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The paper presents solutions of a two-dimensional wave equation by using Trefftz functions. Two ways
of obtaining different forms of these functions are shown. The first one is based on a generating function
for the wave equation and leads to recurrent formulas for functions and their derivatives. The second one
is based on a Taylor series expansion and additionally uses the inverse Laplace operator. Obtained wave
functions can be used to solve the wave equation in the whole considered domain or can be used as base
functions in FEM. For solving the problem three kinds of modified FEM are used: nodeless, continuous
and discontinuous FEM. In order to compare the results obtained with the use of the aforementioned
methods, a problem of membrane vibrations has been considered.
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1. INTRODUCTION

The essence of the method of solving functions is to find a complete system of functions which
satisfy identically the considered equation. Therefore this is a variant of Trefftz method [15]. An
approximate solution is represented in the form of a linear combination of solving functions. Un-
known coefficients of this approximation are sought from the minimization of the proper functional
of fitting the approximate solution to the given conditions according to the accepted criterion. This
method, for the first time described in [14], was dealing with a one dimensional heat conduction
equation. It was extended to more dimensions not only in Cartesian coordinates in works [2, 5, 6].
In these works the derivation of Trefftz functions for the heat conduction equation was connected
with the expansion into a power series of a so called generating function which solves this equation.
The new technique of generating Trefftz functions for certain type of partial differential equations
which uses the expansion of a function into a Taylor series and inverse operations was presented
in [1, 2, 8, 11-13] for different coordinate systems. The obtained functions were applied as the base
functions in FEM in the works [2, 7, 9, 11] to solve both direct as well as inverse problems of heat
conduction. The use of this method gave satisfactory results and stable solutions. Since the tech-
nique of generating Trefftz functions for different type of equations is to a certain extent the same it
seems reasonable to apply the function which satisfy the wave equation as a base function in FEM.

In the finite element method base functions in general do not satisfy the given differential equa-
tion. The use of Trefftz functions to the given equation implies that the functional for the finite
element method will have a different form than the one presented in [15]. The application of a clas-
sical finite element method to solutions of partial differential equations assures the continuity of
a function between the elements. If one omits this postulate it leads to the discontinuous Galerkin
method. Three approaches to the modification of the classical FEM will be presented in this work.

The first approach, similarly as in [7], is based on an introduction of a partition of the domain in
which the solution of a given problem is sought, into such subdomains where no nodes are introduced.
In each of the elements the approximate solution is sought in terms of a linear combination of Trefftz
functions for the wave equation.
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The second modification of the classical FEM consists of an introduction of space-time elements
in which the solution is sought as a liner combination of base functions with the unknown coefficients
which are the values of the sought solution in nodes. The base functions depend on all variables and
they satisfy governing equation. The unknown coefficients of the linear combination are determined
by the minimization, in the mean-square sense, approximate solution to given conditions (initial,
boundary). Additionally one should take into account the adjustment of solutions and their normal
derivatives at the common boundaries between the neighbouring elements. Two variants of the
presented method are considered in this work. One is based on the assumption of continuity of the
function in the common for the neighbouring elements nodes and in the other this assumption is
neglected.

2. THE TREFFTZ FUNCTIONS FOR THE 2D WAVE EQUATION

Trefftz functions for the wave equation called wave functions or wave polynomials can be determined
by different methods. The first method, described in [8] uses the so called generating function and
leads to the recurrent formulas for wave functions (wave polynomials) and theirs derivatives. The
same wave functions but in terms of explicit formulas can be obtained by first using Taylor expansion
and next eliminating in this expansion the derivative with respect to time variable with the use of the
governing equation. Other Trefftz functions (which are also polynomials) are described in [12, 13].
To derive these functions, apart from the Taylor expansion of the function satisfying the wave
equation, additionally one uses the inverse Laplace operator. Both techniques of derivation of wave
functions will be shortly discussed.

2.1. Derivation of wave function with the use of a generating function

Let us consider the 2D non-dimensional wave equation, as in [8],

Pw  Pw  Pw
S M e gy (1)

The generating function

e’i(au:-l—by-l-ct) : (2)

which satisfies Eq. (1) is extended into a power series with respect to the unknown parameters.
After the substitution ¢ = a? + b? one gets the following form of the expansion
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in which both the real part (4) as well as the imaginary part (5) of the function R(z,y,t) satisfy
the wave equation

Pkt 1, 8) = Re( R _p—tyai(Z; 1, 1)) ;
Qn~k—ki(T, Y, t). = Im (Ren—p—pyir(€, 4, 1)) -
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In this way one gets two linearly independent sequences of functions called wave polynomials. Dif-
ferentiation of the generating function (2) with respect to the variable. 2 and the comparison of the
appropriate coefficients at the same powers leads to the recurrent formulas for wave polynomials [8],
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and on their derivatives [9],
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2.2. Derivation of wave functions with the use of inverse operations
2.2.1. Taylor series expansion

To obtain a different form of a Trefftz function [12, 13|, one uses an expansion into a Taylor series
of the solution w = w(z,y,t) of Eq. (1) in the vicinity of a given point (o, o, o),

o~ d"w(®o, Yo, to)
w($,y7t)=w($oayo»to)+z il (x_mo»y_y()at_t())’ (8)
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where

0 0 0 4
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(z0,Y0,t0)
(9)
In this expansion one eliminates the derivative %QTE" using the Eq. (1). The obtained form of the
expansion [8] includes as coefficients the functions which identically satisfy the wave equation. These
coefficients are the same as those obtained with the help of a generating function. However, if apart

from the elimination of the time derivative, we perform transformations leading to the extraction
of Aw in the expansion (8), then we obtain the following form of the expansion
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where Z=x— 2o, =y —yo,t =1t — to.
Now, in this expansion, the coefficients at partial derivatives evaluated at point (zq, vo, to) are
functions which satisfy identically Eq. (1), hence these are Trefftz functions. They are different
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from functions obtained by the previous method. Moreover, the derivatives ‘gm.ﬁ’ : 887,1,—1 (%%) are

multiplied by the known harmonic functions (11) and (12), respectively,
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The functions derived in this way are different from those obtained with the help of the generating
function and can be expressed by the inverse operations [12, 13].

2.2.2. An inverse Laplace operator for harmonic functions

Since each of the harmonic functions F,(x,y), Gn(z,y) can be represented as the sum of monomials
of the form ——L hence to calculate inverse operations of harmonic functions it is enough to know
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Harmonic functions F,(z,y), G, (z,y) are symmetrical with respect to variables 2 and 1 1, whereas
calculations of successive inverse operatlons in accordance with the formula (13) distinguish the
variable y (observe that A=1(1) = ) By symmetry of A with respect to the variables v it is
possible to define A~! which dlstlngulshes the variable 2. Both possibilities are shown in [11 13].
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2.2.8. Representation of wave functions in term of inverse Laplace operations

The Taylor series expansion (10) can be represented with the help of inverse operations in the
following way,
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The form of the expansion obtained in this way consists of two independent sequences of wave
polynomials, expressed through the inverse operation of harmonic ‘functions. Obviously, one can
eliminate the other derivatives in the Taylor expansion (8) and for each of such eliminations there
exists a possibility of calculating the inverse operations from harmonic functions which distinguish
one of the variables 2 or y. All these possibilities were discussed in the work [12, 13].

3. WAVE FUNCTIONS AS BASE FUNCTIONS IN FEM

Trefftz functions for the wave equation can serve in the construction of base functions in FEM. The
general idea of such an approach is the same regardless of the FEM type.

Let us consider the non-dimensional wave equation:

Pw  Pw Pw

v 15
o Dt ol (15)

in the bounded space-time domain D x (0, 7). Additionally the following conditions are given,

w(z,y,0) = wo(,y), (16)
QE*(:;—’ty‘lO_) <0 ’U)()(-'I/', y)a (17)
w(wayatﬂ(z,y)e[‘ = wp(m,y,t), (18)

where I is the boundary of D. We introduce the mesh division of the domain. We divide the domain
into subdomains (rectangles, triangles, etc.) {2, j = 1,2,3,...J, and the time interval into intervals
(kAt, (k+ 1)At), k=10,1; .5, K.

A solution of the Eq. (15) is sought in successive time intervals (kAt, (k+1)At), k=0,1,..., K.
We introduce a local system of coordinates in the space-time domains (2; x (kAt, (k + 1)At).
Because of the property of wave polynomials (the Runge phenomenon of waving of polynomials at
the boundary) the division is in such a way so that the relatively high degree of approximation in
the element was kept , and so that the matrices which form the system of equations were not badly
conditioned. In a local system of coordinate we perform the rescaling of this system in such a way
so that the space — time coordinates in the element do not exceed one. The division of the domain
into elements is the same regardless of the type of FEM. In the element with the number j the
approximate solution of Eq. (15) is represented as a linear combination of base functions satisfying
Eq. (15) identically. Determination of the unknown coefficients of such linear combinations and the
use of base functions differ from each over depending on the type of FEM.

3.1. Nodeless FEM

In the nodeless method after partition of a domain into the space-time elements, in each element
with number j one seeks an approximate solution in the form of a linear combination of base
functions which are wave polynomials

N
’LLj(ClI,? ,t) = ZAjnvn($7yat)‘ (19)

n=1

The unknown coefficients in this combination A, are determined through the minimization of the
functional which takes into account mean-squared fitting of the solution approximated to:

— the initial condition (16), (17),
— the boundary conditions (18),

— the values of the approximate solution and its derivative normal between the elements [2].
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The undoubted advantage of this approach is the fact that the number of base functions taken to
approximate the approximated solution in the element is not bounded by the number of element’s
nodes. Therefore it is possible to divide the domain into a few “large” elements. In each of these
elements the approximation of the solution is done by the polynomial of possible highest degree (up
to the given differential). The drawback of this approach is the lack of continuity of the approximate
solution between the elements. Moreover, increasing the number of functions which are used to in
the approximation, creates a numerical problem.

3.2. Continuity FEM

In the continuity FEM after partition of a domain into the space-time elements, in each of these
elements we introduce the mesh of nodes location — for each element the same. The approximate
solution in each element is expressed by the relation

wj(z,y,t) ~ uj(z,y,t) ZA]nvn Ea T, (20)

n=1

Moreover, it is assumed that in the nodes of neighbouring elements the approximate solution is
continuous between the elements. The lack of the full continuity between the elements results from
a finite number of base functions in each finite element.

The procedure of determining the constants A;, and base functions is the same as the one
presented in [2] for the equation of heat condition. It is assumed that for the fixed element (with
number j) one knows the values of sought function Uj1, Uj2, - ., UjN In nodes of the element
Py = (x1,y1,t),...,Pn = (N, yn, tn). The coefficients Aj,, are determined with the solution
of the system of equations

01(3717371,t:1) va(Z1, g1, t1) o un(E h,t) Aj ujy
v1(Z2, Y2, t2)  v2(T2,Y2,t2) - on(T2, T2, t2) Ajo ~ ] Ep (21)
v1(ZN,IN,tN) v2(ZN,TN,IN) - UN(EN, TN, EN) Ajn ujN
or in the matrix form
[v][4] = [U]. (22)
Therefore, if the matrix [v] is non-singular, then to [A] = [v]7}[U] = [V][U],
N
Ap = Z Vaiui . (23)
i=1 :

After substitution of Eq. (23) into Eq. (20) we get for the element
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Base functions ¢, have the following properties connected with the properties of wave functions,

- AR
= ) =0,
<m?+®~ &>%dx%7

L T B looki= 1, St e
sojk(l‘m,ym,tm)={0 k;érz (Zm , Ym , tm) — nodes of element, k=1,...,N,
: i L

We assume the approximation (24) of the exact solution in each element. To determine the values
of function uj, in the element’s nodes one constructs the functional which fits the approximate
solution

— to the initial condition (16), (17),
— to the boundary conditions (18),

— to the fitting a boundary condition at the common interfaces (fitting of solutions and their
normal derivatives between the elements).

It is worthwhile to notice that part of the value w, is known from the given condition of a problem
(the initial-boundary conditions).

3.3. Discontinuity FEM

A general idea of using Trefftz functions as base functions in the discontinuous FEM is similar
to the previous case. The essence of this approach relays on resignation from the continuity of
the approximate solution in the element’s nodes. Analogously to the previous case, the space-time
domain in which one seeks a solution, is divided into elements. In each element the solution is sought
in the form of the following linear combination,

(z,y,t) ZSOﬂ z,y, t)uji.- (26)

Similarly to the previous case, one constructs base functions in an arbitrary element by solving the
system of equations (21). The unknown coefficients are in this case the values of sought functions
in the element’s nodes. They are determined in the analogous way as in nodeless FEM by the
minimization of the appropriate functional. This functional adjusts approximation to given initial
and boundary conditions (in mean square sense). Moreover, it fits solutions (in elements) and their
derivatives in the common edge of elements. Because of the lack of the continuity in nodes between
neighbouring elements, the search for the approximate solution requires finding a double number
of the unknowns than in the case of a continuous FEM. This causes the increase of the calculation
time.

4. NUMERICAL EXAMPLE

The effectiveness of presented methods is tested on the example describing vibrations of a squared
membrane which are described by the following relations. The two-dimensional wave equation

02w il Pw  Pw

e Ot o2 oy (z,y) € (0,1) x (0,1), t=0, (27)
together with conditions
w(0,y,t) =w(l,y,t) = w(z,0,t) = w(z,1,t) =0, (28)

w(@y,0) = aye - D-1,  e@,0=0 (29
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has the exact solution given by [10]
64 S &2 sin(ma(2n+1)) sin(ry(2m+1)) cos (Wt\/(2n+1)2 + (2m+1)2)
t) = — 30
w(:B,?/, ) szzgo (2n+1)3(2m+1)3 ( )

An approximate solution of the problem (27)—(29) is obtained by three variants of Finite Element
Method.

4.1. Nodeless FEM

Considered area was divided into smaller subareas (cuboid shape). In each subarea an approximate
solution is sought as a linear combination of wave functions (wave polynomials). This combination
consists of all polynomials up to the required degree. Unknown coefficients of this linear combination
are determined by minimization (in the mean-square sense) of the difference between an approximate
solution and given initial-boundary conditions. Moreover, the difference between solutions in the
neighbouring elements and their normal derivatives on the common edge must be take into account.

Figure 1 shows the exact and the approximate solution obtained at the middle of a membrane,
i.e. at point z = y = 0.5, for different time intervals At when the area was divided into 16 subareas.
For getting an approximate solution, 25 wave functions are used. It means the approximation of
polynomials of degree up to 4.

The error of approximation in the maximum norm was calculated in successive time intervals for
a different length of the time step, what shows Table 1.

The content of Table 1 shows a good accuracy of the approximation solution given by the use of
the nodeless FEM. Quite a small error is achieved for a relatively small number of elements. To get
the same result we can increase the accuracy of the approximate solution in elements (more wave
functions) or increase the number of elements.
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Fig. 1. The exact solution (broken line) and the approximate one (continuous line) at point = y = 0.5

obtained by dividing considered area into 16 elements for different time intervals: At = 0.05 (a), At = 0.1 (b),

At = 0.5 (c)

Table 1. The error of approximation in the maximum norm for a different length of the time step obtained
by dividing considered area into 16 elements

0-At At-2At 2At-3At | 3At-4At | 4At-5At
At'=0005 | 1.04-107%11.09.107%] 1.15-107° | 148-107° | 285 10™°
At = 0.05 3.107° $8-107° | L L8107 | 2h-167° | 3T 1
At =0.1 Ros . Hre | s 25.107% | 65.107% | 1810°
At=0.5 5.5-1073 8.1073 43160 L 12102 | 2410
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Fig. 2. The exact solution (broken line) and the approximate one (continuous line) at point z = y = 0.5
obtained by dividing considered area into 4 elements for different time intervals: At = 0.05 (a); At = 1 (b),

At.=05.(c)

Table 2. The error of approximation in the maximum norm for a different length of the time step obtained
by dividing considered area into 4 elements

0-At At-2At | 2At-3At | 3At-4At | 4At-5At
Ar=0005 28 - 10 25 10124 - 10 % 1.2 10 P45 10"
AU=0.05 [76- 1074510 T88107%1 7-107° "{"16-10*
At =0.1 g5 10 Tl I 11h- 10 T 135 10 182 1"
At=0.5 1.1 T16- i 14107 210 T 141"

Figure 2 shows the exact and the approximate solution obtained at the middle of a membrane i.e.
at point z = y = 0.5, for different length time intervals At, and for only 4 elements. The approximate
solution is given as the linear combination of 81 wave functions. It means that polynomials up to
degree 8 are used.

As above for 4 elements, the error of approximation in the maximum norm was calculated in
successive time intervals for a different length of the time step, what shows Table 2

The result obtained from numerical calculations confirmed good accuracy of the presented
method. The higher number of functions is taken in the approximation the longer time interval
can may be used to get satisfactory results.

Increasing the number of polynomials in the element causes also some restrictions. To many
wave functions (higher degree polynomials) in the linear combination cause the Runge phenomena
(“waving” polynomials at the boundaries of the considered area). Additionally, this leads to ill-
conditioned matrix describing a linear system of equations for unknown coefficients of a linear
combination of base functions.

4.2. Continuity FEM

The considered area is divided into space-time elements. In each of them a local coordinates system
as well as a mesh of nodes distribution are introduced. Base functions are created for each element.
Their number depends on the number of nodes in each element (the same for different elements).
Linear combinations of base functions (in which coefficients are unknown values of the function at
nodes of the element) became the approximate solution of the considered problem in the element.
Examples of nodes location in element are shown in Table 3.

The problem (27)—(29) is solved in a sequential manner in consecutive time intervals. In the
first time interval the initial condition has the form (29), whereas in the next time step the initial
condition is given as the value of the approximate solution at the moment ending previous time
interval. .
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Table 3. Location of nodes in the element

8 nodes in the element

12 nodes in the element

16 nodes in the element \
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Degree of the approximate solution:
— with respect to time value ~ ¢
— with respect to space value ~ z?

Degree of the approximate solution:

— with respect to time value ~ P
— with respect to space value ~ z*

Degree of the approximate solution:
— with respect to time value ~ t*
— with respect to space value ~ I

The unknown coefficients (the values of the function at nodes of the element) are determined
by a minimization of the functional which adjust (in mean-square sense) an approximate solution
to initial and boundary conditions. This functional also fits solutions and their derivatives in the

common edge of elements.

Figure 3 shows the approximate solution in case of 16 elements. Each element has 12 nodes
(polynomials of degree up to 4 are used). All calculations are made for different time intervals in

successive five time intervals.

Similarly as for the previous method the error of the approximation in the maximum norm was
calculated in successive time intervals for a different length of the time step, what shows Table 4.

0.05 0.1 0.15 0.2 0.25

Fig. 3. The exact solution (broken line) and the approximate one (continuous line) at point x = y = 0.5
obtained by dividing considered area into 16 elements for different time intervals: At = 0.05 (a), At = 0.1 (b),

At =0.55c)

Table 4. The error of approximation in the maximum norm for a different length of the time step obtained
by dividing considered area into 16 elements

0-At At-2At 2At-3At | 3At-4At | 4At-5At
At = 0.005 | 2.08-1076 [ 9.17-107% | 2.15-107° | 3.91-107° | 6.23-10~°
At=005 | 1.09.107% [ 855-10"5 7.63-10=* | 1.95-1073 | 3.67.10-*
At =0.1 P12 | 1.3.307° 1602:10 74885 Wis (B8 30 "
At =0.5 29.10~2 1 .30.10°2 1 428.-10°2 | 6.5.10" | 633 10-
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0.05 0.1 0.15 0.2 0.25
0.035

Fig. 4. The exact solution (broken line) and the approximate one (continuous line) at point z = y = 0.5
obtained by dividing considered area into 64 elements for different time intervals: At = 0.05 (a), At = 0.1 (b),
At=0.5 (c) :

Table 5. The error of approximation in the maximum norm for a different length of the time step obtained
by dividing considered area into 64 elements

0-At At-2At 2At-3At | 3At-4At | 4At-5At
At=0008142- 1071119 105} 39°10°% | p87-10"% | 108 10°°
AL 2005 1726107 1 41410~ | 117 -10°4 L1710 '3 11 107
At =0.1 2.95-107* [ 6.84-10* | 8.86-10~* | 3.47-1073 | 3.59.10"3
At=0.5 B a8 e B TR R o N R T 6.98 - 102

Fig. 5. Exact solution (a) and approximate solution (b) for time ¢ = 2 obtained for the time step
equals At = 0.005

It is difficult to take results received in this case as accurate, so to improve the approximate
solution a more dense division was introduced. All calculations are repeated for 64 elements. Number
of nodes in each element remained the same. The obtained approximations are shown in Fig. 4.

For such dense division, the error of approximation in the maximum norm was calculated in
successive time intervals for a different length of the time step, what shows Table 5.

In order to check the influence of the number of iteration on the stability of the approximate
solution for time interval At = 0.005, a membrane deflection is calculated for 400 successive time
intervals. The results of these calculations are presented in Figure 5.
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The analysis of the results presented above leads to following conclusions:

— Good accuracy of the approximation is obtained by the use of continuity FEM only in the case
~ of appropriate short time step.

— The more dense division the more accurate solution we have.
— The presented method seems to be very stable.

The biggest problem in this method was the choice of wave functions, which were used in the
approximation. Wave polynomials obtained from a generating function cannot be used for this
purpose. They caused a numerical problem (ill-conditioned matrix) or they give wrong results.
Using wave functions given by inverse operations allowed us to avoid this problem.

4.3. Discontinuity FEM

Solution of the considered problem (27)—(29) with the use of the discontinuity FEM did not give
expected results. All calculations were carried out for the division of the domain into 16 and 64 el-
ements with 12 nodes. Calculations were done for a different length of time’s interval. To generate
base functions in each element both kind of wave functions were used: given by inverse operations
and obtained from generating functions. In each of these cases wrong results were obtained. Because
an approximate solution differ substantially from the exact one, this method (in presented form) is
not fitted to solve the problem described by the wave equation.

Perhaps wrong results were caused by the ill-conditioned matrix in the linear system of equations
for the unknown coefficient of the approximation. Maybe a wrong criterion for the adjustment to
given conditions were taken. A discontinuous FEM requires further research. In order to improve
these results, probably the physical aspect of the problem has to be taken into account. New
definition of a functional (see works [3, 4]) should be taken under consideration.

Because the numerical calculations show that nodeless FEM brings better results then other
methods presented here, it seems to be profitable to use such an approach to solve the problems in
elasticity. It does no matter which kind of wave functions is used to get an approximate solution in
this approach. Both give results with a similar accuracy.
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