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The paper concerns the modelling of artificial hyperthermia. The 3D domain including healthy tissue
and tumor region is considered. Heat transfer processes proceeding in this domain are described by the
Pennes model and next by the porous one. The external heating of tissue is taken into account by the
introduction of internal source function to the equation considered. Both models are supplemented by
the same geometrical, physical, boundary and initial conditions. At the stage of numerical simulation the
explicit scheme of finite difference method is used. The examples of computations show the similarities
and differences of solutions and allow to formulate the conclusions connected with the applications of the
results obtained in the hyperthermia therapy.
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1. INTRODUCTION

Artificial hyperthermia is the procedure of raising tissue temperature of the part or the whole
body. The procedure is applied alone or as the supplementary one with various cancer treatment
modalities such as radiotherapy and chemotherapy. The effectiveness of hyperthermia depends on
the value of elevated temperature and the exposure time. The problem of applying the heat directly
to the tumor and the ability to predict the temperature distribution are critical. Up to the present
time, many different bioheat transfer models have been proposed for determining the temperature
distribution in the living tissues. The most commonly used was the Pennes equation [3–5, 8, 9,
11, 15, 16, 19], although in recent years the Cattaneo-Vernotte equation [2, 6, 13, 21] or the dual-
phase-lag equation [1, 10, 14, 20, 22, 24, 25] were also suggested.
The biological tissue is the material with particular nonhomogeneous inner structure and inter-

woven blood vessels (Fig. 1). One of the biggest problems in modeling of bioheat transfer is blood

Fig. 1. Tissue model.
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perfusion. The volume fraction of blood vessels in tissue and the blood velocity are very important.
Thus, a natural approach seems to use the theory of porous media [7, 17] to model the temperature
distribution within the tissue. Here, the model based on the theory of porous medium is considered
and the results are compared with calculations obtained using the Pennes model.

2. FORMULATION OF THE PROBLEM

The domain including healthy tissue Ω1 and the tumor region Ω2 is a cube with the edge length
of 0.05 m and the heating zone within the tumor is a centrally located cube with the edge length
of 0.01 m, as shown in Fig. 2. The considered domain includes the blood vessels arranged in the
direction of the x axis.

Fig. 2. Domain considered.

The Pennes equation is one of the earliest bioheat equations that describe the temperature
distribution in the living tissues [8]. If the thermophysical parameters of tumor and healthy tissue
are assumed to be the same, then the Pennes equation describing the temperature field in the
domain considered Ω = Ω1 ∪ Ω2 is of the form

ctρt
∂T (x, y, z, t)

∂t
= λt∇

2T (x, y, z, t) +Gbcbρb [TB − T (x, y, z, t)] +Qmet +Qex (x, y, z, t) , (1)

where ct is the specific heat of tissue, ρt is the density of tissue, λt is the thermal conductivity
of tissue, T denotes tissue temperature, t is the time, Gb is the blood perfusion coefficient, cb is
the specific heat of blood, ρb is the density of blood, TB is the artery temperature, Qmet is the
metabolic heat source and Qex (x, y, z, t) is the capacity of internal heat sources associated with
the external heating of tissue [23]. It should be pointed out that the artery blood temperature TB

in Eq. (1) is assumed to be uniform throughout the tissue and the vein blood temperature is equal
to the tissue temperature.

As previously mentioned, the tissue can be treated as a porous medium and can be divided into
two regions: vascular region (blood vessel) and extravascular region (tissue) [7, 17]. To describe
temperature field in the heating tissue the two-equation porous model [18] can be applied. This
model consists of equation for tissue sub-domain

(1− ε) ctρt
∂Tt (x, y, z, t)

∂t
= (1− ε)λt∇

2Tt (x, y, z, t)

+ αA [Tb(x, y, z, t) − Tt(x, y, z, t)] + (1− ε)Qmett + (1− ε)Qex(x, y, z, t) (2)
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and equation for blood vessels sub-domain

εcbρb
∂Tb (x, y, z, t)

∂ t
+ εcbρbv · ∇Tb (x, y, z, t) = ελb∇

2Tb (x, y, z, t)

+ αA [Tt(x, y, z, t) − Tb(x, y, z, t)] + εQmetb + εQex(x, y, z, t), (3)

where ε denotes the porosity (the ratio of blood volume to the total volume), α is the heat transfer
coefficient, v is the blood velocity, A is the volumetric transfer area between tissue and blood, while
subscripts t and b represent tissue and blood, respectively.
When the thermal equilibrium is maintained, the temperature of tissue is equal to the temper-

ature of blood (T = Tt = Tb) and then a single equation is obtained

[(1− ε)ctρt + εcbρb]
∂T (x, y, z, t)

∂ t
+ εcbρbu

∂T (x, y, z, t)

∂x

= [(1− ε)λt + ελb]∇
2T (x, y, z, t) + (1 − ε)Qmett + εQmetb +Qex (x, y, z, t) . (4)

In Eq. (4) the directional blood flow is taken into account, this means v = [u, 0, 0].
It is assumed that the source function Qex (x, y, z, t) has the following form [23]:

(x, y, z) ∈ Ω1 : Qex (x, y, z, t) = 0, (5)

while

(x, y, z) ∈ Ω2 : Qex (x, y, z, t) =

{

Q0, t ≤ tex
0, t > tex

, (6)

where Q0 is the constant source function associated with external heating and tex is exposure time.
Equations (1) and (4) are supplemented by boundary condition in the form of adiabatic one, this
means

(x, y, z) ∈ Γ : −λn · ∇T (x, y, z, t) = 0, (7)

where n is normal outward vector. The initial condition is the following:

t = 0 : T (x, y, z, t) = Tp, (8)

where Tp is the initial temperature of tissue.

3. METHOD OF SOLUTION

Equation (4) supplemented by boundary condition (7) and initial one (8) has been solved using the
explicit scheme of finite difference method [12]. Taking into account the form of source function
Qex, Eq. (4) can be written as follows:

Ce
∂T

∂t
+ εcbρbu

∂T

∂x
= λe∇

2T + (1− ε)Qmett + εQmetb +Qe, (9)

where T = T (x, y, z, t) and Qe is the constant non-zero component only for (x, y, z) ∈ Ω2 and
t ≤ tex, while

Ce = (1− ε)ctρt + εcbρb (10)

and

λe = (1− ε)λt + ελb. (11)
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Let T f = T (x, y, z, f∆t), where ∆t is the time step. Then, for time tf = f∆t the following
approximate form of Eq. (9) can be proposed:

Ce
T f − T f−1

∆t
= λe∇

2T f−1 − εcbρbu
∂T f−1

∂x
+ (1− ε)Qmett + εQmetb +Qf−1

e . (12)

The uniform grid of dimensions n×n×n is introduced and then the difference equations for internal
node (xi, yj , zk) have the following form:

Ce

T f
i,j,k − T f−1

i,j,k

∆t
= λe∇

2T f−1
i,j,k − εcbρbu

T f−1
i+1,j,k − T f−1

i−1,j,k

2h

+ (1− ε)Qmett + εQmetb + Qf−1
ei,j,k, (13)

where h is the grid step, and

∇2T f−1
i,j,k =

T f−1
i−1,j,k − 2T f−1

i,j,k + T f−1
i+1,j,k

h2
+

T f−1
i,j−1,k − 2T f−1

i,j,k + T f−1
i,j+1,k

h2

+
T f−1
i,j,k−1 − 2T f−1

i,j,k + T f−1
i,j,k+1

h2
. (14)

From Eq. (13) one obtains

T f
i,j,k =

Ceh
2 − 6λe∆t

Ceh2
T f−1
i,j,k +

2λe∆t+ εcbρbuh∆t

2Ceh2
T f−1
i−1,j,k

+
2λe∆t− εcbρbuh∆t

2Ceh2
T f−1
i+1,j,k +

λe∆t

Ceh2

(

T f−1
i,j−1,k + T f−1

i,j+1,k + T f−1
i,j,k−1 + T f−1

i,j,k+1

)

+
∆t

Ce

[

(1− ε)Qmett + εQmetb +Qf−1
ei,j,k

]

. (15)

The stability criteria are as follows

Ceh
2 − 6λe∆t

Ceh2
≥ 0, (16)

2λe∆t− εcbρbuh∆t

2Ceh2
≥ 0. (17)

In similar way one obtains the difference equations for the Pennes equation (1) and internal node
(xi, yj, zk)

T f
i,j,k =

ctρth
2 − 6λ∆t−Gbcbρb∆th2

ctρth2
T f−1
i,j,k

+
λ∆t

ctρth2

(

T f−1
i−1,j,k + T f−1

i+1,j,k + T f−1
i,j−1,k + T f−1

i,j+1,k + T f−1
i,j,k−1 + T f−1

i−1,j,k+1

)

+
∆t

ctρt

(

GbcbρbTB +Qf−1
ei,j,k

)

. (18)

In this case the stability criterion is in the form

h2ctρt − 6λt∆t−Gbcbρb∆th2

h2ctρt
≥ 0. (19)
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4. RESULTS OF COMPUTATIONS

In numerical computations for both models the following values of parameters have been assumed:
thermal conductivity of tissue and blood λt = λb = 0.5 W/(m K), specific heat of tissue ct =
4000 J/(kg K), specific heat of blood cb = 3770 J/(kg K), tissue density ρt = 1000 kg/m3,
blood density ρb = 1060 kg/m3, perfusion coefficient GB = 0.0005 1/s, metabolic heat source
Qmet = Qmett = Qmetb = 250 W/m3, blood temperature (see for example Eq. (1)) TB = 37◦C. The
initial temperature is equal to Tp = 37◦C. The number of nodes is equal to 50× 50 × 50 and time
step ∆t = 0.05 s.
Three heating conditions described in Table 1 have been considered. All of these variants have

the same input energy equal to 35 MJ/m3. In the case of the porous media model, for each variant
of heating, three sets of porosity and velocity of blood have been taken into account, as shown in
Table 2 [23].

Table 1. Variants of heating.

Variant no. Power density Qex [MW/m
3] Heating duration tex [s]

1 7 5

2 3.5 10

3 1 35

Table 2. Sets of porosity and blood velocity [23].

Porosity ε Blood velocity u [m/s]

Venules 0.1209 0.00066

Capillaries 0.0659 0.000922

Arterioles 0.0275 0.0037

In Figs. 3, 4, and 5 the temperature distributions in the central part of the cross section (plane
{x, y}) for all variants of heating are shown. Differences between isotherms obtained from the Pennes

Fig. 3. Temperature distribution at the central part of cross section after 10 s – 1st variant of heating.
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Fig. 4. Temperature distribution at the central part of cross section after 10 s – 2nd variant of heating.

Fig. 5. Temperature distribution at the central part of cross section after 10 s – 3rd variant of heating.

equation and porous model are visible, but not too big. As can be seen, one-equation porous model
brings shift of elevated temperature in direction of blood flow. This shift depends on porosity and
velocity. The shift is the largest for the case with arterioles (the highest value of the product of
the porosity and blood flow velocity), while the smallest shift occurs for capillaries (the smallest
product of velocity and porosity). In addition, for more power and a shorter heating duration,
a larger area is covered with high temperature.
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Figures 6, 7 and 8 show the temperature history at the central point of the domain considered for
both models. It should be noted that in the case of the porous model different types of blood vessels
were taken into account. As can be seen, during heating of tissue all curves are very similar, but
during cooling there are important differences. After 100 seconds the biggest differences (> 2 K)
are observed between the Pennes model and porous model in which arterioles were considered.
Additionally, in the case of a long heating (variant 3), the maximum tissue temperatures also differ
– the highest temperature occurs with the use of Pennes model and the smallest for the porous
model which takes into account arterioles.

Fig. 6. Temperature history at the central point – 1st variant of heating.

Fig. 7. Temperature history at the central point – 2nd variant of heating.
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Fig. 8. Temperature history at the central point – 3rd variant of heating.

5. CONCLUSIONS

The 3D domain including healthy tissue and tumor region has been considered. The solutions
obtained using different models of bioheat transfer are similar from the qualitative point of view
but the differences between the temperature distributions are essential. However, for hyperthermia
treatment more important is the estimation of proper time of heating assuring the destruction of
tumor than the slight temperature difference. For a patient, long duration of heating at elevated
temperature will induce a feeling of discomfort and pain, therefore the choice of heating variant is
the most important. Based on the received temperature distributions the importance of porosity
and blood flow velocity should be emphasized. Heating duration is also very important for the
effectiveness of hyperthermia treatment. However, as can be seen from the presented results, the
most important is the proper selection of a mathematical model.
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