = {LPc}

T
1,NP [C]−1

NP,NP [P ]NP,NF .
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This least-squares’ smoothing scheme is performed over the same topology as the localized RBF
collocation, hence moving least-squares (MLS), and this renders the methodology general in its
application. The least-squares operator vectors {Lls} can be pre-built at the same pre-processing
stage as the topology generation, shape parameter optimization, and RBF collocation. In addition,
the least-squares expansion polynomials Pj(x) are the same as those employed in the RBF collo-
cation augmented formulation. The MLS smoothing scheme is often implemented to approximate
one-sided derivatives present in transport equations to add stability to the iteration process [23–
25]. It should be noted that this approach is not used in place of upwinding schemes that must
be implemented in cases where the convective thresholds are surpassed as it is commonly found
in forced convection problems. MLS is part of the suite of approximations utilized in MIMS as
discussed in the sequel.

2.3. RBF-enhanced finite-differencing (VML)

There are difficulties encountered in the localized meshless method when dealing with steep gra-
dients and highly convective fields and due in part to the inability of controlling how information
is passed to the data center from the scattered points in the topology. A practical and general
way around this problem is to take full advantage of the highly accurate field variable interpolation
capabilities of the RBFs and not to directly differentiate them but, rather to utilize well-established
finite difference upwinding formulations, for instance based on TVD or AUSM concepts, and RBFs
to interpolate the field variable to locations required by the upwinding scheme if no data center is
found at the required location. The approach is general in the sense that it can be implemented
in the same localized topologies defined for the localized meshless method and formulated to yield
pre-computed derivative interpolation vectors. A set of “virtual” points are distributed at locations
required by finite-differencing evaluation of the derivatives, i.e., at the requisite n, s, e and w loca-
tions at which the field variable will be interpolated. The virtual spacing employed is consistent with
the average spacing of the actual points within the localized topology. This is illustrated in Fig. 5.
Evaluation of the derivatives by finite-differencing is performed through the RBF interpolation at
the virtual locations.

Fig. 5. Illustration of a topology with virtual points around the data center xc.
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For example, the evaluation of the Laplace operator at the data center xc reduces to

∇2φc = {L}T {φ}, (9)

where {L}T =
1

h2
(
{Ie}

T + {In}
T + {Iw}

T + {Is}
T − 4{Ic}

T
)
and where the interpolation vectors,

{Ie}
T , {In}T , are readily obtained from the RBFP interpolation. For instance, evaluating the field

variable at the east point (real data center or virtual) results in matrix vector form φc = {Ψe}
T {α},

where {Ψe} =
{
χ1(xe) . . . χNF (xe) P1(xe) . . . PNP (xe)

}T
. Substitution of the expansion

coefficients αj leads to φe = {Ψe}
T [C]−1{φ}. Therefore, φe = {Ie}

T {φ}, the east interpolation
vector {Ie} is given by {Ie}T = {Ψe}

T [C]−1. This can be easily extended to the other virtual points
retaining the capability of rendering the derivative of the field variable φ(x) at the data center
xc through a simple inner product of two small vectors. The derivative interpolation vector {L}
can be pre-built and stored at a setup stage of the problem and implemented over the exact same
topology employed for the localized RBF interpolation and moving least-squares smoothing. It is
important to mention that any derivative operator can be expressed in this same form through
a simple finite-differencing approximation over a set of virtual points in the topology. When a
virtual point coincides with an actual meshless data point, the interpolation vector {I} at that
virtual point, reduces to all zeroes except for a one at the vector entry of the coincident point. This
dramatically reduces the setup time, especially around areas where the topologies are composed of
uniformly-distributed points, as no shape parameter c optimization or matrix inversion is necessary
to generate the derivative interpolation vectors.

3. SHAPE FUNCTION SELECTION

In order to obtain optimum speed, accuracy and robustness, MIMS utilizes a blend of radial basis
function interpolation (RBFP), moving least squares (MLS) and virtual finite differencing (VML)

Fig. 6. Shape function selection process.
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to generate the necessary shape functions. Through an extensive study [37], it was decided that the
process of selecting the most appropriate shape function construction technique may be summarized
by the flowchart shown in Fig. 6.

4. MESHLESS MODEL GENERATION

An automated model generation technique has been developed which utilizes three fundamental
techniques: quaternary triangular surface discretization, binary-subdivision interior discretization,
and an adaptive boundary layer representation referred to as the shadow layer. Together, these three
components make up the adaptive model generation procedure enabling an effectively automated
meshless method technique [27, 37].

Fig. 7. The data center distribution in a u-shaped block with an interior plane highlighted.

Boundary nodes are distributed on the bounding surfaces initially using a triangulation [34–36]
that is then selectively refined using a recursive quaternary triangulation structure. Quaternary
triangulation is a recursive triangulation consisting of geometrically fixed splitting rules [38] and
although they have been used to generate level-of-detail models for graphical applications [38, 39]
as well as geophysical models for cartographic applications [40, 41] they have rarely been utilized to
generate computational meshes [42–44]. A quaternary triangular mesh (QTM) is a surface meshing
technique utilizing a recursive storage structure whereby each triangular element can store four
child elements. Each child element is constructed by splitting each edge of the element at their
respective midpoints and connecting the newly created vertices in a pair-wise fashion. The meshless
nodes are placed at the vertices and also at the centroids of the elements to address the issue of
narrow faces and to allow boundary nodes to further approach the edges of the geometry due to the
configuration of the elements. Thus, once the QTM is constructed and refined to an appropriate
initial level, computational nodes are then distributed at all non-edge vertices as well as at each
leaf element centroid.
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a) element b) seam

Fig. 8. Quaternary triangular constructs.

To address some issues with pure Cartesian based discretization techniques, such as the so-
called stair-casing issue where irregular boundaries are present [45], and difficulties that octree
and quadtree discretizations encounter in directionally independent refinement [46], we utilize a
specially-tailored binary tree subdivisions for interior point distribution. The primary difference
between the meshless binary tree discretization technique and previous attempts to extend the
octree-based methods to non-isotropic refinement is the use of the vertex as the underlying data
structure instead of the cell. Moving the point of view to the vertex allows for a more dynamic
data structure capable of non-isotropic refinement as well as highly efficient topology construction
[27, 37].

Finally, the meshless model generation process constructs a so-called “shadow layer” distribution
that serves as an adaptive boundary layer for problems exhibiting high gradients normal to the
boundary. Although handled slightly differently during model generation, it is important to note
that nodes that reside in the shadow layer are, for all intents and purposes, interior nodes. No
special boundary layer equations are solved, and the governing equations are collocated normally
throughout this region of the domain (usually in a rotated coordinate frame).

The process of generating the shadow nodes is fairly straightforward and is illustrated on a
simple two- dimensional boundary in Fig. 9. In this manner, normal derivatives may be obtained
directly (both on the boundary and in the shadow layer) through finite differencing and tangential
derivatives are generated in the usual meshless manner. The placement of the outer shadow layer
(one farthest from boundary) is based on the distance to the nearest interior node (generally half of
this value) and subsequent layers are distributed using an appropriate scaling method determined
from field characteristics. It is important to realize that the process of adding shadow nodes can
potentially introduce problems in highly concave boundary situations, as illustrated in Fig. 10 and,
in such cases, collapsing of shadow nodes at the center of mass for the offending set of shadow nodes
is necessary to eliminate instability in the underlying meshless interpolations. As the shadow layer
is directly aligned with the normal and tangential directions on the boundary, it becomes trivial to
produce high-aspect ratio point distributions with respect to the boundary orientation.

Fig. 9. Shadow layer.
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Fig. 10. Concave shadow layer region.

5. ADAPTIVE REFINEMENT

Adaptive solution refinement is effected on two levels: (1) point distribution h-refinement strat-
egy and (2) refinement on the underlying geometric model. Adaptive point distribution refinement
strategy is performed by reducing the average nodal spacing in areas of high gradients through
addition of new interior and boundary data centers as needed. The quaternary triangular surface
recursive subdivision process selectively refines the point distribution on the boundary reducing
spacing in the tangential direction to appropriately capture high tangential gradients. At the in-
terior, the vertex-based structure binary-subdivision discretization provides anisotropic based on
high gradients to capture flow phenomenon such as wakes and bulk flow turbulence without a need
to identify these locations prior to solving the problem. At the boundary/interior interface regions,
shadow layer refinement is utilized to refine in areas with large gradients normal to the boundary.
Thus, all three model generation subsystems play a pivotal role in mesh refinement as illustrated
in Fig. 11.

Fig. 11. Refinement examples.

The second type of refinement is that of the computational representation of the underlying ge-
ometric model, a matter often overlooked in traditional automatic refinement processes. The basic
concept is that as the computational discretization (whether it will be mesh- or point-based) is
refined, it should better represent the underlying geometric model. This is possible only if the point
generation process has access to the underlying CAD model and the analytical surface representa-
tions (such as IGES or STEP) of the computational model. This affords discrete representation of
the geometry at arbitrary resolutions as shown in Fig. 12.
The refinement process involves a three-stage approach: (1) refinement sites are selected based

on their current field (gradient) value and past solution history, (2) distance-scaled gradients are
calculated across the potential refinement sites (for the indicated refinement field), and (3) sites
containing the highest gradients are isolated and refined. The first stage, selecting valid refinement
sites, is arguably the most important as it provides a means of automatically obtaining grid con-
vergence. However, if gradient values alone were the criteria on which refinement was based, the



218 S. Gerace, K. Erhart, A. Kassab, E. Divo

Fig. 12. Geometric refinement example.

same percentage of nodes would continue to be selected for refinement since they will always have
the highest gradient values. As the goal of grid convergence is to achieve little if no change in so-
lution from one discretization level to the next, the field values immediately following the previous
refinement level are maintained and compared to the converged solution at the current level. If a
nodal value did not change by a user-set percentage (say 1–2%) relative to the total field span, then
it cannot cause a refinement site to be created (though it may still be part of a refinement site if a
nearby node passes this threshold). Therefore, by controlling this refinement threshold, one can es-
sentially enforce local grid convergence across the solution domain. Once the candidate refinement
sites have been determined, the distance-scaled gradients are computed for each location. Once
these gradients have been calculated, the values are sorted by magnitude and the top percentage
threshold is chosen for refinement (in practice, a threshold which includes all sites with a gradient
value in the top 20th percentile obtains a good balance of iteration and refinement speed). Once
refinement has occurred, the solution is allowed to iterate until an acceptable convergence criteria
has been met, at which point the refinement process is employed again. The benefit of this proce-
dure is that the task of identifying when the solution has reached grid convergence is removed from
the user; instead, the process continues indefinitely until there are no more remaining candidate
refinement sites, indicating that no change has occurred from the previous refinement level, and
that the solution has been successfully grid converged.

6. EXAMPLES

We present results from two examples involving MIMS solution of high speed compressible flow
where the AUSM upwinding scheme has been adopted along with the Wilcox k-ω SST turbulence
model [27]. Two well-established commercially available analysis packages were utilized throughout
these case studies, denoted COMMERCIAL 1 and COMMERCIAL 2. In addition, all meshing
operations were performed via a commercially available grid generation software denoted GRID
GENERATOR 1. All Microsoft Windows based solutions (MIMS and COMMERCIAL 1) were
performed on a system consisting of an AMD Phenom X4 3.00 GHz processor with 8 GB of RAM,
while all UNIX based solutions (COMMERCIAL 2 and GRID GENERATOR 1) were performed
on a Xeon 3.06 GHz processor with 4 GB of RAM. Also note that although both systems over
multi-core/processor functionality, all timed operations were performed in single- threaded mode
to ensure an accurate comparison. Finally, it is worth mentioning that the same person performed
all necessary mesh generation and solution setup tasks for all three analysis packages (COMMER-
CIAL 1 and 2 as well as MIMS) in order to provide a fair comparison in skill level between each
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system and that person has been using GRID GENERATOR 1 to construct analysis meshes for
approximately 5 years and, as such, can be considered quite knowledgeable in the area of mesh
generation, and representative of an appropriately well-trained engineer.
The first problem considers a straight film cooling geometry in a rectangular channel with three-

angle cooling jets, see Fig. 13.

Fig. 13. Film cooling jet and chamber configuration.

To simulate film-cooling, the bulk flow inlet (located at the short end of the rectangular channel)
was given conditions of P0 = 100 000 Pa and T0 = 800 K, corresponding to an inlet Mach number of
approximatelyM = 0.4. The outlet (located at the opposite end of the channel) was given an outlet
pressure of Pout = 70000 Pa, and the bottom surface of the channel was set as no-slip (to produce
an appropriate boundary layer). The three inlet jets were given conditions of P0 = 150 000 Pa
and T0 = 500 K, resulting in a slightly increased injection speed of approximately M = 0.68. All
other walls (including the cylindrical sides of the jet injections) were given full-slip (zero shear)
boundary conditions. It is worth pointing out that the jets were angled 45◦ into the flow, to allow
for a more natural transition for the incoming, cooled fluid into the boundary layer. The structured
mesh of Commercial 2 that consists of 476 889 cells and 499 350 nodes required roughly 2 hours
and 15 minutes to produce while the unstructured mesh of Commercial 1 that is less refined and
consists of 594 804 cells and 113 593 nodes took 27 minutes to generate, see Fig. 14. The original
MIMS point distribution consists of 98 903 points as illustrated in Fig. 15.

a) b)

Fig. 14. Commercial code meshes of the film cooling jet configuration:
a) structure mesh (COMMERCIAL 2), b) unstructured mesh (COMMERCIAL 1).



220 S. Gerace, K. Erhart, A. Kassab, E. Divo

a) b)

Fig. 15. Original MIMS point discretization of the film cooling jet configuration:
a) initial QTM discretization, b) final point distribution.

Fig. 16. Plot of 600 K isotherm and comparative plot of wall temperature.
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To visualize the results, all three models were plotted on the same temperature scale (360 K
to 780 K with 22 levels) and an isosurface was generated at the T = 600 K value as well as the
centerline lower wall temperature was plotted as seen in Fig. 16. Good agreement is found from all
three methods and meshes/point distributions. It is noted that the MIMS results are obtained after
four levels of point refinement. The timings for the problem setup and solution for all three models
are provided in Table 1. The MIMS process with its automatic refinement is able to complete
the solution in considerably less time than either of the other two solution techniques. In addition,
although the structured and unstructured mesh solutions were only 30 minutes apart, the structured
mesh required almost two hours of more engineering time than the unstructured. This, coupled with
the fact that all three results generate comparable solutions, provides justification for the use of a
MIMS approach when requiring quick analysis of components for flow fields.

Table 1. Timings for problem setup and solution.

Total Solution Times

Task Time

a) Commercial 1

Mesh Setup∗ 02:15:00

Problem Setup∗ 00:05:00

Solve Time 02:16:35

Total 04:36:35
∗ Total Engineer Time 02:20:00

b) Commercial 2

Mesh Setup∗ 00:27:00

Problem Setup∗ 00:05:00

Solve Time 03:32:02

Total 04:04:02
∗ Total Engineer Time 00:32:00

c) MIMS

Problem Setup∗ 00:05:00

Initial Preprocessing 00:02:18

Tolal Solve Time 00:27:31

Total Refine Time 00:29:26

Total 01:13:15
∗ Total Engineer Time 00:05:00

The second example demonstrates the accuracy and adaptability of the proposed technique
when presented with sharp discontinuities in an underlying flow field. To accomplish this, a nozzle
presented by Hoffman is solved where the cross sectional area is given as S(x) = 1.398 + 0.347
tanh (0.8 × −4) with the nozzle inlet and outlet located at x = 0 m and x = 7 m, respectively.
The problem geometry is illustrated in Fig. 17, with the small end of the nozzle (inlet) located at
x = 0 m and the larger end (outlet) located at x = 7 m. Assuming inlet conditions of M = 1.5,
P0 = 100 000 Pa, T0 = 300 K, and P = 27240.3 Pa, and an outlet pressure Pout = 66809.6 Pa,
there is a normal shock within the nozzle located at x = 5 m.
The Commercial 2 software was used to solve this problem using a structured mesh with its

native grid adaptation scheme leading to a final mesh of 415 450 cells or 437 346 nodes, and MIMS
was used to solve the same problem with four refinement stages resulting in 88 429 nodes with an
aspect ratio of approximately 10:1. The final surface point distribution and the mid-plane point
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Fig. 17. Normal shock nozzle geometry.

distribution, are shown in Fig. 18, while, the midline pressure distribution is displayed in Fig. 19
comparing MIMS computed solution with Commercial 2 predictions. The shock is captured and
the meshless process takes considerably less time to arrive at its converged result.

Fig. 18. Surface and interior MIMS adapted point distibution and pressure solution.

Fig. 19. Plot of pressure at midline showing shock capturing.
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Table 2. Total timings for shock nozzle and computations.

Task Time

a) Meshless

Problem Setup∗ 00:02:00

Initial Preprocessing 00:01:12

Total Solve Time 00:10:24

Total Refine Time 00:07:41

Total 00:22:17
∗ Total Engineer Time 00:02:00

b) Commercial 2

Mesh Setup (0.02 m)∗ 00:05:00

Problem Setup (0.02 cm)∗ 00:02:00

Solve Time (0.02 cm) 00:24:36

Mesh Setup (Clustered)∗ 00:12:00

Problem Setup (Clustered)∗ 00:02:00

Solve Time (Clustered) 02:12:27

Total 02:58:03
∗ Total Engineer Time 00:21:00

7. CONCLUSIONS

We presented an industrially relevant, numerical physics solution process implementing a novel
meshless method. Collectively referred to as the model integrated meshless solution method, or
MIMS, this methodology incorporates both a unique meshless implementation utilizing a variety
of interpolation techniques as well as a novel model generation process capable of automatically
generating point distributions for arbitrarily complex geometries. It is the development and fusion
of these techniques which represent the primary contribution of this research. The overarching
theme is that a competitive industrially relevant level, meshless method must be tightly integrated
with the model generation process.
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