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The TRBF's are radial functions satisfying governing equation in the domain. They can be used as 
interpolation functions of the field variables especially in boundary methods . In present paper discrete 
dipoles are used to simulate composite material reinforced by stiff particles using with boundary point 
collocation method which does not require any meshing and any integration. The better the interpolation 
function satisfies also the boundary conditions, the more efficient it is. In examples it is shown that a 
triple dipole (which is a TRBF) located into the center of the particle can approximate the inter-domain 
boundary conditions very good, if the particles are not very close to each other and their size is not very 
different. In general problem the model can be used as very good start point for international improvements 
in refined model. Composite reinforced by short fibres with very large aspect ratio continuous TRBF were 
developed. They enable to reduce problem considerably and to simulate complicated interactions for 
investigation such composites. 
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1. INTRODUCTION 

In computational simulations, boundary-type solution methodologies are now well established as 
alternatives to prevailing domain-type methods such as FEM, because of the computational advan
tages they offer by way of reduction of dimensionality, good accuracy for the whole domain, and 
simplicity of data preparation for the model. Using the virtual boundary method and radial basis 
functions (RBF), the boundary point collocation method has been proposed to construct a bound
ary meshless formulation [27, 28], in which the boundary conditions and body forces are enforced 
and coupled with the analogue equation method to construct a boundary-type meshless method for 
analyzing nonlinear problems [29]. 

The method of fundamental solutions [5 , 11] (MFS) is a boundary meshless method which does 
not need any mesh. In linear problems, only nodes (collocation points) on the domain boundaries 
and a set of source functions (fundamental solutions) in points outside the domain are necessary to 
satisfy the boundary conditions. MFS has certain advantages over the BEM, as it completely avoids 
the need for any integral evaluation and it leads to very simple formulations in some problems. 
However, large numbers of both collocation points and source functions are necessary if the shape 
of the domain is complex and moreover, the resulting system of equations is bad conditioned in some 
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interdomain continuity in fibre axis direction and continuous dipoles in perpendicular directions. 
The models can be further augmented to simulate composites reinforced by imperfect or curved 
fibres by using continuous distribution of couples along the fibre axis in order to keep moment 
equilibrium of the fibre reinforcing effect. In this way the fibres with large aspect ratio like carbon 
nanotubes (CNT), which are very stiff in fibre axis direction, but much more flexible in bending can 
be correctly simulate for interaction with matrix and with other fibres, too. The examples show, 
how important is correct simulation of all interactions for global behaviour assessment. 

Numerical models can take into account different topologies (size and distribution of particles) 
of composite, different materials of each particle and can be a part of multiscale computational 
models. The reinforcing particles can be on the surface, only and they can form surface layers. From 
computational point of view the models can define the Functionally Graded Material (FGM) from 
microstructural changes of material properties in surface layer. 
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