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This paper describes the application of the method of fundamental solutions for 2-D harmonic and bihar-
monic problems. Also, genetic algorithm is presented as a numerical procedure used for the determination
of source points positions. Choosing good locations of source points is crucial in the MFS as it has a great
impact on the quality of the solution. Genetic algorithm is applied in order to find such an arrangement
of source points, which provides the solution of sufficient accuracy.
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1. INTRODUCTION

In the very new paper [1] the equivalence between Trefftz method and Method of Fundamental
Solutions (MFS) has been shown for harmonic and biharmonic problems. In the MFS for a given
boundary value problem the solution is represented as a linear combination of fundamental solutions
of the governing equation [11]. The unknown coefficients, which occur in the assumed form of
solution, are determined by satisfying approximately the appropriate boundary conditions. Those
boundary conditions are only satisfied exactly in selected boundary points in which the conditions
are collocated.

Apart from points of collocations there are also points located outside the considered domain in
which singularities occur — these are called source points. Although the position and the number
of source points are important and the final solution depends on it, there is no proven procedure
how to arrange the source points.

Generally there are two possible approaches to the problem of source points arrangement. First
method is based on the assumption that we know the position of the sources. It means that the
coordinates of the points are freely chosen and are given to the numerical procedure as already
known parameters. Another possibility is to take the position of source points as unknowns as well,
so the final locations are determined during the calculation, but in this case the problem becomes
nonlinear. For that reason, publications presenting MFS with unknown source position are rare.
Fairweather and Karageorghis [2-4] proposed the adaptive scheme, in which the coefficients of the
linear representation of the solution as well as the position of the sources, which are given as a fixed
number, are chosen by a non-linear least-squares algorithm.

In this work Genetic Algorithm [6] is used in order to determine the optimal (or suboptimal)
position of source points for boundary value problems with 2-D biharmonic equation and 2-D Laplace
equation. In the process of optimization the best solution is chosen according to the evaluation
function as a minimum value of squares of errors on the boundaries. For the 2-D problem 2N
coordinates represent N number of source points. Each coordinate is related with one dimension
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in the search space, so for the large number of source points the problem gets difficult and time-
consuming. Genetic Algorithms, however, have been designed for such multidimensional problems,
so in this work GA have been used as an effective method for source points arrangement. Similar
approach has been also applied by Nisimura [8-10] to a problem of potential distribution around
electrodes in the charge simulation method.

Moreover, in this paper the Motz problem is studied. For such a problem with singularity which -
occurs on the boundary many different approaches are used. Li [5] proposed Trefftz method which
uses both MFS and particular solution of a singularity. Similarly, in this paper the solution is
proposed as a sum of two parts. The first part is a combination of fundamental solutions whereas
the latter describes the singularity. Due to the fact that several different boundary conditions are
applied in the Motz problem, multicriteria optimization is performed as some boundary conditions
are easily satisfied whereas other are difficult to satisfy.

2. SOURCE POINTS ARRANGEMENT

The Method of Fundamental Solution is an instance of Trefftz Method, which means that differential
equation is satisfied exactly in the considered domain, whereas the boundary conditions are satisfied -
approximately. In this work, the boundary conditions are collocated in points (collocation points) -
on the boundary of the domain. The source points are the points in which the singularities of -
fundamental solution occur and so they should be located outside the considered region. Usually,
one of the arrangements presented in Fig. 1 is assumed. The optimization of source points is possible
in each case, if it is a geometry-based contour, the distance between geometry and contour is
optimized [7, 12|, in the circular arrangement: the radius of the circle might be optimized. The
last approach, however, requires optimization of the position of each point, which implies high
computational costs. In addition to this, in each case the number of source points might be also one
of the unknown coefficients, which are optimized. ]
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Fig. 1. Methods of locating source points: a) on a contour of scaled geometry, b) on the circle, ¢) randomly

3. GENETIC ALGORITHM
3.1. General concept

Genetic algorithm is a numerical technique used in order to find exact or approximate solution
to optimization and search problems. The method is derived from the biological mechanism of
evolution; hence some terms and procedures are inspired by biology as well. The optimization
process is based on the following scheme presented in Fig. 2.
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Fig. 2. Genetic algorithm scheme

In this paper the objective of optimization process is an optimal or suboptimal source points
arrangement. Every such arrangement of source points in which source points are located in assumed
region is called a feasible solution and is called a chromosome. In genetic algorithms, in each step
several chromosomes are considered and such set is a population. At the beginning the initial
population is created in such a way that the chromosomes are chosen randomly and they are
represented by binary strings, though real-value encoding is also possible. Next, the iterative process
takes place, in which every individual chromosome in population is ranked by the fitness function and
based on these ranks (fitness), best chromosomes are selected and modified with genetic operators
to create a new generation. Iteration can be terminated. There are several terminating conditions
possible for the iterative process, such as: maximum number of iterations (generations) reached,
calculation time exceeded, a solution found with assumed accuracy.

3.2. Binary representation

Consider that the domain is 2-D and there are N source points distributed outside, the position
of each source point is defined by its coordinates, which means there are 2N parameters to be
optimized. Furthermore, it is assumed that each coordinate is determined with finite precision and
limited to a certain range. Consequently, for the i-th parameter, z; € (a,b), where i € (1,2N) and
a, b denoting the lower and upper limit of the range respectively, there are d = (b—a) * 107 feasible
solutions, where ¢ stands for assumed accuracy. In such situation, K bits are required in order to
encode all feasible solutions, where 2% > d.

3.3. Genetic procedures

The iterative process in which new generations are created involves such procedures as selection,
mutation and cross-over. Selection is the procedure used in order to chose the best chromosomes from
each population to create the new one. Mutation and cross-over are used to modify the chromosomes,
and so to find new solutions.

In selection, parents for the new generation are chosen using the fitness function, in this case,
using fitness proportionate selection also called roulette-wheel selection. Based on values assigned to
each solution by fitness function, the probability of being selected is calculated for every individual
chromosome. Consequently, the candidate solution whose fitness is low will be less likely to be
selected as a parent whereas it is more probable for candidates with higher fitness to become
a parent.

Cross-over operation requires two chromosomes (parents) which are cut in one, randomly chosen
point (locus) and since this point the binary code is swapped between the chromosomes creating
two, new chromosomes, as it is shown in Fig. 3.
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Fig. 3. Cross-over scheme Fig. 4. Mutation scheme

Mutation procedure in case of binary representation of solution is an operation of bit inversion
at randomly chosen position, Fig. 4. This purpose of this procedure is to introduce some diversity
into population and so to avoid premature convergence to local maximum.

4. BIHARMONIC PROBLEM

Biharmonic equation is used in applied mechanics for modelling such problems as flexure of thin
plates, slow viscous flow of Newtonian fluids and plane problems of elasticity theory. Generally, the
problem is defined as follows,

Vu:=0 in the domain 2, (1)
0

Ui= G 5% =h1 on the boundary 042, (2)
0%u

u=g2, 5= hso on the boundary 02, (3)

where % denotes the outward normal derivative, and ¢; , g2, h1 and hy are prescribed functions.

The geometry in which the biharmonic problem is solved is a square with boundary conditions
presented in Fig. 5. The solution of biharmonic problem, by means of MFS is represented by the
linear combination of fundamental solution and it takes the following form,

N 2N
i(x) =) i)+ Y dipa(x), 4)
= j=N+1
p1(x) = logr;, (5)
p2(x) = 7-]2 logr;, (6)

e ‘\/(l‘_l‘j)2+<y“yj)2a (7)

where 1, @2 are the fundamental solutions of harmonic and biharmonic equations respectively,
¢j, dj are unknown coefficients, x;, y; are source points coordinates. The unknown coefficients
are determined by satisfying appropriate boundary conditions by means of boundary collocation
method. During the calculation the total number of collocation points NC = 120 was assumed
(30 points on each boundary) whereas the total number NS = 12 of source points was used. Due
to the fact that the number of collocation points is greater than the number of source points, the
linear system is over-determined and so collocated boundary conditions are satisfied in least-square
sense.

Table 1 presents some of the numerical results i.e. maximum error and mean square error which
are related to exact solution which is known for this problem. There is a comparison between
solution for the calculations performed with source points located on the contour and source points
distributed by GA: The difference is remarkable, especially in case of maximum error.

The arrangement of source points distributed on the contour similar to the geometry of the
considered problem is presented in Fig. 6. The offset of the source points contour from the boundary
of the domain is 0.2. The plots of the solution and solution error, which were calculated using source
points distributed on the contour are presented below in Fig. 7.
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Fig. 5. Geometry of the biharmonic problem

Table 1. Biharmonic problem: Errors on the boundaries

GA | Contour
Mean Sqr. Err. VZu | 0.0002 | 0.001
Mean Sqr. Err. u 0.0001 | 0.0004

Max Err. VZu 0.035 0.18
Max Err. u 0.012 0.06
157
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Fig. 6. Sources points arrangement
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Fig. 7. Biharmonic problem: a) solution, b) solution error
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Fig. 8. Sources points arrangement
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Fig. 9. Biharmonic problem: a) solution, b) solution error
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The plot of source points arrangement determined by genetic algorithm is presented in Fig. 8
whereas the solution and solution error are presented in Fig. 9. It is assumed that all source points
should be located in a certain area i.e. the distant between any source point and geometry should
not be greater than 2.0. The position of each source point is determined with assumed accuracy
ex 107

5. THE MOTZ PROBLEM

The Motz problem has been chosen as it is considered to be a benchmark problem for Boundary
Element Methods. The difficulty of this problem is that it has a singularity on one of its boundaries.
The singularity occurs in the point, where boundary conditions changes rapidly The geometry of
the Motz problem with all boundary conditions defined is presented in Fig. 10.
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Fig. 10: Geometry of the Motz problem

The solution of the Motz problem, due to the singularity, which occurs at one of the boundaries,
consists of two parts. The first part is the linear combination of fundamental solutions whereas the
second part describes the singularity. Hence, the solution takes the following form,

un(x):éakr(%;l)cos[<2k > ]+ZCJ log7; . 8)

The simplified form of the equation is

Z P cos(B ) + Z cjlogr;, 9)

o=

where: oy, Bk, ¢; are unknown coefficients.

The calculation were performed for NC' = 60 collocation points and NS = 12 source points. In
this case, positions of source points were also determined by GA or located on the scaled geometry
contour for comparison purpose. Moreover, multi-objective optimization was performed, as it turned
out that some boundary condition are easily satisfied while others are not. For that reason, weighting
method was applied in order to make GA more sensitive to those more problematic boundary
conditions.

The calculation result presented in Table 2 is presented for every individual boundary, which was
considered. Similarly to previous example, results obtained both with GA application and without
it are compared. In this example the difference between these two approaches is also significant.
The numbers in the table are the maximum errors of each boundary condition fulfillment.
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Table 2. Motz problem: maximum error at boundaries

Boundary GA | Contour
—1 <z < y=0 0.064 | 0.006
D= < 9 =0 0.016 | 0.014
—1<z<0 =1 0.053 | 0.248
0<g<1t =1 0.093 0.348
z=-1 0<y<1]0.065| 0.032
=1 Wy <=1 0033 1001
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Fig. 11. Sources points arrangement

Fig. 12. Motz problem: a) %, b) %
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Fig. 13. Sources points arrangement
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Fig. 14. Motz problem: a) 6—’;, )

) dy

The arrangement of source points on the contour similar to the problem geometry is presented
in Fig. 11: The offset of the source point contour is 0.2. For such an arrangement of source points,
there are plots of % ; ‘g—; presented in Fig. 12. The arrangement of the source points determined by
GA is presented in Fig 13 and the results obtained for such an arrangements in Fig 14.

6. CONCLUSION

Application of genetic algorithm to find optimal or suboptimal arrangement of source point outside
the considered domain improves the results as the boundary conditions are satisfied more accurate.
The weakness of this approach is computational cost as finding the optimal solution large number of
parameters is difficult and for that reason, practically genetic algorithm is used to find suboptimal
solution. In this work, multi-objective optimization was successfully applied for the Motz problem,
where some boundary conditions are easily satisfied while the others are not. Furthermore, the
results for the Motz problem are more accurate when the solution is assumed as a sum of linear
combination of fundamental solution and truncated series of singular function.
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