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The Trefftz method pioneered by Treffiz [71] in 1926 is described as follows: The particular solutions or the
fundamental solutions are chosen, a linear combination of those functions is regarded as an approximate
solution of partial differential equations (PDEs), and their expansion coefficients aré sought by satisfying
the interior and exterior boundary conditions, When the solution domain is not rectangular or sectors, the
piecewise particular solutions may be chosen in different subdomains, and some coupling techniques must
be employed along their interior boundary conditions. In Li et al. [49], the collocation method is used for
the Trefft2 method, to lead to the collocation Treffte method (i.e., the indirect Trefitz method). In this
paper, we will also discuss other four coupling techniques: (1) the simplified hybrid technigues, (2) the
hybrid plus penalty techniques, (3) the Lagrange multiplier techniques for the direct Trefftz method,
and (4) the hybrid Trefftz method of Jirousek [23] and Qin [62]. Error bounds are derived in detail for
these four couplings, to achieve exponential convergence rates. Numerical experiments are carried out,
and comparisons are also made.

1. INTRODUCTION

The Trefftz method (TM) pioneered by Trefftz [71] in 1926 is described as follows: The particular
solutions or the fundamental solutions are chosen, a linear combination of those functions is regarded
as an approximate solution of partial differential equations (PDEs), and their expansion coefficients
are sought by satisfying the interior and exterior boundary conditions, The Trefltz method (TM) has
been applied to solve many engineering problems since the important work by Zienkiewicz et al. |75]
and Jirousek and Leon [24] in 1977. References on the TM include [8, 66, 68, 73, 74|, before 1995,
and [1, 9, 10, 16, 19, 21, 28-30, 33, 35, 61, 65, 67, 72|, after 1995. In 1995, there was a journal special
issue on the Trefftz method [31, 32]. The error analysis of the TM is reported in the monograph [49]
in 2008.

By the Green formulas, the Trefftz method can be extended to some elliptic equations, which
framework was given by the algebraic approaches in Herrera [17] in 1984. Since the algebraic nota-
tions and operations are simple and easily understood, the Trefftz method (or called the Trefftz-
Herrera approaches) has been applied to many engineering problems, in particular, the coupling
problems where there exist the jumps of both the solutions and their derivatives along the interior
boundary I'y. A great progress has been made by Herrera and his colleagues, and numerous papers
have been published. Here we only mention a few important works, Herrera [17-19|, Herrera and
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Diaz [20, 22] and Herrera and Solan [21], and a complete list of references for the Trefftz-Herrera
approaches can be found in |18, 19].

For Laplace’s equation or other second order partial differential equations (PDE), using piecewise
particular solutions is important for the Trefftz method (TM) to solve the complicated problems,
in particular those with multiple singularities. Let the solution domain & be divided by Iy into
two subdomains S* and S~ without overlaps,! § = §* U S~. We may choose different particular
solutions in S* and S, denoted by

L
gt = Zm@. in 8T,
v= i:,ﬂ (1)
v = b¥ in S,
1=l

where v* are the particular solutions satisfying the PDE in S* and S respectively. Since the
admissible functions v in Eq. (1) are not continuous along the interior boundary [}, some coupling
techniques must be chosen to link v and v~ to satisfy the interior continuity conditions,
(I Thy ™
+ g B .
vt =T, p e B on Iy, (2)
where p* are the positive coefficients, and n is the outward normal of 8S*. The direct collocation
for Eq. (2) is given by

vt v~
Q) = (@) PP Q) =" 5(Qk), Qi€ . (3)

This leads to the collocation Trefftz method (CTM), error analysis has been provided in Li ef al. [49].
The CTM is also called the indirect TM in |20, 32]. Note that the boundary approximation method
and the TM are called in our previous study and in engineering journals [19, 32|, respectively.

In this paper, we pursue other efficient techniques to couple v and v~ on I}, Consider the
Laplace or the Debye-Huckel equation,

Lu=-Au+ecu=0 in S, (4)

where Au = % + g—;-‘i » and constant ¢ = 00 or ¢ = 1. For simplicity in exposition, we may assume
that the particular solutions ¢, and ¥; also satisfy the exterior boundary condition on 45. Denote
by Vi n the finite dimensional collection of v in Eq. (1).

The following four coupling techniques on [y will be discussed in this paper.
I. The simplified hybrid techniques. To seek u; v Vi w such that

Apy (g n,v) =0, Yo e Vow, (5)
where
Ay (u,v) = f ‘Fu?u+f VuVu + ."E;_‘”{u. v). (6)
St §-
In Eq. (6}, the simplified hybrid coupling is
{a,d) uto . = ot it~
'r-‘-'ﬁﬁ () = i -ﬁn -4 e Ei.’ -0 /.:1, 'En“u +4 e E!—u"'. (7)

'The Schwarz alternating methods can be emplayed for the TM, where 5% and S~ may or may not have overlaps.
Along the interior boundary, different interior boundary conditions are explored in Li ef al. |46}, such as the Dirichlet,
the Neumann, the Robin conditions and their mixed types, to speed the convergence of the iterative algorithms,
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where n is the unit outnormal of 95, u* = u|gg:p, , and o and 3 are real. For convergence of
the solutions, choose o + 7 = 1, and for symmetry, a = [ = "—g :

In our previous study, we always choose «J = 0. Such couplings are called the simplified hybrid
combinations of the Trefitz method and FEM, and reported in Li and Liang [47], Li and Bui [40, 42},

Li [38], and Li and Huang [45]. The “s:mphhed" meaus that no extra-variables such as the multiplier

(1,0

as in IV is needed. The bias derivatives 4 'E'r'.' a.ud G in Ly, are easily formulated in the stiffness

matrix, since the particular solutions used in S* are explicit. Henee, the simplified hybrid techniques
are very efficient. However, when both particular solutions are used in ST and S, the symmetric
hybrid techniques with o = (# = § should also be studied. Since our previous analysis can not be
applied to the case a3 # (), new error analysis for the simplified hybrid method (5) is imperative.
Note that the original Trefftz method by Trefftz in 1926 |71] is just the special case of Eq. (5) with
St=8,8"=0,a=1and =0

II. The penalty plus hybrid techniques. To seek u} . € V} » such that

Bpy(ul yyv) =0, YveVpn, @
where
Bpy(u,v) =[ ?u‘?v-lrf VuVe + IE;;’H"‘J"{u, ). (9)
J g+ Jg-

In Eq. (9) the penalty plus hybrid coupling is

[lafie) th du : = vt T : s
Iog (u,v) = — /;;_., (ﬂ:ﬁ;— )[r — ,'I—-/;h (uﬁ-‘r;j-}m—l (u" —u")

+PeL°+NT) [ (" —u”)(v" —v7), (10)
Iy

where the parameters o + 7 = 1 for better convergence of the solutions, & = 1 and v = 1 are
two constants independent of L and N, and F, is a large enough constant but still independent of
L and N. The penalty plus hybrid techniques have been used for the combinations of the Trefftz
method and FEM in |37, 41, 43, and in this paper for the Trefftz method u.'.-}ing piecewise particular

solutions,

ITI. The Lagrange multiplier techniques for the direct TM. Consider the Debye-Huckel
equation,

Lu=~Au+t+u=10 in S. (11)

Suppose that ®; and ®; satisfy Eq. (11) in §* and 5~, respectively. We also choose Eq. (1) as
the admissible functions, and denote by Vi y their finite dimensional collection. Also denote V),
the piecewise k—order puiynommla We choose the Lagrange multiplier Ay E Vi, to couple the
displacement continuity on [, The Lagrange multiplier technique is to seek (uf L M) € Vin x Wy
such that

AlLag (Htﬁ.ln?ﬂ,;-&) =0, ¥(v,u)eVinxW, (12)
where
Apag(u, X;v, p) = ff ?uvu+f VuVu + Dpaglu, A v, p). (13)
S+ 5=

In Eq. (13) the Lagrange multiplier coupling is given hy

Diaglu, Asv, i) = -f Mot =v )= | plut —u). (14)
Iy I
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The error analysis for Eq. (12) can be obtained by following Li [36, 37]. Note that the direct Trefftz
method called in engineering is just the Lagrange multiplier Trefftz method, see [30, 33].

IV. The Hybrid Trefftz method of Jirousek [23] and Qin [62]. When the particular solutions
are chosen, the interior flux condition w;; = wu; on [} is constrained a prior, also by means of
the Lagrange multiplier A, and the displacement continuity condition u* = v~ on [} is a natural
consequence, In this case, the true Lagrange multiplier is the solution u on Iy Consider the Dirichlet
condition « = f on 5. Define the energy,

IHu) = %{f‘ég;[“ﬁ—i’”ﬁ'i'”ﬂ}+fjl,;_{"3+u:+"z"l} — n]“};:—'l-';}a\—‘/r” Firgs “5]

where 1 on [} is the exterior normal of 57, Let the true solutions u € H'(5) and the Lagrange
multiplier A(=u) € H %{F u) satisfy the following Galerkin problem:

Ap(u,v) + Byp(u, v, 1) = flv), Yvee HY(S), ne H%[ﬂ,}, (16)

where
f[ {i}"u'{?nﬁ—mr}ﬂa-&fj (Vu %7 v+ uv)ds,
5+ z=

Byr(u, Ajo, ) = "f Aluy —"'r'.'}llf—f plug =) dé,
I I

f(@) - fr fom. '

Also let V), the piecewise k—order polynomials on Iy, then V,, ¢ H | {Iy). The Hybrid Trefftz method
reads: To seek (ug v, An) € Vi v % V), such that

Ap(ug,w,v) + Byrlupn, Anivsp) = flv), ¥lo,p) e Viw x V. (17)

Ap(u, v)

Note that there exist the extra-variables: Lagrange multiplier in 111 and IV, but not in I and 1L
The simplified hybrid method is the simplest among [-1V.

For III, the Lagrange multiplier used to couple the Dirichlet condition and the interior continuity
ut = u”. However, for elasticity problem, when satisfying the stress equilibrium equations in §
and the interior traction continuity condition, the interior displacement continuity is a natural
consequence. Hence, the Lagrange multiplier is employed to couple the traction (i.e. Neumann)
condition and the interior traction continuity u; = u;. The Lagrange multiplier is regarded as
the true solution « on Iy and IY, which is easy and simple in numerical computation, and the
hybrid Trefftz method (HTM) is called in Jirousek [23]. An error analysis is given in Li [39]. We
may also use the simplified hybrid techniques, to remove the Lagrange multiplier for the interior
flux conditions, to obtain exactly the same algorithms as in I for the interior boundary.

This paper is organized as follows. In Section 2, the simplified hybrid techniques are described,
and in Section 3, new error analysis is made. In Section 4, the penalty plus hybrid techniques are
studied, and in Section 5, the Lagrange multiplier techniques are explored. In Section 6. numerical
experiments are carried out for Motz's problem by the CTM and the simplified hybrid TM. In the
last section, some remarks are given.

2, THE SIMPLIFIED HYBRID TECHNIQUES

Consider the Laplace equation with the Dirichlet and Neumann boundary conditions, see Fig. 1,
li}lgﬂ l'_'}"i'r.i .
An = (F_i_t}‘_,rﬁ) =) in S, (18)
@

B 1 on I

u=¢ on Ip,
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Fig. 1. Partition of 5 into 5 and 5~
where S is a polygon, and 35 is its boundary with 5 = I'pUI'y. Let S be divided by the piecewise

straight sections I'y into two subdomains S* and S~ without overlaps. Suppose that the admissible
functions are given by

L
ot = Py + Z a; P in §*,
i=0

U= N (19)
v =Wy + z-'l.-'l'. in &,
i=0
where a; and b; are the coefficients to be sought, and ®; and W; are the particular solutions
AB;=0 in S*, A¥=0 in 5. (20)

[®;} and {¥,} are two complete and linearly independent bases in S* and 5™ respectively. For
simplicity in exposition, we let the partial solution v*just satisfy the exterior boundary conditions

J
+ _ v 4 i

a ‘asinﬁ, . on' lastnry 2 (21)
Otherwise, the coupling techniques can be discussed as those for the interior boundary conditions.
Denate by Vi y the finite dimensional collection of v in Eq. (19). Then we design the simplified
hybrid Trefftz method (SHTM) as follows. To seek uy x € Vi y 10 satisfy Eq. (5). When u = v, the
integral

1) (uyv) =0. (22)

Then for the nontrivial v € Vi, » we have

Agplv,v) = _/_/;. vrr?ir+/.[;h VuVe > 0. (23)

This may imply that the bilinear functional A gy (u. v) defined in Eq. (6) is positive definite. How-
ever, since Ay (1, v) is non-symmetric, more computational efforts and more computer storage are
needed. In computation, we may seek u; y differently. Since vt and v~ are independent to each
other, we obtain from Eq. (5),

ot du

TVt = —u - —v =0, 24
fﬁ?u v — @ . a“u A ) on v (24)

i dut _ Qv
f]:_\?u Vv +ﬂjj?1n g + 3 I‘DEH =0, (26)
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Subtracting Eq. (25) from Eq. (24) yields B(ug n,v) = 0,Yv € Vi n, where

B(u,v) = /Iq+ Vu*Vyt — fj:_ Vu Vv~

dut du~ dut dv~
= S P R e P RT3
o - on u -3 < o v — o - On t B~ u (26)
The new bilinear function B(wu, v) is symmetric but non-definite. Denote a function,
3 =
T(v) = % ffw Vot Vot — %f ] Ve Vv~ — n‘ e ﬁ;;;* v —p . %";Tﬂ.b' (27)
The variational equation of the function T'(v)
dT'(v)
s 0 (28)
leads to exactly Eq. (5). Equation (27) can be expressed as the matrix and vectors
T(v) = é.f”‘nif - X7, (29)
where X = (7,3)7, §= (a1, ..., ar)7, = (by, ..., by)". The stiffness matrix is
Ay Agp )
A= . 30
( Al, —-An (30)

where A;; and As; resulting from [f VutVu' and ff Vv™ Vv~ are positive definite and
J g4
symmetric. The variational equation (28) gives the linear algebraic equations

: Ay Ap i >

AX—(A.{:J —Aw)(?:')_h‘ (31)
Since the matrix A is symmetric and nonsingular, we may use the symmetric Gaussian elimination
without pivoting, to obtain the coefficients a; and ; easily. Note that the solution from Eq. (31) is
easier than that directly from Eq. (5), and that the running CPU time and computer storage are
also saved,

Let us link the simplified hybrid techniques to the interior continuity conditions (2). We assume
that e + 3 = 1. From the Green formulas and Au® = Av® = 0 in §*, we have

de Vutvet = s %‘:;".p = s %H"". (32)

f ViV = 4 f::_;,,— == E;-iu:u_. (33)
Hence when o + 3 =1,

[ Pt mufl St f T, )

J) vuvr = = Rty (35)

From Eq. (34), Eq. (24) leads to

TR W = dut  GumN
ﬂ-/‘..ﬁw —47 ) B n,(_'__ )u =1{. (36)
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Also from Eq. (35), Eq. (25) leads to

e _ Ou f.i‘t_l)_“
dj;-'ﬂ B (u” —u }+n,/;;,(-fj—iTF B =-[. (37)

Combining Eqgs. (36) and (37) gives

v i . _ o du~
[, ("‘ o *’_)“‘ N ST ’(e;; -~ ) = (39)

Since v* and ¢~ are arbitrary, Eq. (38) implies the condition (2).

3. ERROR ANALYSIS FOR THE SIMPLIFIED HYBRID TREFFTZ METHOD

Denote the norm

v é | L 3
flvlly = {Ih”"%w + ||'”“f_5-—} ' fvly = {J”H_sl + |'”']I,.<.'- }J ' (39)

where ||v||; g+ and |v|; g+ are the Sobolev norms.

3.1. Basic error analysis

First we assume that there is no integration errors involved. We have the following lemmas.

Lemma 1. Let the constant be excluded in Vi, and o and (3 be bounded. Then for the simplified
hybrid Trefftz method (5), there exist two constants Cyy and C independent of u and v such that

|Aggp(w, )| £ Ciljulh flfly . Ve eVin, (40)
Cnllﬂﬂﬂ < Apg(v,v), YoeVin. (41)

When the particular solutions ®; and ¥; exclude the cnnstant their linear combination also
exclude constant. If both

Stnlp#0, S NIp#0, (42)
we obtain from the Poincaré inequality,
Cﬂ“"’-‘"‘ilgl pS ['"|‘fl_5'-+ 1 H*‘lh g = |1'1|?"¢,-_ ' (43)

where (Y is a constant independent of v. We also obtain from Eq. (43)
Collvll} < Agys(v, v). s

Lemma 2. Let u and wy, y be the true solution and the solution from the simplified hybrid Trefftz
method (5), respectively. Suppose that o + [ = 1. Then there exists the equality

Apgg(u—upn,v) =0, YveVyy. (45)
Proof: For the true solution u, we have u* = u~ = u on [}. Then we have from Eq. (7)

du dut :
{ex, ) = = ot = e e
Ly (wv) = B v 0 U —@ - u+ 3 f.‘h - (46)

Since u and v satisfy Au=0in §*, we have from the Green theory

dut f f du +
—_—1 = YuVuo = _ 47
j;*u dn s+ Iy On (47
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Similarly, since « and v~ satisfy Au =0 in 5, we also have

v~ (7 T
I E“ - s aw ) {481
Combining Eqgs. (46)-(48) gives
0 chi &
Lt (u,v) = —(a + ) j;“ 5, (vt —v). (49)
Hence for the true solution u, we obtain
du du o4
Apg(u,v) = o av' - s a:t.‘ + f:'fyh J['u, )
= E{u"" —-v" )4 f{ﬂ'm[u v)=[1-(a+3)] ﬁt—[u‘* -7 ) =0 (50)
r, n Hyb 1 0y o r

where we have used the assumption o + # = 1. The desired result (45) follows from Eqs.
(5) and (50). =

Now we give a main theorem.

Theorem 1. Let the constant be excluded in Vi x and o + # = 1. Then the solutions from the
simplified hybrid Trefftz method (5) have the optimal error bounds,

le —rp il <C inf fju—v|;. (51)
vele n

where (' is a constant independent of L, N, u and v.

Proof: When w = uy x — v, where v € Vp . Then w € V}, 5 . From Lemmas 1 and 2, we obtain

Collw|l} < Apgb(ury —vow) = Agg(u— v, w) < Cylju — vy |lwl; . (52)
Hence we have

lus. = ol < plhu ol (53)
Moreover,

=l < o=l o= w vl < (1452 =i, (54)

the desired result (51) follows by letting ' = ( 1+ %) This completes the proof of Theorem 1. »

Suppose that there exist the solutions

u= z&i‘[‘, =@+ R, inST, (55)
=1
where i, are the true expansion coefficients, and
L =
L=y @b, Rio= Y abi. (56)
i=] i=L+1

Moreover, suppose that the convergence rates of Eq. (55) are exponential, i.e., there exists a con-
stant <, with 0 < -y < 1 such that

|RL| € Cyyf = Crexp(—0,L), (57)
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where 7 = exp(—#;) with #; > 0, and ) is a constant independent of L. Similarly, we also suppose
that

= Zi’i'{’l =fiy+fHy inS", (58)

where b, are the true expansion coefficients, and

N oo
iv=Y bW, RByv= ) b, (59)
=] =N+1
and
|Ry| < Cavd = Caexp(—0aN), (60)

where 3 = exp(—#a) < 1 with #; > (), and (', is a constant independent of N. We have the following
corollary from Theorem 1.

Corollary 1. Let all the conditions in Theorem 1, and Eqs. (55)-(60) hold. Then for the simplified
hybrid Trefftz method (5) there exist the exponential convergence raftes.

= urnlly < € {VEexp(~6,L) + VN exp(~02N) } (61)
where i) > 0 and /s > 0, and C is a constant independent of L. and N.

Remark 1. There exist some limitations for applying the simplified hybrid TM to Laplace’s
equation®, By noting that a constant solution may be included into the piecewise particular solutions,
which violates the condition in Lemma 1. Let S be split into S;, i.e., § = U;S; and S; N S; = 0,
i # j. First the condition (43) leads to 85, N I'p # 0, where I'p is given in Eq. (18). This condition
excludes any interior subdomains S; with S, N I"' = . Next, let us consider the simplified hybrid
TMs from Eq. (5) with o = 1 and 7 = 0, to seek uz v € Vi n(= Vi x Vy) such that

Ap:ﬁ.lh{ui..ﬂ-'- "] =, Wve Fhi'm-\r, {52}
where
T o
J‘ﬂf,;h (u,v) =f iy VuVu + f - VuWVu + = d;n T N ﬂrn  'TYF (63)

Note that a constant in u* and v* does not make any difference in Eq. (63), so the constant
must be excluded into the particular solution v in V. Moreover, if a constant is involved into the
particular solutions v~ € Viy, the parameter 3 = () in Eq. (6) and then o = 1 are also required to
give Eq. (62). This is just the computational model for Motz's problem in Section 6. Therefore, the
condition in Lemma 1 may be relaxed as that a constant solution must not be included into the
piecewise particular solutions v* € Vj, .

Remark 2. The limitation of the simplified hybrid Trefftz method in Remark 1 can be removed
by the a posteriori (see Qin [62]), to seek a suitable constant. For simplicity, let I'y # 0, and
I'pn Sy # 0. When the solutions uy, in S; and uy in S; have been obtained from Eq. (5) or
Eq. (62), the general solutions are given by adding a constant ¢j: uy + ;. From the Dirichlet
condition

ug+cg =g1  on MpnSt, (64)

*The simplified hybrid TM can be applied similarly to the Debye-Huckel equation, —Au +u = (. The limitations
described in Remark 1 are removed.
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we obtain the constant

o e ol

—_ —ul), (65
® = rpnst .fnﬂ.bf{Jt a )

where [I'pN S| is the length of 5N S™. Also from the interior continuity condition (2), we obtain
the other constant

1 r
ty = WL I:u;;, —= I'I.H} + l'.';::. {Eﬁ}
Equations (65) and (66) can also be evaluated by numerical approximation:

|
[F'o N ST rpnse

b =

1 .
(g — uIr}, Co = |_PH_|./; {“I' —uy)+ . (67)
[¢]
3.2. Integration approximation for the hybrid Trefftz method

In this subsection, we will follow the traditional FEM analysis, to derive the error bounds of the
simplified hybrid Trefftz solution when the integration approximation is involved. The simplified
hybrid Trefftz method involving integration approximation is expressed as: To solution u;, v € Vi y
such that

Apgliag,n,v) =0, Yve Vi, (68)

where Vi, » is the same collection of Eq. (19) satisfying Eq. (21), and

jﬂyb'fﬂ.l"] - f/ vu?u+f TuVu + I}}L;ﬂ{u. v). (69)
J g1 8-
In Eq. (6), the simplified hybrid coupling with integration approximation is

—all P df B 9 | - (70)
r, on

"1'-16'3]
(u,v) r On Iy On o on

The notations [ / and / denote the approximations of [ / and by some quadrature
-SH' L J"a of W 5

Is
rules, Since

ff VuVu = —-——-v ff VuVu= ?-ri-n_
g4 o ﬂn - % Bu

the integration approximation of E& can be carried out as that of _:l;,u .

f/ VuVue = ai—"u ff VuVu = ‘r’f“—"u—
' ry, on - r, On

Suppose the following inequalities hold,
Apgs(u,v) < Cillulliflvlls, Yo e Viw, (71)
Collvll < Asys (v, v), Yve Viw, (72)

where 'y and C'; are two positive constants independent of L and N. We have the following theorem.
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Theorem 2. Let Eqgs. (71) and (72) hold. Suppose that o 4 (3 = 1. Then the solutions t;, » for the
simplified hybrid Trefftz method involving integration approximation (68) have the following error
bounds,

ey < inf ||lu—wv
o=l < € af u=ol

R ” (fr fr) on”
(1) el

Proof: Since a + = 1 we have from Eq. (50)

A1) o
ALL) 5 @

z’i”yb{u. v)=0, Yve V. (74)
Then
Ao, v) = Aggn(u, v) + (ﬁnya - AH;.-I':) (18, v) = (Astgs — Apgs) (1, 0). (75)

From Eqs. (68) and (75)

;iﬁyir[_'u — g N, V) = (ﬁuﬂﬁ = -*h;,,r.) (u,v). (76)
Let w = ity y — v, where v € Vy, . Then w € Vi, y. We obtain from Eqs. (71), (72) and (76)

Collwll} < Apgaliry = v.w) = Apyy(u = v, w) - (A.'.*yh = Afry.'-) (u, w)

< Cllu—villwls + | (Aap — Angs ) (w,w)|.

Hence we have

lapn—vli < ﬂ||" = vl + i ‘ (-‘Eﬂyh = -"lﬂyb) lu,m}l-

Cy Col|w||y

Moreover, since |[u — g nlhi < [lu — vl + v — wr.nll

e — g, wlla < (1 ¥ —) Ju vl + o = | (A = A ) (w0, (77)

(L) |+ (T, ) e
|(h ) Bl | ) # e

Then the desired result (73) follows from Eqs. (77) and (78), and this completes the proof of
Theorem 2. #

Suppose that v € Vi, v satisfies the following inequalities
vt

where

(Eﬂpb = i"lﬂyb) (u,w) <

(78)

.
ot e, < CLL™* vt o, 4

< Can:r{k-l-l!hﬁlﬂ'rn ! {Tﬂ'}
k.l
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where ¢ > 1 and C; are two constants independent of L and v, Also suppose that v~ € Vi n
satisfies the following inequalities

[0~ ks < CaN"*lv~ 0,13 + ‘an i <N lo (80)

where 7 = 1 and C; are two constants independent of N and v~. We have the following lemma.

Lemma 3. Let v* satisfy Eq. (79). For the quadrature rules with the accuracy of order k. Then
for the simplified hybrid Trefftz method involving integration approximation (68) there exist the
error bounds,

du o e
[ < ofk-41) g k1 o o ol o
(\/;}, f’”) 1w CL It Eh:lk+| I e lhigy: wreViw. (81)
o2 ak+2) k41 + §
= u i: CL = |“-Ik+]_1f"“||"5 |[|.S g wh e .I'IL,N i {32}
Io Ia dn

where h is the maximal interval of integration rule.

We have the following corollary from Theorem 2 and Lemma 3.

Corollary 2. Let all the conditions in Theorem 2 and Lemma 3. Then for the simplified hybrid
Trefftz method involving integration approximation (68) there exist the error bounds,

P c{«"z?expr—a.m + VE exp(=OsL)

where (' is a constant independent of L, N and h.

Below let us examine the inequalities (71) and (72). Denote

Suppose that there exists the norm equivalence

ol <Tvl,, YoeVin, (84)
i.e., there exist two positive constants Cyy and )} such that

Colv; <Tvl; < Cilvli. Yo e Viy. (85)
Then we have the following lemma.
Lemma 4. If [v], = |v|,, then [[o]], = ||v||; .
Proof: From Eq. (85), we have

CBlvls + 1wl s < ol = ol + luli3s < CRlvfi + lollds, v € Vi (36)

Then

min{1, C3Hell} < Jolly < max{1,C3}ull}. veViy. (87)

This displays [f'uil1 = |lv||1 ., and completes the proof of Lemma 4. »
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Lemma 5. Let all the conditions in Lemma 1, Egs. (79) and (80) hold. Suppose that the integral
interval h in the quadrature rule of order k is chosen so small that *

hk+!Lﬂ[k+'l:l - 0{1]1 hk-i I.‘h.rrfk+'l] — U“}. {BE}
Then the uniformly Vi, x-elliptic inequality (72) holds.
Proof: We have

Aygs(v,0) = f [+ | f Vol = “—"—v*+ g (39)

For the quadrature rule of order &, we have

ih +
f f “--—t:"' < Oht I| 1u+1 . (90)
f[l l‘“ L] "l'+|JI||
From Eq. (79) we obtain
ot dut N e .
uu’ { +1. Jcr“.'+.2—|] i o 1
==vt| Z| i lasiin P s S CLL < Lo I,
< oL |5 ry < CLTF* ol 54 (91)
where C is a constant independent of L and v. Combining Eqs. (90) and (91) gives
([ f ) —1r+ < CHHLT AR o, YoE Vi, (92)
I Fa '
Similarly, we have from Eq. (80)
TN - < Rl NrlkE2) 0 Yo e Vi
- av < Ch ||ﬂ|i|'5_, ve Viw- (93)
I'n s

Hence we have from Eq. (89)

Agg(v,v) = ff [Vul* + ff_|vu|f (L /{) v +(fru fpﬂ) mv. (94)

From Lemma 1, the uniformly Vj, n —inequality holds,
Collvllf < A (v,v), Yo € VLN, (95)
where () is a positive constant independent of L, N and /i. Hence we obtain from Egs. (94) and (95)

(L L) o |- ) %

> {Go— CHMHLo® 4 170 o). (96)

Agg(v,v) = Colvll} -

When the conditions (88) hold, we have
Ay (v,0) 2 {Co — o)} Iwll} = 5wl (97)

This is the desired result (72) by letting Cy = %ﬂ, and competes the proof of Lemma 5. ®

*Equation (88) implies that h = min {D (L'"“" F ’) h u(N_'“""-'h') }
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4. THE PENALTY PLUS HYBRID TECHNIQUES

[n this section, we pursue the penalty plus hybrid techniques,

L R -/;'g(n On +J6‘n){ﬂ ¥ J1ib “on +dﬂn = )

+ Pe(L” + Nr}-/;‘ (ut —u) (vt —v7), (98)

where o + [# = 1, F: a large enough but still independent of L, NV, and & > 1 and 7 > 1 are two
constants given in Eqs. (79) and (80).

Denote by Vi n the finite dimensional collection of v in Eq. (19). The penalty plus hybrid
techniques is expressed by: To seek uy n € Vi w such that

Bpy(uj yv) =0, YeeVyn, (99)
where

By (u, v) =f "E?-u?v+f[ ‘E’rl'ﬁ'ﬂ-}-f},‘;jﬁ'f”]{u,v}. (100)

S+ [ £
Denote the norms
: % = ol !

ol = {11 51 + Wl - + B(E” + NIt = vl ) (101)
Suppose the following inequalities hold,

Bpy(u,v) < Cillullpllvll,. YveViw, (102)

Gollvll; < Bpu(v,v), Y€ Vi, (103)

where C'y and 'y are two positive constants independent of L and N. We have the following theorem.

Theorem 3. Let Eqgs. (102) and (103) hold. Suppose that e+ 3 = 1. Then the solutions uj o from
Eq. (99) have the following error bound,

l = uf pllp < CuEi{EN [lat — ]|, (104)

where C' is a constant independent of L and N.

Proof: For the true solution u, we have

I'j +
Bpy(u,v) = {1 - (a+ 3)} E#—{ﬂ"’ —-v" ) =0, (105)
% dﬂ.
Then from Eqgs. (99) and (105)
Bppylu—up 5,v) =0, YoveViy. (106)

Let w = uj n — v, where v € Vi, . Then w € Vj, x. From Eqgs. (102), (103) and (106)
Cu||wﬂ§f < Bpgi(up, y — v,w) = Bpy(u—v,w) < Cyllu—v|jpllw|,.
Thus gives
. G
llug, v = vl < Gy = wlly-

Moreover, since

& " {:.
s = w el < llw=vlly + (12— gl < (1 + G—:.) =k

the desired result (104) follows by letting C' = (1 + ). This completes the proof of Theorem 3. u
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Corollary 3. Let all the conditions in Theorem 3, and Egs. (55)-(60) hold. Then there exist the
exponential convergence rates.

lhu = uf wllp < C{VZexp(=01L) + VN exp(~02N)

+ /P (L‘i’ + N%) (exp(—6, L) + {}xpfwﬂg!‘v’])} ; (107)
where #1; > 0 and 05 > 0, and ' is a constant independent of L and N.
Below, let us study Eq. (103), and give the following lemma.

Lemma 6. Let the following bounds for v € Vi y be given

dut
i oy
| v~

< CLE|jully s+ (108)

i CNE|vllys- (109)

where ¢ > | and v = 1 are two constants independent of L and N. Suppose that o and 3 are
bounded. When F. is chosen large enough but still independent of L and N. The the uniformly
Vi, n-inequality (103) holds.

Proof: We have

Bpy(v,v) = f/; |?”|2+ff |Vul?

v HJ _—
"‘/..-.n ({IT+ ﬂ? ){” =y= J+Pr{L _F_hf"'] ru{!." . } (]IU}

There exists a positive constant (' independent of L and N such that
GVl s+ + lIllf s=) < Jff oo + V1] 5- . (111)
Moreover, from Eq. (108) we have

dut = & -
f Hiﬂ I }‘ = C‘” T vt — v flo.ry € CLE [0 [|y,s¢ 1w = v llo,ry - (112)
ru 0,
From 2ay < 2 + y* we obtain
vt ) Ga C2Le 2
[ }‘ < Ll 0+ Sorlo* —v e (113)
. On
Similarly, from Eq. (109) we have
o™ CENT
[ St - )| < Rl - + I~ (114)
0

Hence we obtain from Eqs. (110)-(114) and 0 < 0,3 < 1

B (v} = CF (Il s + 0l 5= ) + Pe(L? + NIt — o,

].'.”u (a%+ﬂ£){u - }‘

Cﬂ' a F Cﬂ T T
2 =2 (lIwll? g + ol 5- ) + (Pe ml) (L7 + N)llo* ~ vl -
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If we choose F. to be large enough such that P. — % > "—} i T E N l':.—:; . Then we obtain

Cé 2 2 P oa oot b ey o
Bpp(v,v) 2 —= ("U”],m il ||”||1‘s—) + 5 (L7 + NT)lv™ = v |lg.p, 2 Collll;

where (5 = min { %‘i %} This completes the proof of Lemma 6. =

Next, consider the integration approximation. The penalty plus hybrid techniques involving in-
tegration approximation is expressed by: To seek ty x € Vi, such that

Bpn(uin,v) =0, Yve Vi, (115)
where
Bpg(u,v) = / f VuVuv + f vu?n+f‘t;;",ﬁ'ﬂ} (u,v)
I Jgi Js-

where

7,80} [ (0wt du\ . T [ 8wt B >
Ipi " (mv) = _-/ru (f-? o +ﬂ¥) (vh —v7) = [11. (ﬂ'm—r +ai*&;: (ut —u™)

+ Po(L7 + NT]/r (ut —u)(v" =),

where I“.:. is the approximation of [,, by some rules.
In computation, define the energy

@pry, oL &t L 1T v -] (0% +0% ) @t -
Thy (r,v) = 2/;1, o v+ 2/ ;. o 1 . i o + 4 n (1 no )

P, f B
4 iepo 4 N*}/ (o = )2,
2 I

The minimum of T}::.:'H‘P"}[n_. v),

m—.[a.ﬂ.f’.:} (v,v) -
v 5

yields Eq. (115), which can be expressed in the matrix and vectors

0,

AX =b,

where X = {ay, ... ap,by,...by}7, bis a known vector, and the matrix A is positive definite and
symmetric.
Suppose the following inequalities hold,

Bpy(u,v) < Cillullpllvlly. Vve Vi, (116)
Collvl? < Bpulv.v), WweViy, (117)

where Cy and €'y are two positive constants independent of L and N. We have the following thearem.
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Theorem 4. Let Eqgs. (116) and (117) hold. Suppose that e+ 3 = 1. Then the solutions i} _,, from
Eq. (115) have the following error bound,

=zl < C i u= vl

N dhu £ ¥ o _
(v/r-h _-/;h) " (fu F./:;) "
(RACEES | A

Proof: For the true solution u, we have

Bpp (u,v) = (E_I — /-/.;{)VRVU-} (]7_ - f_/_;_) VuVu
(Ao
Hence we have

Ep”[u — Uy g 1) = (E' —/j;_.r)?nﬂ?!-l- (ﬁh _]_[._) VuVu
-(f-f) e

The rest of proof is similar to that in Theorem 2. n

+

1
5= smp ——
ll.lﬁl'r[.rﬁ' ” I”II]’F l

+

To close this section, we explore the relation between the hybrid techniques in Section 3 and the
penalty plus hybrid techniques in this section. We have the following lemma.

Lemma 7. Let o« = 1 and [# = 0. The simplified hybrid method in Section 3 is equivalent to the
special case of F. = 0 in Eq. (98).

Proof: For i = 1 and 3 = (), the simplified hybrid method in Section 3
Ay (upn,v)=0, YWweEVLwn, (119)

where

. &‘H+ = ('E-'T.J+ -
A (1, ) =[L+ VuVu + ff_ VuVu 4 % Tﬂ?" = L _rﬁrT" :

On the other hand, when P. =0, a = 1 and /7 = 0. Eq. (8) leads to
Bpy(up yyv) =0, Yve Vpn, (120)

where

i o+
Bpy(u,v) = [ L ?u?u+f[¥_ VuVu —fr ?ﬂ (vt —v7) = [.r %—;[11"’ —u ) (121)

Since v* and v~ are independent to each other, we have from Eq. (119)

dut
+ - A=
[, veivt = [ G =o. 22

f Vuy Vo~ +f EEEU' =0 (123)
L YoR B
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Note that the solution u] and v" satisfy the Laplace equation, there exist the equalities

duy vt
VuiVut = | Lot = | —af. 124
[ 51 ok ra On r On k (124
We obtain from Eqs. (120) and (124)
ﬂu; E}ur -8 vt _)
} —1, | =1

-/."-" NN Iy a”‘ ( d" I'n n YN ] (125)

Also since v and v~ are independent to each other, we have from Eq. (125)
By, 1 Syt - .
— U =) 126
d Iy ﬁn o l!}l‘l ui\' r: }

f = Vu Ve~ + ‘/;n —&]—!v = 0. (127)

Equation (126) is just Eq. (122) by noting Eq. (124), and Eq. (127) is exactly Eq. (123). This proves
the equivalence of the two methods, (119) and (120). =

Similarly, the equivalence for the two methods for 3 = 1 and o = 0. Two cases can be rewritten
as /7 = (). Note that Lemma 7 is also valid for the combinations of the Trefftz method in 5 and
the other methods such as FEM, FDM, FVM, ete. in 5,

+ e oF
vt in ST,
= 128
U {u; in S, (1:28)

where v, are the piecewise k—order polynomials, because the key equalities (124) of pa.rticu]a.r
solutions hold true for the Trefftz method in S*. It is worthy noting that when o = 4 = 1, the
simplified hybrid-Trefftz method is not equivalent to the special case of £, = 0 and a = 3 = § of
the penalty plus hybrid method.

Remark 3. For the CTM and the penalty plus hybrid TM, there are no such limitations as in
Remark 1, because the following lemma cites from [37], p. 105.

Lemma 8. For the Laplace equation (18) with the mixed type of boundary conditions, let § be
split by Iy into S* and S~. Suppose that I'; # 0. Then there exists a constant O independent of
w and v such that

el < € {lvh + Wlo.rs + v = v o}, Vv E VN, (129)

By means of Pe > 0, Eq. (103) holds. When S§ = U,S;, an interior subdomain §; may be
allowed, and the constant solution is also permitted into piecewise particular solutions. Besides, the
Lagrange multiplier TM in the next section shares the limitations as in the simplified hybrid TM
as in Remark 1. But a remedy is given in Remark 2.

5. LAGRANGE MULTIPLIER TECHNIQUES

The Lagrange multiplier method was first introduced by Babuska [2] to treat the constraint Dirichlet
boundary condition as a natural boundary condition, and to relax the limitation on the admissible
functions used. Such techniques have been adopted to mixed and hybrid methods, see Brezzi and
Fortin [7] and Raviart and Thomas [64]. The boundary condition using Lagrange multipliers is also
extended to that involving flux in [6]. More analysis and applications are given in [5, 11, 34, 59, 60],
and particularly for domain decomposition methods in [54, 55, 57].
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In this section we adopt Lagrange multiplier to couple the different particular solutions, called
the Lagrange multiplier Trefftz method, see [30, 33]. Let us consider the Debye-Huckel equation

Lu=Au+u=0 in S (130)
Suppose that ©, and ¥, satisfy Eq. (130) in §* and 5~ respectively. We also choose

Al

vt = Zﬂ,;‘ll. in 8%,
9= ":,ﬂ (131)
v =Z.’J.-'-P, in8°,
1={)

where a; and b; are the coefficients to be sought. We have for the true solution u
f (VuVv +uv) + ff (VuVv 4 uv) — Mot —vT)=0. (132)
g+ 5= I

Denote A = % as a new variable. Let Ay be the L—order polynomials on I}, for example,

L

P M=) 4T, (133)
| =0
where T, are the orthogonal polynomials of order i. Denote by Vi » % Vi the collection of fi-
nite dimensions of Eqs. (131) and (133). We may design the Lagrange multiplier method: To seek
(tearv s AL) € Varw = Vy, such that
Amgtilf;,N o)+ Dipag(ully y o Aniv,p) =0, ¥(o,p) € Vigw x Vi, (134)
where
Apag(u, v) = f VuVu +f VuVu, (135)
54 §-
L Do) == [ Aot —o) = [ -, (136)
J1y I

Note that the direct Trefftz method called in engineering is just the Lagrange multiplier Trefftz
- method.
Define the error norms

ol = (ol + g i)+ ol = (Rl s, + ol ).

f plvt - 11_}d|“’[
I'n

LAt P Ul FT e

"#lL%Jh = ELE]
P) - 2 _ : 1
"U"%n"h = (j';n ; %(IE{Q}IW{P}+ %{dl—l e d;I.}"U”ﬁ,fh) :

d; is roughly the diameter of S;.
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We need the following assumptions.
(A1) For Apgy(u,v) there exist the bounds
Collvll} < Agaglo, »), |ALag(, )] < Cy [lufly [lwfli, Vv € Vigw.

(A2) For |, Ty plvt — w7 )df, the Ladyzhenskaya-Babuska-Brezzi (LBB) condition holds:
For all puy, € V|, there exists v € Vyy 5, v # 0 such that

[t =y at] 2 Bl ey (137)

oy

(A3) Also the following bounds hold

U’ A(v™ — l’_]df| SOy vl Vo€ Vi (138)

Now we cite the following theorem and Lemma from [37].

Theorem 5. Let (A1)-(A3) hold. There exist the error bounds,

1A= Azll_g.py + e = warnlh <C {veﬂflx lle—vlly + Inf [IA = 7]l ;_:-L.} - (139)

Lemma 9. There exists a constant 3(> 0) independent of u and v such that Yp € H~1(I}),
Jv e H'(S), v # 0 such that

];. plot —v7)dé > Bllll_g gy M0l (140)

Below we prove a new lemma.
Lemma 10. For all juy, € V), there exists v € Vi n , where v = vyp n +ran , Lt
vh=wp+ry, v =uytry. (141)

Suppose that the following bound exists,

[lrarnlly
e e S i 1 i 14‘2
T (142)

Then the LBB condition holds: For all ju;, € Vi there exists v € Vi v such that

‘/:_ pr(vt =) dE 2 Bllppl_y g el (143)

where /1 is a positive constant independent of ji; and v,
Proof: We have from (A2) and Eq. (141)
f m,[vl'.f‘, — vy ldl = f pp(vt = u‘}dr—-f ,L.-,L[rL —ry)df
o I Iy
Z Blleell-y vl = Cllpell g g, Nrarlly
2 Bliell-g r, losnlly — (8 + Collpell - g, ragnlhs - (144)
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When Eq. (142) holds, we have

f plvyy —vy)de = (3= (B + C)o(1)) ||.Hr.||_%_;-n||!-'nr.:'~r|l1 ;IIM -t o llvarn Il - (145)

I
This completes the proof of Lemma 10.

The error analysis of Lagrange multiplier to couple the Dirichlet condition also is given in
Babuika (2], Babuska et al. [3] and Pitkaranta [59].

Remark 4. In Eq. (134), the Lagrange multiplier is applied to couple the interior continuity
condition vt = u~ on Iy. If the Lagrange multiplier is applied to couple the interior flux condition,
%!"—* % on Iy, we obtain the hybrid-Trefftz method (16). When the three conditions similar to
(A1)-(A3) are satisfied, there exists the error bound

A= Anlls,r + = warnlls < € {-reim’r‘i_ﬁ- llu = wlly + “iélll;"l A = nll %J.n} .
This proof is given in [39].

6. NUMERICAL EXPERIMENTS

In this section, first we consider Motz's problem (see Fig. 2)

HAu=0 in &5
u=10 on 0D, u=500 on AB, (146)
%i_0 on BOUTDUDA,
where S = {(x,y)| =1 <z < 1,0 < y < 1}. The admissible functions are found as in [37]
u=i¢.-r”§cus(f+l)u in . (147)
o 2

We may use the CTM and simplified hybrid TM involving integration approximation, to investigate
the convergence rates. In Li, et al. [50], for the entire domain S, the uniform particular solutions
(147) are chosen, and the numerical experiments have been carried out by four TMs: the CTM, the
original (i.e. the simplified hybrid) TM, the penalty plus hybrid TM and the direct TM. Since the
uniform particular solutions may not be always found, using the piecewise particular solutions is
important for the TMs to solve general PDEs.

Y Lt E(0,1) B
(_ % =] i B 1 #
£ . P
Ca

S :

= s t = 500 \ So =)
r
=1 ] X /(ﬂ

D u=0 O :-%:-E =0 4 D {'] A

Fig. 2. Motz's problem Fig. 3. Partition of the rectangle
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We consider the partition in Fig. 3, where the solution domain S is divided into three subdo
Sn, Sy and Sy . For Eq. (146) the piecewise particular solutions are expressed as

L
vy = I_],r'"*% o8 (i il —1-) (i) in Sg,
=0 :
M
vy =500+ App**cos(2i+1)¢  in S,
=)

N
vy = hn+zﬂifz'mﬁ?iﬂ in Sy,

(151

where D; , A, and B, are the coefficients to be sought, (r,#), (p, &) and (€, ) are the polar coordin
shown in Fig. 3.
First we use the CTM from Eq. (3)

ot - o
it N =07 P ——— ) = —_— 1 E A '4.
vt (F) =17(F), W (F)=w B (F;), P e AE (151)

Q) =v @), (@) =w? (@), @eDF (152)
; [ i Edaks Gy 4R ’ :

where w is a suitable positive weight. The linear algebraic equations can be obtained from Eqs.

(151) and (152),

Fx = b, (153)

where x is the unknown vector consisting of the coefficients D, ., A; and B;, b is the known vector,
and A is the stiffness matrix. Denote by M the number of the integration nodes along AFE, then
the dimensions of matrix F are m x n, where m = 4M and n = L+ M + N + 3. In computation, we
always choose m > n, then Eq. (153) is an over-determined system, and the least squares method
is used to seek x.

Equations (151) and (152) can be interpreted as the boundary approximation method (BAM)
in [37], and the CTM in [56] and this paper. Denote by V; y v(= V; x Ve % V) the finite
dimensional collection of functions (148)-(150). Then the CTM is designed to seek the solution
ur sy € Vi n such that

I(ug prn) = min  I(v), (154)
veVE s
where
| : o it v~ *
- SRR PR o v )
I{v) = -/;h[U v ) 4w j:_” ( o = ) - (155)

In Eq. (155), I'v = AEU ED, vt = win Sy, v~ = in S; and v~ = v in 52, The -};1. i5 the
approximation of I_|'}." by some rule of integration. The weight w in Eq. (155) can be obtained, based
on the analysis in [44, 52]. After the solution u; s v has been obtained, we will compute the errors

¥ 0
Guyp gy

+ =
Elpa.m = [y — U | 1 E g = 1 r
JEloo.r ’ L TMNl6 oo I [Enlos, n on
Waa, I
where Iy = AE U ED, Uy y = tpr in S; and Uy, = uy in S3. Moreover, the errors in the
semi-norm of H' are defined by
get e _ d== ¢ .
el = {f =t + —— & 4 — . (156)
ABUDE On AE DE On

where s = u —up a1 .
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Since the accuracy of the leading coefficients is important in applications, we also compute the
relative errors
AD;
Dy
‘where AD; = D; — D;, and D; are the true coefficients given in [53]. The condition number is
‘defined by

g max, M(FTF)
~ min; \(FTF)’

Con
where Aj(FTF) are the eigenvalues of the matrix F'F.

In Lu et al. [56], the CTM is used for Motz's problems by using the uniform particular solutions
(147), and the Gaussian rule of six nodes are used to raise the accuracy of the leading coefficients D, .
Hence, in this paper, we always choose the Gaussian rule of six nodes. The solutions wuy 5 v are
obtained, and the errors and the condition number are listed in Tables 1-3. Note that when

L=34, M=N=26 M =36,

(157)

. i=0,1,2,3,

(158)

(159)

Table 1. The error norms, condition number and errors of leading coefficients from the CTM for Motz's
problem by the Gaussian rule of six nodes rule as L =34, M = N and M = 36

M

llells

€l

l&n oo,

el

B

Fail 2]
1821

15521

12
s

Cond

10

[1,306( 1)

0.523(—4)

0.163(—12)

0371 —3)

0.480{—11)

0.781{—10)

0.208(—8)

0. 438(-T)

0.218(4)

12

(0.298(—5]

0.525(=5)

0.155(—3)

0.285(—4)

0.334(—13)

0.489(-12)

0.252(—10)

0.617(—9)

0.220(4)

14

0.300{—6)

0.480(=06)

0.175(—4)

0.420{—5)

0.893(—14)

0.180(—13)

0.196(—12)

0.832(—11)

0.224(4)

16

0, 306{—7)

0.399(=7)

0.17R{—8)

0,427(—6)

0.112(—13)

0.613(—13)

0.118{—12)

0.220(-12)

0.236(4)

0.286(—-8)

0.251(-8)

0.197(—6)

0.454(—7)

0.822(—14)

0.331{—13)

0.736(—13)

0.020(—13)

0L.674(4)

0.228(-19)

0.315(—0)

0.302(—7)

0.572(—8)

0.439(~14)

0.144(—13)

0.196{—13)

0.623(—13)

0.152(5)

0.158(—10)

0.566(—10)

0.678(—8)

0.112(—8)

0.298(—14)

0.600(—14)

0.173(—13)

0.156(—-13)

044605}

0.122(—11)

0.158(—10)

0.187(—8)

0.256(—9)

0.425(—15)

0.162(—15)

0.948{— 14)

0.176{—14)

0. 146{6)

0.420(-12)

0.A401(—11)

0.454(—0)

0.498(—10)

0"

0.648(—15)

0.412(—14)

0.462(—14)

0.208(6)

0.370(-11)

0.136({-10)

0. 100(—8)

0.291(—9)

0.850(—15)

0.211{—14)

0.247(—14)

0.352(—14)

0.104(7)

8IBIBEBE=

0.281(-11})

0.728(—11)

0.111(=8)

0.275(—45)

0.850(—15)

0.373{—14)

0.227(—14)

0.160(—13)

0.354(7)

Table 2. The error norms, condition number and errors of leading coefficients from the CTM for Mote's
problem by the Gaussian rule of six nodes rule as L. = 3 and M = N = 26

ll=ll &

el

|E'r:|¢r...ﬁ.

ey

B

|55

1552

|55

Cond

0.137(-10)

0.523{—10)

0.335(—8)

0. 143( —8)

0A71(—=13)

0. 708(—13)

0.148(—12}

0.314(—=12)

0.760(6)

0.857{—12)

0.659(=11)

0.746(—9)

0.863(— 10)

0.567(—15)

0.195(-14)

0.807(—14)

0.141(=13)

0.623(6)

0.420(—12)

0.401(—11)

0.454(-4)

0. 498{-12)

o

0.648{—15)

0.412(—14)

0.642({—14)

0.208(G)

0.455(—12)

0.131{-11)

0. 1449(—9)

0,.200(—10)

0,850 15}

0. 1300 = 14)

0.115(-13)

0.242(—13)

0.344(6)

0.455(—12)

0.824(—12)

0.644(—10)

0.070(—11)

0.142(—15)

0.243(-14)

0.103(—-13)

0.123(-13)

0.278(6)

Table 3. The error norms, condition number and errors of leading coefficients from the CTM for Mots's

problem by the Gaussian rule of six nodes rule as M = 36 and M = N

LIM| lele | leloosr |lenloora | Il 12 | 1% | 1521 | 15432 | Cond
10( 8 |0.824(—3) |0.106(=2) |0.171(—1)[0.822(-2) |0.646(—8) |0.191(-7) |0.373(—8) |0.625(—d) 49.2
18| 14 |0.437(—6) |0.430(-6) |0.352(~4) |0.669(—5) [0.506(—13) 0.452(—12) | 0.426(—11) (0. 191{—8&}) 828
26|20 |0.271(=9) |0444(=0) [0.245(=7) |0.711(—8) |0.425{—14)|0.162(—13)]|0.192{—13) | 0.224(—13) 0. 150(5)
34|26 |0.420{—12) |0.401{—11) | 0.454{~9) | 0.498( - 10) 0" 0.648(—15) | 0.412(—14) [ 0.462(— 14} | 0.208(6)
40]30 [0.281{=11) [0.171{—10) [ 0.860{—9) [ 0.182{—9) [0.128(—14) |0.308(—14) | 0.453(— 13) | 0.143{— 13} | 0.424(T)
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Table 4. The leading coefficients /3, by the collation TM for Mote's problem at L = 34 and M = N = 26
by the Gaussian rule of six nodes with A/ = 36 along AH

i Dy i D;
D A01162453745234416(3) 18 115352471443 778851(—4)
1 LBT66092019560879725(2) 19 | —.529572415268499927(—5)
2 172379150794468821(2) 20 220123737T0T347517(—5)
3 | —.BOT12152506G9817100(1) 2 106323020872833201(—5)
4 144027271 T02286663(1) 22 S531249576038153798(—6)
b 331054885020 T68371 23 | —2474310763396G11966(—6)
6 275437344508163740 24 .109928975300681925( —6)
7 | —.869329945256786807(—1) | 25 SG16695T35614091014(-T)
] 336048784266203271(—1) | 26 L25T45TTOBIGATEOAR0(—T)
0 153843744826G868429(—1) | 27 | — 120317413747487121(-T)
10 .T30230167385251521(—-2) | 28 S40803145614940174(—8)
11 | —.318411391615677731(—2) | 29 26015054 73039098650( —8)
12 J122064610042808609(-2) | 30 A131774021431445718(—8)
13 530065480203330111(—3) | 31 | —.716717640212716954(—-9)
14 .271512182358050110(—3) | 32 AHD02646341 T246646( —19)
15 | —.120046375387525815(-13) | 33 145637472345680654( —9)
16 505398334:199953102( —4) | 34 L546310941944504533( - 10)
17 J231668222198537339( —4)

the leading coefficients are listed in Tables 4 and 5, where the coefficient Dy has 17 significant digits,
the same accuracy of Dy in [56]. For the case of Eq. (159) the errors and condition number are given
by

lely = 0.498(—10), Cond = 0.208(6).

lehy = 0.175(—6), Cond = 0.786(6),
from Table 1 and [56] respectively. Obviously, by using the piecewise particular solutions, the ac-
curacy of the solutions from the CTM will be improved, while the condition number retain almost
the same. This is also a new discovery from [37, 52].

Next, consider the simplified hybrid TM. First for the partition of Fig. 3, condition (42) is
satisfied by noting that 85, N I'p # ¥ due to

“Iﬂ' — “{‘Etﬂ”u{ﬂi.wi =1 in 8. (160)
Hence the particular solutions v in Eq. (150) satisfying (160) lead to an additional condition

N N
Bs + Z B, cos{in) = By + 2{-*1?5} =},
; s

i=1
This gives
- N a -
By =Y (-1)'""B;. (161)
i=1

By removing the coefficient By from Eq. (150), we modify the particular solutions in Ss as,

M
vs=Y Bigi(Em) in Sy, (162)
i=1
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Table 5. The leading coefficients A, and B, by the collation TM for Motz's problem at L = 34 and
M = N = 26 by the Gaussian rule of six nodes with M = 36 along AH

] A B;

0 | —. 3247965305324 797H6(3) D135974T0006873464(2)

1 232607975243312204(2) JA06454402511134788(3)
2 .T49635805883399087(1) A14358406001622779(2)
3 | —.105838719204348760(1) —. 47501715504 T003383(1)
4 | =.T97801480899109204 —. T12640969353020681

5 133844127561 235676 JH22088231291 717109

i J15978TEI1T1934039 BB9809563419886873(—1)
7 | —.206752186506053218(—1) | —.773689919897273398(—1)
B | —.194544201456T36733(—1) | —.13918509807T9888867(—1)
9 .358689091375572020( -2) .131391643034147309( 1)
10 .354875859185069991(—2) 243632356556054957(-2)
11 | —.668408209585087893(—13) | —.241627646046502012( ~2)
12 | —.6837T3T05T68343765(—13) | —.466G865306G633695327(—3)
13 J130697557610920205(—13) A6822783T3R8200315(~3)
14 136926484810349767( —3) B97479231523365764( —4)
15 | —.264552436403060604(—1) | —.941587491224513969( 1)
16 | —.282148351496040590( —4) | —.182308972521741703(—4)
17 549510252114114052(—5) JA94624182351141110(—4)
18 SO04196246642652178(—5) JT9789T86060T780228(-5)
19 | —.116159250071523603(—5) | —.410078867091007969( —5)
20 | —.126951842980415352(—5) | —.B056726533744082841( —6)
21 .244038929588239169( -6) B61952521981058757(—6)
22 268711101149843939(—6) A TOBBO0GTHHO4G2860( —6)
23 | —.A62051393846600188(—T) | —.16463926G2402756537( —6)
24 | —.5106T0724508834568(—T) | —.331977632058008638(—7)
25 H648469T6060578345(—8) L205003005242903636(—T7)
26 G24656884317372375( —8) A24996984523008565( —8)

where the particular solutions are

dil€,m) = (1) + £% cos(2in), i=1,2,... (163)
For the simplified hybrid TM, we choose the particular solutions
L
w= Y Dir'thcosli+ %]H in So, (164)
=0 =
M.
vp=500+ Aip**lcos(2i+1)¢  in S, (165)
=l
M X
vy = Z Bigi(€,m)  in S3. (166)
i=1

Since there exists a constant solution in v, and v, only the simplified hybrid TM in Eq. (62) can
be applied for v+ = Sy and §~ = S; US;, based on Remark 1. Otherwise, the remedy in Remark 2
is needed. The computed solutions uy s n are obtained, and the error and the condition number
are listed in Tables 6 and 7. When

L=34, M=N=15 M =3840,

(167)
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Table 6. The condition number and errors of leading coefficients from the simplified hybrid TM for Motz's
problem by the Gaussian rule of six nodes rule as L = 34, M = N and M = 30

M| lelwre | lealer | el 1522 |5 B |92 Cond
21 13.9 0.155(4) | 0.726(3) | 0.627(—4) | 0.114(-3) | 0.815(—3) | 0.192(-3) | 0.502(9)
19 0.612 64.3 33.2 0.212(—5) | 0.411(=5) | 0.120(=4) 0.235(—4) | 0.392(8)
17 | 0.516(-1) | 5.37 434 | 0.985(—7) | 0.202(—6) | 0.237(—6) | 0.191(=5) | 0.353(7)
15 | 0.516(-1) | 5.26 245 | 0.306(-7) | 0.317(—6) | 0.954(—6) | 0.744(—7) | 0.199(7)
13 | 0.444(-1) | 4.66 248 | 0.386(-7) | 0.333(—6) | 0.984(—6) | 0.111(~6) | 0.200(7)
11 | 0425(-1) | 3.74 2.50 | 0.396(—7) | 0.335(~6) | 0.110(=5) | 0.351(—6) | 0.199(7)
9 | 0.418{-1) 3.64 2.51 DA400{=7) | 0.345( ~) | 0.637(—6) 0.485(—T7) | 0.195(7)
7 | 0414(-1) | 3.58 2.52 | 0.389(=7) | 0.362(—6) | 0.225(-5) | 0.133(—4) | 0.180(T)

Table 7. The condition number and errors of leading coefficients from the simplified hybrid TM for Motz's
problem by the Gaussian rule of six nodes rule as L =3 and M =N =15

M

1£loe, 4

& loo, 1

lels

B

1524,

|52

an
iyt

Cond

30 | 0.516(-1)

5.26

245

0.306(—7)

0.317(—6)

0.954(—6)

0.744{~T)

0.199(7)

60 | 0.180{—4)

0.212(-2)

0.643(—3)

0.162(—12)

0.194(—10)

0.218(-18)

0.5893( —9)

0.192(7)

120 | 0.402(—5)

0.249(—3)

0.499(—4)

0.417(—13)

0.485(—11)

0.561(—10)

0.158(—9)

0.102(7)

240 | 0.119(—5)

0.822(—1)

0.112(—4)

0.106(-13)

0.121(—11)

0.140({ —10)

0.402(—10)

0.191(7)

480 | 0.357(—6)

0.295(—4)

0.298(-5)

0.227{—14)

0.303(—12)

0.352(—11)

0.105(—10)

0.101(7)

960 | 0.147(—6)

0.161(-4)

0.140(-5)

0.425{—15)

0.757(=14)

0.911(-12)

0.314(—11)

0.191(7)

1920 | 0.899(-7)

0.128(—4)

0.002(—6)

0.113(-14)

0.199{—-13)

0.220(—12)

0.128{—11)

0.191(7)

3840 | 0.767(-T)

0.119(—4)

0.625(—6)

u.

0.340(—14)

0.680(—13)

0.106{—11)

0.191(7)

7680 | 0.741(—T7)

0.118(—4)

0.439(—5)

0.893(—14)

0.100(—14)

0.381(—13)

0.947({—-12)

0.191(7)

the leading coefficients are listed in Tables 8 and 9, where the coefficient [, also has 17 significant
digits. Note that the large M should be used to balance the exponential convergence rates, based
on Theorem 4. This is distinct from the CTM where M = 30 is small.

Let us compare the errors from the CTM and the hybrid TM. The best results are given from
Table 1 with Eq. (159) and from Table 8 with Eq. (167), respectively,

le]oe,ry = 0.401(=10),
lelos,ry = 0.T67(—T),

len oo,y = 0.454(—9),
|E"|m_f"n. = ﬂ.llg(“'ﬂ.

e[y = 0.498(-10),
lg]; = 0.625(—6).

(168)
(169)

Obviously, the global errors of the solutions by the CTM are more accurate than the hybrid TM.
Moreover, less CPU is needed because that Af = 30 is much smaller than M = 3840, Note that [,
has 17 significant digits by both TMs. Hence, the accuracy of 12 is just one criteria to evaluate the
numerical methods for singularity problems.

Last, we consider the Debye-Huckel equation —Au + u = (0 with Motz’s boundary conditions in
Eq. (146). The piecewise particular solutions can be found as

i L . I'+%(r} ) )
1:.,=§di!.+“%]mﬂ{i+§]ﬂ in Sy,
Mo )
v={ " =ﬁﬂﬂmp{-pcm¢}+2&,—"%mﬁ{m+ﬂqﬂ in Sy, (170)
= IDun(z)
N
= Ini( . .
k g = ;b. f:.'[?; cos 2in in S,
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Table 8. The leading coefficients /3, by the simplified hybrid TM for Motz's problem at L = 34 and

M = N = 15 by the Gaussian rule of six nodes with A = 3840 along AF

i Fok i b,

0 A401162453745234416(3) | 18 |  .119539425331155125(—4)
1 B76550201950882141(2) | 19 | —.007377878424553307(—5)
2 A723791507944T0834(2) | 20 | — 218799988043284786G(—5)
3 | —.807121525970671527(1) | 21 | .123113699808094708(—4)
4 144027271700217074(1) | 22 | —.861590585674063637(—7)
5 .331054886077918553 23 | .112519712035018431(—4)
(i 275437344367627068 24 | .101379541374730469(—4)
7 | —.869320929651373179(—1) | 25 | —.213038668080027716G(—4)
8 .336048812445204623(—1) | 26 | —.232568778053804656{—G)
] 153843508338551015(—1) | 27 | —.128254949790181612(—4)
10 | .730230881089648492(—2) | 28 | —.104808433332291741( —4)
11 | —.318417994710006129(—2) | 20 | .192089636657504856(—4)
12 | .122055808683248419(—2) | 30 | .122621067574900189(—5)
13 | .531301275801784813(—3) | 31 | .522797705053408068(—5)
14 | .271419809942469279(-3) | 32 | .411209726337550316(—5)
15 | —.1191771328031712658(—3) | 33 | —.653035080167190711(=5)
16 | .5149199065384344156(—4) | 34 | —.6T9587260047955378(—6)
17 | .202800107498274560(—4)

Table 9. The leading coefficients A, and H, by the simplified hybrid TM for Motz's problem at [ = 34 and
M = N = 15 by the Gaussian rule of six nodes with M = 3840 along AF

] A, B,

0 | —.324796539532481859(3) J135974T0506882559(2)

1 A232607975243206679(2) J106454402511139278(3)
2 .T40635805872579919(1) A 14358406001 376700( 2)
3 | - 105838719285406513(1) —AT5017155034118410(1)

4 | - TOTEOL46T080026638 - T12640963620077508

5 338441 20061793767 2208821 8619536693

i J159TRAGR085103983 LBOR0THII63TOR2276(—1)
7 | —.206750825527241000(—1) | —.TT3686693148138285( 1)
8 | —194501444783602567(~1) | —.139161110779844714(—1)
9 SH85T2090720075610(—2) -131359927538752877T(—1)
10 352852142710858522(—2) 242420048076527270( —2)
11 | —.663646884204361471(—3) | —.240186646894T774205(—2)
12 | —636922005089684043(—3) | —42T600140136292529(—3)
13 A20671171672690993(—3) A35524978752034240(—3)
14 832019792254850188(—4) -5536G34704333640501( —4)
15 | —.156455892524474174(—4) | —.569941742081822615(—4)
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where d, , @, and b; are the coefficients to be sought, and I,,(r) are the Bessel function for a purely
imaginary arguments defined by

- 1 7y 2k+p
I“{ﬂzgf{k+1}1’{k+ﬂ+1}(5) ' (171)

The hybrid TM with o = 3 = % and the direct TM can be used for the Debye-Huckel equation
with the piecewise particular solutions (170).

7. FINAL REMARKS

To close this paper, let us make some remarks.

1. New analysis is made for the simplified hybrid TM, the hybrid plus penalty TM and the La-
grange multiplier (i.e. the direct) TM by using piecewise particular solutions, and the exponential
convergence rates may be achieved. When the TMs involve integration approximation, only poly-
nomial convergence rates can be obtained. By means of piecewise particular solutions, not only
may the stability be improved significantly, but also the solution errors can decline, because the
local particular solutions may better approach the true solution. More importantly, the hybrid
and other TMs can be applied to more complicated PDEs involving multiple singularities, see
Li et al. [48].

2. The symmetric simplified hybrid TM is explored in this paper. Some limitations as in Remark 1
exist for the Laplace equation. In order to remove such limitations, the remedy in Remark 2 is
needed, or the hybrid plus penalty TM may be suggested.

3. The numerical solutions for Motz's problem given in this paper are better than those given in Li,
et al. [37, 44, 52|. The reasons are twofold. (i) The partition by the straight interior boundary as
in Fig. 3 is the best, based on the stability analysis in Li and Mathon [51}, while the partition by
the arc was reported in [52]. (ii) The Gaussian rule with high order is used to raise the accuracy
of the leading coefficient Dy, while the central or the Simpson rules were chosen in [37, 44, 52|,

4. From the numerical experiments for Motz’s problem, the CTM is also superior to the simplified
hybrid TM, the detailed comparisons of the TMs in analysis and computation are explored
in [50].

. Let us describe the hybrid techniques applied to the Dirichlet and Neumann conditions, by
removing the Lagrange multiplier in IV in Section 1. For III to remove the extra-multiplier
variables, the simplified hybrid techniques are applied to the Dirichlet condition on AB as in [37,
49]. The simplified hybrid Trefftz method (SHTM) reads: To seek u}, € H},(S) such that

=4

Dyluy,v) = f(v), ¥ (v,p) e HL(S), (172)
where

Dy(u,v) = f/ Vw?n—i—f__ru,,.r'—/_-__u"u, (173)
J& AR AB

and f(v) is given in (176). For IV to remove the extra- multiplier variables, the simplified hybrid
techniques are applied to the Neumann condition on AB as in [37, 49]. The simplified hybrid
Trefftz method reads: To seek uy & H .}ur (&) such that

D(uy,v)= f(v), YveH}(S), (174)
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where
D(u,v) = _[f ?':.!-T-"'n+f u,mwf v, (175)
5 B BT
flv) =500 f“___ Whivs (176)
AH

The optimal error bounds are also achieved in [39]. Since BC'D and AB consist of two and one
piecewise lines, respectively, the SHTM (172) to couple the Dirichlet condition is more efficient.

6. In elasticity problem, the hybrid-Trefftz method is often used by using Lagrange multiplier to
couple the traction (i.e. Neumann) condition, and reported in many papers [4, 12-15, 23, 25-29,
58, 59, 62, 63, 69, 70, 72]. This algorithm is similar to the Lagrange multiplier Trefftz method in
Eq. (12), to couple the displacement (i.e. Dirichlet) condition. The Lagrange multipliers are, in-
deed, extra-variables, to cause more CPU time and computer storage. When such extra Lagrange
multipliers are removed, the following three Trefftz methods are recommended:

(a) The collocation Trefftz method (CTM) in Eq. (3).

(b) The simplified hybrid Trefftz method (SHTM) in Eq. (5).

(¢) The penalty plus hybrid method in Eq. (8).

The error bounds of Eqs. (3), (5) and (8) are given in [44, 49] only for uniform particular solutions,

and in this paper for piecewise particular solutions. From our computational experiments, the
CTM is the best in accuracy, stability and computer complexity.
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