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We conducted thermal conductivity investigations by homogenization. This method can effectively model
structural features such as pores within dispersed particle architectures via a finite element mesh. We
investigated the factors that determine the effective thermal conductivity of porous structures and com-
posites, such as the volume ratio of the continuous and dispersed phases, conductivity ratio, Biot number
and particle packing model.
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NOMENCLATURE

Bi – Biot number

G – Dimensionless heat generation number

g – Volumetric rate of heat generation

h – Interfacial thermal conductance

L – Characteristic macroscopic length

l – Characteristic microscopic length

n – Unit normal to Γ

T – Temperature

∆T – Imposed temperature difference

V – Void fraction

x – Dimensionless macro-scale variable

x∗ – Dimensional macro-scale variable

y – Dimensionless microscale variable

α – Thermal conductivity ratio

χ – Particular solution of T

δ – Identity matrix

ε – Small parameter (l/L)

Γ – Common boundary of the two media
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Λ – Dimensionless thermal conductivity

λ – Dimensional thermal conductivity

ν – Weight function

θ – Temperature

Ω – Domain

SUBSCRIPTS

c – Continuous phase (solid)

d – Dispersed phase (solid)

eff – Effective

g – Gas

p – Number of spatial dimensions

q – Number of spatial dimensions

s – Solid

0, 1, 2 – Asymptotic expansion indices

1. INTRODUCTION

The porous material and composites have been used for adiabatic material and reinforcement due
to the fact that they have the advantage of lower heat conduction and a high strength. However,
heat conduction in the porous material and composites becomes very complicated because the pa-
rameters such as pore size, porosity and pore distribution, particle size and particle distribution
are heterogeneous. The effective thermal conductivity (ETC) is very important because thermal
expansion by disordered temperature distribution and temperature gradient causes stress concen-
tration around pore and composite. The conventional models for heat transfer in porous material
and composite [4, 5] are not perfectly adequate because they are simplified and treated as two-
dimensional system.
Thermal and structural analyses have to be conducted simultaneously and precisely. However,

there is less research that focuses on the microstructure of the porosity. Here, the homogenization
method is introduced as the multi-scale analysis, which can reflect the microstructure of pore and
particle on the macro property such as the thermal conductivity. This method is applied to the
stress and the fracture analysis frequently [7, 9], and then it is being developed in thermal analysis
[2, 3, 6, 8]. Therefore, we think that the homogenization method is very useful for the complex
material because it can precisely examine the change of the microstructure after several operations
and reactions under severe surroundings. We used the finite element method to investigate the
mechanism of heat transfer in porous materials, which enabled calculation of the effective thermal
conductivity. We investigated the effects of particle packing, porosity and Biot number on the
thermal conductivity.

2. MODEL

As a first step in analyzing porous materials and composites, schematically shown in Fig. 1a, we
considered the simple periodic composite structure shown in Fig. 1b. As shown in Fig. 1c, each cell
of this periodic structure consists of two domains: solid (Ωs) and gas (Ωg). We defined Γ to be the
interface between the two domains.
The periodic domain Ω is small compared with the characteristic length L at the macroscopic

scale:

ε =
l

L
≪ 1, (1)
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a) b) c)

Fig. 1. Schematic of model used for homogenization: a) porous material, b) periodic structure, c) unit cell

where ε is a scale parameter, and l and L can be understood as the characteristic sizes of the sample
at the microscopic and the macroscopic scales, respectively. In this analysis, l is the pore diameter
of the porous material and ε ranges from about 10−6 to 10−4.
The multi-scale periodic heat conduction problem under steady-state conditions for the medium

described above can hence be mathematically expressed as

−
∂

∂x∗j

(

λs
∂Ts

∂x∗j

)

= gs in Ωs, (2)

−
∂

∂x∗j

(

λg
∂Tg

∂x∗j

)

= gg in Ωg, (3)

− λs
∂Ts

∂x∗j
nj = −λg

∂Tg

∂x∗j
nj on Γ, (4)

− λs
∂Ts

∂x∗j
nj = h (Ts − Tg) on Γ, (5)

where λ, T and g are the thermal conductivity, temperature field and volumetric rate of heat
generation on a microscopic scale, respectively. Furthermore, n is the outward-pointing unit vector
locally normal to the boundary Γ and h is the interfacial thermal conductance. Equations (2)–(5)
are general expressions, and gs and gg become zero in the case of porous material.
By defining the following nondimensionalized quantities:

y ≡
x∗

l
, θ ≡

T

∆T
, Λ ≡

λg

λs
, (6)

in which ∆T is the external temperature difference on the macroscopic scale, we can rewrite Eqs.
(2)–(5) as

−
∂

∂yj

(

∂θs
∂yj

)

= Gs in Ωs, (7)

−
∂

∂yj

(

Λ
∂θg
∂yj

)

= Gg in Ωg, (8)

−
∂θs
∂yj

nj = −Λ
∂θg
∂yj

nj on Γ, (9)

−
∂θs
∂yj

nj = Bi (θs − θg) on Γ. (10)
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Here, the dimensionless heat generation numbers and the Biot number are given by

Gs ≡ gs
l2

λs∆T
, Gg ≡ gg

l2

λg∆T
, Bi ≡

hl

λs
. (11)

Multiplying Eqs. (7) and (8) by a weight function ν, integrating over Ω and applying Green’s first
identity theorem we obtain

∫

Ωs

∂νs
∂yj

∂θs
∂yj

dy −

∫

Γ

νs
∂θs
∂yj

njds =

∫

Ωα

Gsνsdy, (12)

∫

Ωg

Λ
∂νg
∂yj

∂θg
∂yj

dy +

∫

Γ

Λνg
∂θg
∂yj

njds =

∫

Ωg

Ggνgdy (13)

and we substitute Eqs. (9) and (10) into Eqs. (12) and (13):

∫

Ω

α
∂ν

∂yj

∂θ

∂yj
dy −

∫

Γ

Biνθds =

∫

Ω

Gνdy, (14)

where α = 1 if y ∈ Ωs, and α = Λ if y ∈ Ωg.
The homogenization method is thus applied to the variational weak form of the multi-scale

heat conduction problem given in Eq. (14). The method proceeds by using the nondimensionalized
temperature field θ(x, y) as a function of the two spatial variables x and y, where x is given by

x ≡
x∗

L
(15)

and we introduce the following multi-scale asymptotic expansions:

θ (x, y) = θ0 (x, y) + εθ1 (x, y) + ε2θ2 (x, y) + ..., (16)

ν (x, y) = ν0 (x, y) + εν1 (x, y) + ε2ν2 (x, y) + ..., (17)

where θk(x, y) and νk(x, y) (k = 1, 2, . . .) are periodic functions of y at each micro level. θ0(x, y) and
ν0(x, y) is macroscopic temperature and weight function, respectively. During the computations,
we must account for the fact that x and y are considered to be independent variables. To this end,
the derivative operator is expressed as

∂

∂yj
=

∂

∂yj
+ ε

∂

∂xj
. (18)

The homogenization process where ε− > 0 produces a set of equations satisfied by θ0, and
represents the macroscopic behavior of the bed’s heat transfer.
Substituting Eqs. (16) and (17) into Eq. (14), and applying the chain rule in Eq. (18), we obtain

∫

Ω

α

(

∂ν0
∂yj

+ ε
∂ν0
∂xj

+ ε
∂ν1
∂yj

+ ε2
∂ν1
∂xj

+ ε2
∂ν2
∂yj

)(

∂θ0
∂yj

+ ε
∂θ0
∂xj

+ ε
∂θ1
∂yj

+ ε2
∂θ1
∂xj

+ ε2
∂θ2
∂yj

)

dy

+

∫

Γ

Bi
(

ν0 + εν1 + ε2ν2
) (

θ0 + εθ1 + ε2θ2
)

ds =

∫

Ω

G
(

ν0 + εν1 + ε2ν2
)

dy. (19)

The final step of the homogenization process is to group the terms associated with each power
of ε, which leads to two boundary value problems: one in the homogenized macroscopic region, and
the other in each periodic cell [10]. Grouping ε0 terms, we determine that θ0 is invariant on the
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macro-scale. In addition, by assuming that Bi = O(ε0) (i.e., ε ≪ Bi ≪ 1/ε) and that G = O(ε2),
grouping ε2 terms gives

∫

Ω

α
∂ν1
∂yj

(

∂θ0
∂xj

+
∂θ1
∂yj

)

dy +

∫

Γ

Biν1θ1ds = 0. (20)

We next define the characteristic function χp(y) of arbitrary additive y as follows:

θ1 (x, y) = −χp (y)
∂θ0 (x)

∂xp
. (21)

χp(y) is a periodic solution of Eq. (20) and corresponds to a unit temperature gradient. Substituting
Eq. (21) into Eq. (20) gives

∫

Ω

α

(

δjp −
∂χp

∂yj

)

∂ν1
∂yj

∂θ0
∂xp

dy =

∫

Γ

Biν1χp
∂θ0
∂xp

ds, (22)

where δ is Kronecker’s delta, and simplifying Eq. (22) gives

∫

Ω

α
∂ν1
∂yj

∂χp

∂yj
dy +

∫

Γ

Biν1χpds =

∫

Ω

α
∂ν1
∂yp

dy. (23)

Equation (23) can then become the cell problem for the characteristic function, χp(y), which is
solvable by a finite element method. Here, ETC λeff is obtained as the homogenized property as
follows:

λeff,p =
1

Ω

∫

Ω

α

(

δpq −
∂χq

∂yp

)

dy. (24)

We used a 40 × 40 × 40 finite element mesh, with body-centered cubic (BCC), face-centered
cubic (FCC), and simple packed (SP) models for pore arrangements, and we varied the porosity
by varying the radius from the center of the pore. To characterize the effect of the surface area
between the solid and gas phases, boxels of the gas phase are randomly distributed. We confirmed
the validity of our model and the mesh number through a comparison with the results of Rocha et
al. [1]. The Biot number, which is important for heat transfer calculations, typically depends on the
diameter, distance from the surface, and shape (e.g., open or closed) of a pore. The Biot number of
metal hydrides, for example, is approximately 1–100 when considering convection in a packed bed
[1]. We evaluated cases in which the Biot number is 0.01, 1, and 100. The thermal conductivity
ratio (λs/λg) of a material provides valuable information with respect to temperature, pore size,
and pressure measurements, and is constant (e.g., 1/Λ = λs/λg = 2, 5, 10, and 20) for our porous
materials and composites.

3. RESULTS AND DISCUSSION

3.1. Porous material

Figures 2–5 show the effective thermal conductivity (ETC) for each Biot number and thermal
conductivity ratio (λs/λg = 2, 5, 10, and 20). When the conductivity ratio and Biot number are
small, as shown in Fig. 2a, the ETC can become less than 1. Heat is conducted through only
the solid phase because no heat is transferred through the solid-gas interface. When the porosity
is greater than 0.6 (SP) and 0.75 (FCC and BCC), heat is transferred through the gas phase
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a) b)

c)

Fig. 2. ETC versus porosity for λs/λg = 2: a) Bi = 0.001, b) Bi = 1, c) Bi = 100.

a) b)

c)

Fig. 3. ETC versus porosity for λs/λg = 5: a) Bi = 0.001, b) Bi = 1, c) Bi = 100.
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a) b)

c)

Fig. 4. ETC versus porosity for λs/λg = 10: a) Bi = 0.001, b) Bi = 1, c) Bi = 100.

a) b)

c)

Fig. 5. ETC versus porosity for λs/λg = 20: a) Bi = 0.001, b) Bi = 1, c) Bi = 100.



96 Y. Asakuma, T. Yamamoto

(i.e., pore formation occurs). Accordingly, heat is conducted through both the solid and gas phases,
and consequently minimal heat penetration occurs. The Biot number is intermediate in value in
Fig. 2b and there is less heat penetration. With respect to a random phase distribution model,
heat penetration through the gas phase is more difficult. Because the pathway through the gas
phase in the case of a random pore distribution is at a greater porosity (0.85) than that which
occurs in BCC, FCC, and SP configurations, the thermal conductivity is slightly higher. This
means that pore shape and distribution are important factors for heat transfer. On the other hand,
as shown in Fig. 2c, when the Biot number is greater, the thermal conductivity linearly decreases
with respect to porosity. There is efficient heat transfer around the interface with respect to each
porosity value.

When the thermal conductivity ratio (λs/λg) increases, as shown in Figs. 3–5, the influence of
the gas phase heat conduction becomes progressively smaller. The thermal conductivity eventually
becomes linear regardless of the Biot number (Fig. 5). Porosity influences the heat conduction of a
porous material via the effective conductivity. This means that when the Biot number and conduc-
tivity ratio between the gas and solid phases are smaller, the influence of the pore structure must
be considered. If the pore is regularly distributed (such as in BCC, FCC, and SP configurations),
the interfacial areas of the unit cells are identical. However, because the interface of a random
cell (which has various pore shapes and porosities) is more extensive and the Biot number of a
closed pore is smaller, one must pay careful attention to the material structure when modeling a
real-life porous material (e.g., there may be a nonlinear relationship between the ETC and mate-
rial porosity). Real-life ETC values should be between those of random and FCC models. In the
context of overcoming this nonlinearity limitation, Fig. 6 shows normalized effective conductivity
(λeff/λs) values that correspond to a randomly packed model for each Biot number. We observed
particle packing effects (i.e., a nonlinear relationship between the normalized effective conductivity
and material porosity) with respect to only greater porosities and smaller effective conductivity
ratios.

a) b)

c)

Fig. 6. Normalized effective conductivity (λeff/λs) versus porosity for various λs/λg values: a) Bi = 0.001,
b) Bi = 1, c) Bi = 100.
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3.2. Composite

Figure 7 shows the ETC for composites (conductivity ratio λd/λc = 2, 5, 10, and 20) with respect
to each particle dispersion model (BCC, FCC, SP and random). We obtained a linear relationship
with respect to the particle volume ratio and conductivity for every particle packing condition. The
conductivity ratio of the continuous and dispersed phases is essential for heat conduction, even
for heterogeneous composites. Note that we ignored the interfacial resistance, which depends on
the dispersion model, in our calculations. We did not obtain a linear relationship with respect to
imperfect contacts. Results that consider interfacial resistance might be similar to those of a porous
material.

a) b)

c) d)

Fig. 7. ETC versus particle volume ratio for composite: a) λd/λc = 20, b) λd/λc = 10, c) λd/λc = 5,
d) λd/λc = 2.

4. CONCLUSION

We have introduced homogenization as new multi-scale model for heat conduction and transfer anal-
ysis of a porous material and composite. Our method could become a powerful tool for quantitating
the ETC of a material with respect to microscopic features such as particle packing, porosity and
the Biot number. We have theoretically investigated the effect of pore distribution on heat transfer.
Most notably, a greater porosity corresponded to a nonlinear relationship between the porosity and
ETC when the thermal conductivity ratio and the Biot number were small. Both the conductivity
ratio and the volumes of the continuous and dispersed phases are important parameters for heat
conduction in a composite.
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