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This paper is concerned with hybrid stress elements in the context of modelling the behaviour of plates
subject to out of plane loading and based on Reissner-Mindlin assumptions. These elements are consid-
ered as equilibrium elements with statically admissible stress fields of which Trefftz fields form a special
case. The existence of spurious kinematic modes in star patches of triangular elements is reviewed when
boundary displacement fields are defined independently for each side. It is shown that for elements of
moment degree > 1, the spurious modes for stars only exist at specific locations and/or for certain config-
urations. The kinematic properties of these modes are used to define sufficient conditions for the stability
of a complete mesh of triangular elements. A method is proposed to check mesh stability, and introduce
local modifications to ensure overall stability.

1. INTRODUCTION

The simulation of plate bending problems, or slabs, by approximate finite element models has lead
to the development of many different types of plate element in order to strike a balance between
accuracy and computational effort. Although displacement based elements have tended to dominate
in general finite element applications, the benefits of hybrid stress elements have long been recognised
in the context of plates.

This paper is concerned with hybrid stress elements for plates governed by Reissner-Mindlin
theory where displacements are described by transverse deflections and rotations of the normals
through the plate thickness, and internal actions are described by transverse shear forces and mo-
ments as stress-resultants, which, for brevity, will be collectively referred to as stresses. The stress
fields generally satisfy the equilibrium conditions within an element, and can be classified as dis-
continuous but statically admissible (SA), hyperstatic within a particular element, continuous (SA)
and/or of the Trefftz type. In the latter case compatibility of the corresponding deformations is also
satisfied.

Hybrid elements allow the freedom to formulate elements with general polygonal boundaries,
and to define independently the fields of stress and boundary displacements. The earliest hybrid
elements due to Pian [9] assumed continuous frame functions for boundary displacements, but later
formulations by Moitinho de Almeida et al. [8] were based on independent side functions which are
discontinuous at the ends of the sides.

However spurious kinematic, or zero energy, modes have always been problematic for such ele-
ments. Recent work on hybrid equilibrium elements has focused on establishing general conditions
for the stability of single triangular elements and patches of triangular elements forming stars, where
stability implies freedom from spurious kinematic modes [5, 6]. The patches of elements can be con-
sidered as a generalisation of the macro-element concept first proposed by the Liege school [1]. It
has been shown that when statically admissible internal moment fields are of degree greater than or
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equal to two, the spurious kinematic modes of single elements may not propagate between elements,
and may thus lead to stable configurations.

The possible presence of spurious kinematic modes in a mesh of triangular equilibrium elements
has lead to two strategies for meshing and/or solution. Almeida et al. [8] have utilised a special
solver which accounts for singularities in a system of simultaneous algebraic equations if the loads
are admissible, Maunder et al. [7] pursued and generalised the Liege technique of pre-assembling
triangular elements into quadrilateral macro-elements which are free of spurious modes. What is of
principal concern in this paper is to propose a method of stabilising a general unstructured mesh of
triangular equilibrium elements so that arbitrary loads can be applied and conventional solvers can
be used.

The structure of the remainder of this paper is as follows: Section 2 reviews hybrid equilibrium
elements for plates in general terms; Section 3 then summarises the conditions for spurious modes
for star patches containing one or more triangular elements; and Section 4 details a general method
for mesh stabilisation based on the kinematic properties of star patches. The paper is concluded in
Section 5.

2. HYBRID EQUILIBRIUM ELEMENTS

Included for completeness is a short review of hybrid equilibrium elements including some types of
Trefftz element which can be regarded as special cases of equilibrium elements. For a more detailed
review the reader is referred to [4].

Such elements may have polygonal boundaries with straight sides, and stress and displacement
fields are normally in polynomial form. Equilibrium between elements is fully achieved when the
polynomial forms for displacement are complete and the degree of the displacement fields is not
less than the degree of the stresses. For plate bending elements, the degree of the lateral deflections
is one less than that of the rotations of the transverse normals, and the degree of the shear forces
which are equilibrated with the moments is also one less than the degree of the moments.

When the stresses are restricted so as to satisfy the compatibility conditions they become Trefftz
fields, and such elements have been proposed in effect in [3] (termed HT-T elements), although the
independent side functions were assumed to be distributions of traction which could be regarded as
dual to the displacement fields as discussed in [10] (termed HTS D elements).

The term “weak Trefftz” has also been proposed [4] when the stresses are defined from complete
polynomials of a certain degree after removal of the hyperstatic fields, which depend on the shape
of an element. The remaining stresses have corresponding deformations (generalised strains) which
are orthogonal in the energy sense with the local element hyperstatic fields, and thereby satisfy in
a weak sense the compatibility conditions for deformations. These can be strongly expressed by the
condition that the integral of the work done by deformations over an element should be zero for all
possible hyperstatic fields.

Triangular elements are used extensively due to the convenience of using available mesh genera-
tors, e.g. based on Delaunay triangulation for unstructured meshes, although more general convex
polygonal shapes can be generated by using Voronoi diagrams.

In algebraic terms, side displacements and admissible tractions for a mesh of hybrid equilibrium
elements do work as defined by the scalar product in Eq. (1),

§=V.v; it=8.3; D= /VTS'-dF; t76 = sT DTw, (1)
si'des
where J represents side displacements with n4,; degrees of freedom, and ¢ represents tractions which

equilibrates with internal stress fields with ng degrees of freedom. These fields are determined from
parameters v and s respectively. The matrix D has dimensions n4,s by ns for a complete mesh, and

D”"v = 0 when displacement modes v represent rigid body modes or spurious kinematic modes.
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Fig. 1. Diagrammatic form of matrix D, with its non-singular square submatrix shown shaded

The numbers of independent modes are denoted by n,4, and Ny, , respectively. The numbers of
independent fields are related by the rank of D, as indicated in Eq. (2) and Fig. 1 for a single
element or a mesh of elements,

rank[D] = (ns = nhyp) = (ndof — Nskm — nrbm)- (2)

Spurious kinematic (or zero energy) modes are a potential problem for hybrid elements whether
of the equilibrium or Trefftz type. Spurious modes may propagate beyond a single element, and
their presence also leads to a rank deficient stiffness matrix. It should be noted that the hyperstatic
fields are here defined as those that do zero work with any of the side displacements. Thus generally
this implies a traction free boundary, but may also include modes of traction of higher degree
than the displacements that are not zero but do zero work. The spurious kinematic modes are
those boundary displacements that do zero work for all tractions that equilibrate with internal
stresses.

True hyperstatic fields within an element cannot be Trefftz fields since they have incompatible
deformations, and an off-quoted necessary, but not sufficient, condition for the absence of spurious
kinematic modes in hybrid Trefftz elements is given in Eq. (3) [2],

ng > Ndof — Nrbm - (3)

It has been recognised that this condition does not always lead to the absence of spurious modes,
but experience has suggested that these modes do not propagate in practice and that stiffness
matrices of complete meshes are not necessarily rank deficient. However this experience is not
universal, and special solvers for singular matrices have been invoked in the context of hybrid
equilibrium elements.

It has also been proposed that spurious modes at element level for Trefftz elements can always be
avoided by using a sufficiently high number of internal stress fields. However this inevitably implies
that, for polynomial fields, the internal fields have higher degree than the side displacements and
consequently equilibrium of stresses between elements cannot generally be satisfied.

The numbers of independent fields of stresses for a triangular element are dependent on the
degree [4] and they are illustrated in Fig. 2, where it can be seen that for elements of high degree
the numbers of hyperstatic fields tend to dominate for the equilibrium type of element. SAMF
denotes statically admissible moment fields. The number of weak Trefftz stress fields is dependent
on the shape of the element, and so this number would be different for more general polygonal
elements.

The remaining sections of this paper consider the question of existence and avoidance of spurious
modes for a complete triangulated mesh of hybrid equilibrium elements, however the techniques
considered are equally applicable to elements which are weak Trefftz.
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Fig. 2. Maximum numbers of moment fields versus degree for a triangular element

3. SPURIOUS KINEMATIC MODES FOR PATCHES OF TRIANGULAR EQUILIBRIUM
ELEMENTS

3.1. Spurious modes of a single element

The numbers of spurious kinematic modes and their descriptions (shapes) for a single element of
arbitrary degree have been detailed in [5]. It is shown in [5] that there exist 3 spurious modes for
all degrees, each of which involves rotational deformations of pairs of sides incident with a corner
node. An additional mode exists for elements of degree 2, which includes rotational displacements
and transverse deflections of all 3 sides.

3.2. Spurious modes of a star patch of elements

A star patch consists of n elements that share a common corner node or vertex V. When a star
patch is considered as a mesh in its own right, its “link” belongs to its boundary and refers to the
sides that are not incident with its vertex. This term is borrowed from concepts used to describe
simplicial complexes in topology. A star is defined as closed or open according to whether its link
forms a closed circuit or a chain with two end nodes as illustrated in Fig. 3, where the links are
shown with bold lines. .

More recent work [6] has studied the stability of such stars, and the nature and number of spurious
kinematic modes when they exist. The most important features that have emerged are that when
the degree of the element is greater than 1, open stars generally contain 2 spurious modes which
involve rotational deformations of the sides incident with the end nodes of the link, and indicated
by curved arrows in Fig. 3; and closed stars are generally free of spurious modes.

There are certain exceptions to these features, and Tables 1 and 2 summarise the numbers of
spurious kinematic modes for all stars dependent on degree, number of elements, and configuration.

Ndeg Tefers to the number of degenerate nodes, i.e. those where (3; + ;) = 7 radians. Case (i)
can be considered as a special form of case (v) for degree 2, and these cases are the only open
stars where transverse deflections are included in the spurious modes. Although not proven as yet,
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Open star withn =4 Closed star withn =5

Fig. 3. Open and closed stars based on vertex V'

Table 1. Spurious kinematic modes for open star patches containing 2 or more elements

Degree Number of spurious kinematic modes
Oorl | (n+2)
2 Case (i): 3 when n = 2, modes are dependent on configuration, otherwise for n > 2:
Case (ii): 2 for a general configuration, except when 74, > 0,
Case (iii): (2 + ndeg), OF
Case (iv): 3 when n = 3 and the sum of adjacent angles at the common vertex = 7 rads,
i.e. (cotyj +cotyy) =0for1 <j < (n—1).
Case (v): 3 for other special configurations, i.e. (coty; + cot ;) = r(cot 5; + cot ay,)
for1<j<(n=1).
=2 As for degree 2, but excluding cases (i) and (v).
Table 2. Spurious kinematic modes for closed star patches
Degree Number of spurious kinematic modes
0 n
1 (n—3)
2 Case (i): 0 for a general configuration, except when nge, > 0, then nge;
Case (ii): 1 when n = 4 and internal sides form the diagonals of a quadrilateral;
Case (iii): 1 when n is even and > 4 for special configurations,
i.e. (cotvy; + cotyx) = r(cot B; + cot ay) for all j
and 377 (-1 Wjz; =0 =30, (-1)W;y;
where (z;, y,) are the coordinates of the star nodes
when the origin occurs at the internal vertex of the star.
>:2 As for degree 2, but excluding case (iii).
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Fig. 4. Examples of configurations where a 3rd spurious mode exists
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Fig. 5. Examples of polygonal elements with a single spurious kinematic mode for degree 2

experience indicates that all sides are deformed in these modes. All other forms of spurious mode
only involve rotations of the normals through the thickness. Special configurations, or pathological
cases, are illustrated in Fig. 4 when a third spurious mode exists. The configuration shown as an
example of case (v) consists of three identical isosceles triangles. The curved arrows indicate that
a spurious mode involves rotational deformations of those sides incident with the node within an
arrow.

In Case (iii) of Table 2 for degree 2, W, = w , and examples of special configurations
which could arise in meshes based on regular tesselfations are shown in Fig. 5. In such cases the
spurious modes again appear to involve deformations of all sides, and they includes transverse
deflections as well as rotations of the normals through the thickness.

4. STABILITY OF A GENERAL UNSTRUCTURED MESH OF TRIANGULAR ELEMENTS

The question of stability of, or absence of spurious kinematic modes from, a general mesh of trian-
gular hybrid elements is now considered. Stability depends on three aspects of a mesh:

(i) the geometrical arrangement or configuration of the elements;
(ii) the degree of the elements;
(iii) the distribution of the loads and kinematic constraints.

Sufficient conditions for stability are proposed when the degree is greater than one, together with
means of stabilisation if the conditions are not satisfied, although such means may not be necessary.
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Although elements with constant or linear moment fields are popular in certain applications such
elements are much more susceptible to spurious modes, as Section 3 indicates, and they fail to
provide equilibrium solutions for common modes of loading, e.g. uniformly distributed loads. The
latter loading requires quadratic moment fields as a minimum.

4.1. A method to guarantee mesh stability

The method is based on the known stability properties of closed and open stars. The basic idea is
to partition the mesh into separate non-overlapping stars, which are then assembled (like a jigsaw)
in a sequence such that at each stage of assembly the current mesh is stable or is capable of being
stabilised. Recognition of stability or spurious modes depends purely on the degree of the elements
and the configuration of the stars.

Partitioning starts with identifying closed stars, which are inherently stable with few exceptions,
and continues until as much of the mesh as possible is covered. This stage is followed by identifying
a sequence of open or closed stars from the remaining elements, so that each star is attached to the
current assembly in a stable manner. The sides that are attached are constrained by the current
assembly so as to remain rigid and undeformed. Thus any spurious mode in an open star which
includes such a side is blocked. Consequently a single element should be attached on two or three
sides, and an open star should be attached on sides that include V0 or 01, and Vn or (n—1,n),
with reference to Fig. 3.

Individual stars are unstable for certain configurations, i.e. when their links contain degenerate
nodes, or they form quadrilaterals with diagonal subdivision, or in the case of degree 2 their config-
urations satisfy additional geometric conditions. Stabilisation of an individual star may be achieved
by attaching it to another star that is stable, termed buttressing, or if that is not possible then
internal subdivision may be necessary. Examples of such means of stabilisation are illustrated in

Fig. 6.

B
-R-IX

Fig. 6. Examples of stabilisation by subdivision or buttressing
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A proposed procedure for partitioning a mesh, assembling stars, recognising spurious kinematic
modes, and introducing local stabilisation, is outlined in the following algorithm:

(i) Select a vertex with a closed star from the mesh;

(ii) Check its stability by identifying any degenerate nodes or the other unstable configurations
as defined in Table 2;

(iii) Flag the star if unstable — for subsequent checks to see if an adjacent star can provide stabil-
isation by acting as a buttress;

(iv) Select an adjacent closed star if one exists, i.e. a closed star whose link contains one or more
sides in common, and return to step (ii).

(v) If no such adjacent star exists, then select an open star for attachment from the remaining
elements. This may consist of a single element;

(vi) Check its stability subject to the kinematic constraints imposed by the interfaces with the
current assembly, and return to step (iii);

(vii) If no adjacent star exists, then the mesh has been fully covered;
(viii) Check unstable stars for possible stabilisation by buttressing with adjacent stars;

(ix) If stabilisation by buttressing is not possible, then stabilise by internal subdivision with one
or more macro-elements.

This algorithm provides sufficient but not necessary conditions for a stable mesh.

4.2. An example based on a Delaunay triangulation

A complete example is now illustrated beginning with an unstructured mesh for a plate based on
a Delaunay triangulation. The original mesh is shown in Fig. 7(a).

Figure 7(b) shows the selection of the closed stars in steps (i) to (iv), with the first star shaded
and two unstable stars flagged. The choice of the first closed star is arbitrary, and the choice of
closed stars to be treated as adjacent is to some extent arbitrary. Figure 7(c) shows the closed
stars at the end of step (iv) shaded, and a complete covering with stars and flags to indicate local
spurious modes. Completion is achieved by the selection of single elements to fill the interstices, one
further closed star, and a sequence of open stars containing one, two, or more elements. Whilst the
pattern of stars obtained is not unique, the procedure guarantees the final stability of the mesh,
albeit after a few local refinements, independently of the prescribed loads and boundary conditions.
Furthermore the analysis of the finite element model could now be carried out by considering all
the stars as macro-elements using a conventional stiffness method and equation solver.

5. CONCLUSIONS

e The kinematic properties of star patches of triangular hybrid equilibrium plate elements of
moment degree > 1 can be used to establish conditions for the stability of general unstructured
meshes. These conditions are sufficient but may not be necessary.

e The conditions rely solely on the geometric properties of the stars together with simple means
of stabilising stars by buttressing or subdivision as they are assembled.

e Stable meshes can then be analysed by conventional solvers for any set of boundary conditions
or loading without incurring rank deficiency.
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Fig. 7. Stabilisation of a Delaunay triangulation with elements of degree > 1; (a) Delaunay triangulation,
(b) selection of closed stars, (c) completion of star covering, (d) stabilisation of stars by internal subdivision

e Analysis may take advantage of the partition of a mesh into discrete stars by processing them
as macro-elements.

e Proofs are still required for the hypothesis that spurious kinematic modes for stars that include
transverse deflections involve all of its sides. This supposition is currently based on observations.

e The method of mesh stabilisation needs to be evaluated from the computational point of view.

e The possibility of extending concepts to solid meshes of tetrahedral elements should be consid-
ered.
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