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When solving complex boundary value problems, the primary advantage of the Trefftz method is that Tr-
efftz functions a priori satisfy the governing differential equations. For the treatment of three-dimensional
isotropic elasticity problems, it is proposed that the bi-harmonic solutions in Boussinesq’s method can be
expressed as half-space Fourier series to bypass the difficulties of integration. A total of 29 Trefftz terms for
each component of the displacement vectors are derived from the general solutions of the elasticity system.
Numerical assessments on the proposed formulations are performed through two examples (a cubic and
a cylindrical body). Results are compared with those from the method of fundamental solutions (MFS)
and the commercial finite element method (FEM) software STRAND 7, suggesting that Trefftz functions
can provide pseudo-stability, faster convergence and reduced error margins.

1. INTRODUCTION

The solutions for three-dimensional isotropic elasticity problems are of great importance when more
precise stress analysis is required in three-dimensional bodies where two-dimensional or axisymmet-
ric analyses are not feasible [8]. In addition, it is suggested that the three-dimensional elasticity
solutions could have useful applications in fracture mechanics such as solving problems involving
voids, inclusions and cracks in three-dimensional spaces [4].

Engineering approaches to the elasticity problems are based on the classical continuum theory,
in which a material with a continuous geometric volume contains infinitesimal segments, and repre-
sents their average behaviour [3]. The outcomes of this are the governing equilibrium equations in
differential forms together with the elastic properties, which can be used to seek the displacements
in Lame’s equations or the stresses solutions in Beltrami-Michell equations. Boussinesq showed
that Lame’s equations could be reduced to bi-harmonic equations which present the three compo-
nents of displacement u; , us and u3 as three bi-harmonic functions. Later, Papkovich showed that
Boussinesq’s solution could be simplified and presented in four harmonic functions [12]. Piltner [10]
developed the complex-valued functions method, using a set of displacement trial functions as an
alternative to the bi-harmonic functions approach for solving three-dimensional elasticity problems.
Wang and Huang [14] developed the classical potential functions method to solve three-dimensional
transversely isotropic piezoelectric problems, while many other researchers employed polynomials
as an alternative solution. For example, Barber [1] used polynomials to approximate the analytical
solution for the prismatic bar.

However, analytical solutions for these differential equations in three-dimensional spaces are al-
ways difficult to obtain and are available only for a few problems with simple geometries and bound-
ary conditions such as axisymmetric bodies, half-spaces and layers. In addition to the development
of general solutions for three-dimensional elasticity, numerical approaches such as MFS and FEM
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were developed in the 19th and 20th centuries. These two methods provided alternative methods
approaches to approximate the solutions for three-dimensional elasticity problems [8]. Both methods
analyse continuous bodies as a series of finite elements. The MFS employed Green’s function on
the element surface to satisfy the governing differential equations. Although this method provides
accurate results, the introduction of singularity properties makes it problematic for solving complex
boundary value problems. Besides the MF'S, the core idea of the FEM was originated by Ritz [12].
His approach was to approximate the true solutions for the governing differential equations via a
series of functions satisfying the boundary conditions.

Alternatively, Trefftz methods, first developed by Trefftz in 1926, have been considered the most
effective numerical method for solving three-dimensional elasticity problems [13]|. As a counterpart
to Ritz’s method, Trefftz proposed a new concept of using trial functions satisfying a priori the
governing differential equations but violating the boundary conditions so as to provide upper and
lower bounds to the exact solutions of boundary value problems [9]. In contrast to the other ana-
lytical solutions, the Trefftz functions are usually derived from the complete set of general solutions
without restrictive boundary conditions [5]. This concept of the Trefftz functions not only removes
the singularity problem occurred in the MFS, it also avoids any approximation of the boundary
integrals [15]. All of these features allow the Trefftz method to yield very accurate and rapidly
convergent results when used in parallel with the analytical treatment of complex boundary value
problems.

From the point view of basic unknown variables used, Trefftz formulations can be classified as
direct or indirect formulations [6]. In the direct formulation, a relatively new formulation presented
by Cheung et al. [2], the weighted residual expression of the governing equation is derived by taking
the regular T-complete solutions satisfying the governing equation as the weighting function, and
then the boundary integral equation is obtained by applying twice the Gauss’ divergence formula
to it. The resulting boundary integral equation, as in the boundary element method, is discretised
and solved for the boundary unknowns. In the indirect formulation [7], which is thought to be the
original one presented by Trefftz, the solution of the problem is approximated by the superposition
of the functions satisfying the governing differential equation, and then the unknown parameters
are determined so that the approximate solution satisfies the boundary condition by means of the
collocation, least square or Galerkin method.

In this paper, particular emphasis is placed on deriving the general solutions following Boussi-
nesq’s method. Once the general solutions for the three-dimensional elasticity problem have been
obtained Trefftz functions can be easily established. In addition, the indirect Trefftz method is pre-
sented based on the established Trefftz functions to solve three-dimensional elasticity problems. The
classical MF'S is also evaluated through two numerical examples and the results are compared with
those from the indirect Trefftz method.

2. PROBLEM FORMULATIONS
2.1. Basic equations

The equations of the three-dimensional isotropic elasticity system are governed by equilibrium,
strain-displacement and constitutive equations as given in Egs. (1), (2) and (3).

(a) The equilibrium equations are
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where 0;; = 0i, (i,j = x,9, 2) is the stress component and F; is the component i of body force
vector.

(b) The strain-displacement equations are
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where €;; = €j; is the strain component and uj, us, ug are the displacement vectors corre-
sponding to z, y and z directions, respectively.

(2)

(c) The constitutive equations are
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where Cy1 = C1o + 2C44 and C}5, Cyy are elastic constants.

(d) By combining Egs. (1), (2) and (3), Lame’s equations are obtained:
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2.2. Boussinesq’s method

The trial solutions proposed by Boussinesq [3]| are given by

0 0 0
U1=901+20—Zj, U2=902+Z~8%, 103=803+28—f, (5)

where 1, @2, 3, ¢ are harmonic functions so that the trial solutions satisfy the elasticity sys-

tem (4).
Substituting the Boussinesq’s solution into the Lame’s equation (4), we obtain

(6)

O k£l 5] C
oYy + <3<P1+ <P2+0<,03>

9z k+3\ 0z dy 0z

where k = g—ﬁ , Y1 =1 — Ez, and E is a constant value.
It is noted that by using the Boussinesq’s method, the problem is reduced to finding the explicit
solution of ¢4 (z,y, z).
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3. BASIC FORMULATION FOR TREFFTZ APPROACH

Consider a partial differential equation which governs the elasticity problem [11]:
Lu(z)+F =0 (7)

where L, u(z) and F' are the partial differential operator, true solution and known function.
Since Eq. (7) is linear, its corresponding solution u can be divided into two parts, a homogeneous
solution wuy(2) and a particular solution uy(z), that is

w(z) = up(2)+ up(z). (8)
Accordingly, they should, respectively, satisfy
Lup(z) =0 and_ - Lup(z} + F =0. (9)

To obtain Trefftz functions to equation (9);, we approximate the homogeneous solution uy(z) in
the form

n

’l,l,h(ﬂ?) = Z CiNi(I) ) (10)

i=1
such that
LN;(z) =0 (11)
where N; are known as Trefftz functions and ¢; are the unknown coefficients which can be determined
using boundary conditions.
4. DERIVATION OF TREFFTZ FUNCTIONS
4.1. Method of variable separation

We first consider the general solutions for harmonic functions, ¢;, for i« = 1,2,3 in Boussinesq’s
method, Egs. (5) and (6),
% e %p; 8%y,
Ox? Oy> 022

=) (12)
Using the variable separation technique, we obtain

i = (a1:€** + agie“a””)(bueﬁy + bgie"ﬁy)(cu sinyz + cg; cosyz) (13)
where a, b, c are the coefficients to be determined and «, 3, are any arbitrary constants such that

a? + 32 =+2

4.2. Fourier series

Expressing the harmonic solutions, ; , as half-space Fourier series using Eq. (13) and substituting
them into Eq. (6), we obtain

0 k+1
% B : 3 E E ( ,71,21m - Bm,)l C7(7§’,),IM> exp(mz + ny) sin Mz
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+.< A,(nzlm -+ B : ) exp(—max + mj) sin Mz
+ ( A7(m)lm B m” ) exp(—ma —ny) sin Mz
.+(A1(75121m+B n+C’1)M> p(mz + ny) cos Mz
+ (Ag,%m — :Bﬁg%n,+ C > mx — ny) cos Mz
+ ( ADm + BOp 4+ 08 M) —maz + ny) cos Mz
+ (—Ag%m a0 M) exp(—ma — ny) cos Mz (14)

where M2 = m? +n? and A, B, C are the coefficients to be determined.

Integrating Eq. (14) and observing that f(z,y) must be a two dimensional harmonic function
because all of the remaining terms after integration are harmonic functions, we obtain

k1l &S AYm+ BUn - O M

P = g 2.2, — i exp(mx + ny) cos Mz
o Ajinm BinVi)fm — ComM exp(mz — ny) cos Mz
Z — A + B](?m — ConM exp(—mx + ny) cos Mz
5 —Ajm — B]é;’l’)ln — ComM exp(—ma — ny) cos Mz
L Anm + Bi;i)}n + ChaM pPEE AaEet
+ Apnm — Bir\ljm + ComM exp(max — ny) sin Mz
it ~ A + B]((:?‘n + ChnM exp(—ma + ny) sin M z
— A — B]\(/[) an+ CronM exp(—ma — ny) sin M z

i Dg) exp(mx) cosmy + D,(T‘f) exp(maz) sinmy

+ Dv(g) exp(—ma) cosmy + D,(s) exp(—mx) sinmy . (15)

Note that by following the same procedure from Egs. (12) and (13), the two-dimensional harmonic
function f(z,y) is chosen as

f(z,y) = (1™ + aze™*") (b sin By + by cos By) (16)

where a and [ are arbitrary constants such that a = 8 and D is the coefficient to be determined
so as to satisfy the boundary conditions for the corresponding potential function.
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4.3. T-complete functions

Substituting Eq. (15) into Egs. (5) and (6), we can obtain the displacement functions u; , us and
ug with coefficients A, B, C' and D. The Trefftz function, or so called T-complete function is then
extracted from Eq. (10). For instance, the Trefftz functions for u; is

2

Ny1 = exp(mz + ny) (sin Mz 1T

i Z Cos Mz) Nui7 = Imzexp(mz + ny) sin M z

2
Ny = exp(mz — ny) (sm Mz — l%z coS Mp> Nuis = Imz exp(maz — ny) sin M z

2
Ny3 = exp(—mz + ny) (sin Mz — l%z cos M'z) Ny1g = —Imzexp(—mz + ny) sin M 2

2
Nys = exp(—mz — ny) (sin Mz — lmﬁz cos ]\4z> Nygo = —lmzexp(—ma — ny) sin M z

sl
Ny7 = exp(—mz + ny) (cos Mz + lﬁz sin ]\42) Ny23 = —Ilmzexp(—mz + ny) cos M z

Nus = exp(mz + ny) | cosMz + l%z sin Mz) Nu21 = lmzexp(mzx + ny) cos M z

Nys = exp(mz — ny) [ cos Mz + l%p sin Mz) Ny22 = Imzexp(mz — ny) cos Mz

2 17 1
Nusg = exp(—mz — ny) <cos Mz + lmﬁz sin Mz) Nyos = —Imzexp(—mz — ny) cos M z (1) 3

mn
Ny = —lﬁz exp(maz + ny) cos M z Nyos = mzexp(mz) cosmy

mn |
Nyie = lﬁz exp(mx — ny) cos M z Nuge = mz exp(ma) sin my '

mn
Ny = lﬁz exp(—mz + ny) cos M z Nug7 = —mzexp(—ma;) cosmy

mn .

Nyio = —l—J\—/[—z exp(—ma — ny) cos M z Nuysg = —mz exp(—mz) sinmy

m
Nys = lﬁnz exp(mx + ny) sin M z Nyzg =0

Noji = B Lo exp(mz — ny) sin M z
M
N = —l%z exp(—mz + ny) sin Mz

i lﬁz exp(—mz — ny)sin Mz

where [ = (—%) The Trefftz functions for displacement uy and uz can be derived in a way

similar to that described above.
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5. NUMERICAL IMPLEMENTATION
5.1. Collocation method

The main concept of the collocation method for the Trefftz method is its use of weighted residual [7],

Ri=ti—u and Ry=t-t (18)
where @, ,t are the prescribed solution for displacements and surface traction and
1o Oz Uayy O cos(n, x)
t=8 ly ¢=| Ony Oy O cos(n,y) (19)
i Bex Oyz Ous cos(n, 2)

As the approximated tractions ¢ are derived from the approximated displacement obtained from
Eq. (10) through the strain-displacement equation (2) and the constitutive equations (3), we there-
fore have the opportunity to unify the Trefftz coefficients for traction and displacement

)= Z ciTi(x) (20)

where T and c represent the Trefftz function for traction as derived from displacement and the
arbitrary coefficients after super-positioning.

After forcing the weighted residual in Eq. (18) to zero, we can obtain one equation in each
direction for each collocation point corresponding to the prescribed boundary conditions. For M;
prescribed displacement and M prescribed stresses, we have Kc = f where

E B Ny o N 1 [y ]
Noy  Nso ... U9
A : ; : 5 :
Nvg1 - e = NM n C2 Ups
X = . el e = : ; e e 21
i TOME L URE R R : ! t1 @)
To1 P55 =2k c. to
i TM21 TMQ’", | L EMQ )

The coefficient a can be easily determined by taking ¢ = K~ f.

5.2. Galerkin virtual work method

Starting from the Galerkin formulation as shown in Eq. (22),

/ a1 Ry 01 + / asRs 015 =0, (22)
Fl F2
where we let a1 = T, g = —N and Iy, I'; are the surface domains for prescribed displacements

and prescribed tractions.
We can then obtain the following explicit formulation for three-dimensional elasticity,

[ mrwmer. - [ e or,|1d - | fwor.~ [ N@ar, (23)

u

or

(k][] = [f],
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where
=/ r.- [ NITizTors ).
HEY 71" o - / Vo

U1 tq
[@l= a2 |, fl=1t|,
U3 t3

INIT = [ (M) (V2] (V8] Dy s

Mo is the number of Trefftz terms being used.

6. NUMERICAL ASSESSMENTS
6.1. Modeling

Numerical assessment has been performed on a cubic body (2m x 2m x 2m) and a cylindrical
(rm? x 2m) body by using the indirect Trefftz method including the collocation and Galerkin
methods. For the elastic constants, we choose the value of steel, C'\o = 1.725 and Cyy = 1.15. The
imposed boundary conditions for cubic and cylindrical bodies are listed below.

— Imposed boundary condition for cubic body:

U123 =0 at z = -1, |
tr=lk=0 it d=kl o g=2bor =1,
% = & ¢==x1 or =%t
t, = —1000 Pa Gt — 1

— Imposed boundary condition for cylindrical body:

Ugy, =0 at z = —1,
fm=t~y=0 at 9:2+y2=1 Or. -Z.71L;
_z':O at I2+y2:1,

t, = —1000 Pa at 2=

The singular values of matrix [k] referring to Eq. (23), known as the ‘norms’ are first computed .
for different number of Trefftz functions. Next, the ug displacements are also computed with respect
to the increase of the number of Trefftz functions. All the computing values are on the specified test
point [0,0, 1].

6.2. Discussion

6.2.1. Cubic model in Galerkin method

Figure 1 shows the reference axes and cubic model used for the Galerkin method. Using this method,
Fig. 2 shows that although the matrix norm initially grows rapidly with the number of Trefftz
functions, the norm stabilizes when there are around 16 Trefftz terms. This improved stability with
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Fig. 1. Cubic model and axes used in the Fig. 2. Norm versus number of Trefftz functions in Galerkin and
Galerkin method collocation cubic models
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Fig. 3. us displacement versus number of Trefftz functions in Galerkin and collocation cubic models
showing upper and lower bound error estimations in the Galerkin method

the number of Trefftz functions is consistent with the improvement in the stability of displacement u3
shown in Fig. 3. Displacement enters a pseudo-stable region beyond 22 Trefftz functions, a number
for which the norm also shows a high level of stability.

6.2.2. Cubic model in collocation method

Numerical assessments using the cubic model in collocation method show the norm stabilize after
around 12 Trefftz terms compared to 16 terms for the cubic Galerkin method, as shown in Fig. 5.
Similarly, Fig. 6 shows that the displacement u3 converges quickly and becomes pseudo-stable at
the use of only 6 Trefftz terms in the collocation method compared to the 22 terms in the Galerkin
method. Overall, the cubic model in collocation method shows better stability and convergence than
the cubic Galerkin model.
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Fig. 4. Overview model of collocation points Fig. 5. Norm versus number of Trefftz functions in collocation
(64x4 points) and axes on cubic surfaces cubic model with different choices of collocation points
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Fig. 6. uj displacement versus number of Trefftz functions with different choices of collocation points
showing pseudo-stability with the use of few Trefftz functions

6.2.3. Cylindrical model in collocation method

Using the collocation cylindrical model as shown in Fig. 7, Fig. 8 shows that the norm becomes
reasonably stable after 12 Trefftz terms, which is similar to the cubic model in collocation. As shown
in Fig. 10, the displacement u3 converges quickly and became pseudo-stable with around 8 Trefftz
terms in the cylindrical collocation method. Overall, this model yielded similar results to the cubic
model in collocation method.

6.2.4. Conventional MFS and FEM

Figure 9 shows the field point and source point distribution in the cylindrical model for MFS. The
results obtained from the proposed formulation are compared with those from MFS. It is evident
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points) showing that the MFS provides reasonable accuracy but
poor robustness due to singularity problems
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Fig. 12. us displacement versus number of elements in FEM and comparison to the Trefftz collocation method
using 400 source points, showing that the FEM’s accuracy and convergence trade-off to huge computation effort

from Fig. 10 that both Trefftz and MFS provide similar accuracy with increasing number of unknown
variables.

Figure 11 shows the mesh distribution in the cylindrical model for FEM. Comparison between
the results from the Trefftz method and the FEM suggests that the adoption of Ritz’s method in
FEM allows upper bound error estimation as seen in Fig. 12. Regarding the Trefftz’s method, not
only the upper bound but also the lower bound error estimation can be achieved.

It is concluded that the derived Trefftz function for three-dimensional elasticity shows its fast
convergence and stability with accuracy when comparing to the MFS and FEM. In addition, the
use of collocation method will give higher stability and faster convergence with a few number of
T-complete functions used as seen in Fig. 3 while the employment of Galerkin method in processing
Trefftz solution requires less computation effort as the norm size is dramatically reduced as shown
in Fig. 2, the logarithm plot.
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7. SUMMARY
7.1. Conclusion

Trefftz functions are derived to numerically solve three-dimensional isotropic elasticity problems.
The derived Trefftz functions are verified by the indirect Trefftz method on cubic and cylindrical
models. Results suggest that when comparing to the MFS and FEM, the use of Trefftz functions
show pseudo-stability, faster convergence and smaller error bounds even when using few Trefftz
function terms.

7.2. Extensions

The work presented in this paper has made the several contributions to numerical analysis of
both practical and theoretical values. As the Trefftz functions avoid the singularity problems that
can emerge with fundamental solutions, results suggest that the derived Trefftz functions are suit-
able for applying to the Hybrid-Trefftz FEM and the Trefftz Boundary Element Method (T-BEM)
to solve complex three-dimensional elasticity problems. In addition, the Trefftz functions for the
three-dimensional isotropic elasticity problems provide an alternative approach to solving three-
dimensional engineering problems. These approaches have applications for stress analysis involving
voids, inclusions and three-dimensional cracks, potentially giving with more precise results with less
computation effort.
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