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The displacement and stress models of the hybrid-Trefftz finite element formulation are applied to the
dynamic analysis of two-dimensional bounded and unbounded saturated porous media problems. The
formulation develops from the classical separation of variables in time and space. A finite element approach
is used for the discretization in time of the governing differential equations. It leads to a series of uncoupled
problems in the space dimension, each of which is subsequently discretized using either the displacement
or the stress model of the hybrid-Trefftz finite element formulation. As typical of the Trefftz methods,
the domain approximation bases are constrained to satisfy locally all domain equations. An absorbing
boundary element is adopted in the extension to the analysis of unbounded media. The paper closes with
the illustration of the application of the alternative hybrid-Trefftz stress and displacement elements to the
solution of bounded and unbounded consolidation problems.

1. INTRODUCTION

In 1926, E. Trefftz [33] suggested using trial functions satisfying a priori the governing differential
equations, as an alternative to the well-known Rayleigh-Ritz method. While the earliest applica-
tions involving Trefftz-type elements date from 1973 [30, 31], their use was confined to particular
parts of the domain, the rest being analyzed via conventional finite elements. The first general pur-
pose, domain-independent, Trefftz elements emerged in 1978 [19], when J. Jirousek presented four
hybrid-Trefftz formulations, differing essentially in terms of the fields independently approximated
on the boundaries and in the way the inter-element continuity was enforced. The early applications
of these elements dealt with general plane elasticity problems [22] and Kirchhoff plates [21, 22]. The
formulation was then further extended to the analysis of thin shells [20, 34], of Reissner-Mindlin
plates [21, 25] and of thick plates [24, 25]. In 1980, I. Herrera published the first [14] out of a series of
articles (e.g. [13, 15]) providing the mathematical fundamentals needed for building complete Trefftz
bases and for using them reliably. Later, also integrated in a monograph [16], the theory developed
by I. Herrera pivots on a completeness criterion, and also includes, among other concepts, conver-
gence conditions and variational principles. Subsequently, the same approach applied to problems
involving non-symmetric differential operators has led to the formulation of the Localized Adjoint
Method [17], thus supporting the use of discontinuous Trefftz functions. Apart from the original
hybrid-Trefftz formulations contributed by J. Jirousek, independent lines in terms of development
and implementation have been proposed. The method suggested by Cheung [4], known as the direct
Trefftz formulation, as opposed to the indirect one originally contributed by J. Jirousek, derives



290 I.D. Moldovan, J.A. Teixeira de Freitas

a boundary integral expression by enforcing in a weak form the governing differential equation us-
ing the TH-complete basis for weighting. The boundary integral equation is then discretized and
solved using the classical boundary element method strategy [5, 18]. This approach casts insight
into the intimate relations between the Trefftz formulations and the boundary element method,
allowing one to apprehend the first as a subclass of the latter. On the contrary, the hybrid-Trefftz
finite elements reported in [6, 9-12, 28] are built upon their understanding as a variant of the hybrid
finite elements [7] with the essential characteristic that the domain approximation basis is being
built on a function space taken from the solution set of the governing differential equation. The
latter concept is used throughout the work reported here. Reviews on the hybrid-Trefftz element
formulations and their application can be found, for instance, in [23, 26, 29].

This paper reports on the formulation of hybrid-Trefftz displacement and stress elements for
non-periodic and transient saturated porous media problems. The model assumes an elastic solid
phase fully permeated by a compressible liquid phase obeying Darcy’s law. The Biot’s theory of
porous media [2] is used to express the differential equations governing the problem. Their integra-
tion involves the uncoupling of the temporal and spatial components of the unknown fields, followed
by a time domain semi-discretization process [8] to yield a series of elliptic differential equations
in spatial variables only. Each of the resulting problems in space is subsequently discretized using
either the displacement or the stress model of the hybrid-Trefftz formulation. The hybrid-Trefftz
displacement (stress) element is naturally derived from its purely hybrid correspondent by enforcing
the Trefftz constraint, requiring that the approximation functions selected for the domain displace-
ment (stress) field satisfy the Navier (Beltrami) differential equation, into the domain equilibrium
and elasticity (compatibility and elasticity) equations. A Robin-type boundary condition, relating
the far-field asymptotic expressions of the displacement and traction fields [28], is enforced at close-
range to yield a local absorbing boundary condition. An analysis of its effectiveness in damping
incident waves of various types can be found in [27]. To illustrate the performance of the presented
hybrid-Trefftz models, they are applied to plane Molsand soil consolidation problems, defined on
both bounded and unbounded domains. The predicted behavior is assessed from the perspective of
the consolidation theory and is compared with the results obtained with ABAQUS™TM

2. PROBLEM DESCRIPTION

Let V represent a saturated porous medium and let I" be its surface (Fig. 1), combining the com-
plementary Neumann [, and Dirichlet I, boundaries, whereon the components of the traction %,
or displacement u vectors are prescribed, respectively,

P O
b= Iun Ly

No particular constraints are enforced on the geometry of the domain, which may not be con-
vex, simply connected or bounded. Problems defined on unbounded domains can be dealt with by
artificially splitting the domain V' into a bounded part, enclosing all geometric irregularities, all
sources of perturbation and the whole domain of practical interest, denominated herein interior
domain, Vi, and an infinite sector, called exterior domain, V. , which is generally not included
in the calculation. The delimitation is done through an imaginary boundary I, , named absorbing
boundary.

Let the independent components of the stress and strain tensors in the solid phase and the
pore fluid pressure () and fluid content (¢) be organized in vectors o (z,y,t) = { 04z Oy Ouy 7}
and € = {eqz Eyy 22y € }T, respectively, and let the solid skeleton displacement and fluid seepage
components be collected in the displacement vector w(z,y,t) = { ug uy wy wy }T. The total com-
ponents of the body forces are listed in the body force vector b(z,y,t) = { pby pby puwbs puwby 5
where p and p,, represent the mass density of the mixture and of the liquid phase, respectively,
while b, and b, are the components of the body force.
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Fig. 1. Interior and exterior domains, Neumann, Dirichlet and Sommerfeld boundaries

The linear elastodynamic response of the body is governed by the following differential equations,
written in the matrix form

Do +b=dou+pour in V, (1)
8="T'w in. ¥, (2)
o= ke in V, (3)
No =tr on Iy, (4)
u=ur on I. (5)

In the equilibrium (1), compatibility (2) and elasticity (3) equations, the dynamic properties of the
body are collected in the (local, symmetric) density py(x,y) and structural damping do(z,y) ma-
trices, while the (local, symmetric) matrix k(z,y) defines its elastic properties. Matrices D and D"
are the differential equilibrium and compatibility operators, respectively. The explicit expressions
of these matrices for saturated porous media can be found in [27].

Vectors tr(z,y,t) = {tr, tr, 7r }T and ur(z,y,t) = {ur, ur, wr, }T, present in boundary
equilibrium (4) and compatibility (5) equations, collect the components of the applied tractions
(applied pore pressure, for the fluid phase) and of the imposed displacements (imposed normal
seepage), respectively. The components of the outward normal to the medium boundary are orga-
nized in matrix IN.

The initial displacements and velocities of the dynamic system are known a priori and their
components collected in vectors u’(z,y) and v%(z,y), respectively:

vw=u’ at t=0, (6)
u=v" at t=0. (7)

3. TIME DISCRETIZATION

The discretization in time of the governing equations is constructed using the finite element proce-
dure reported in [8]. Let the analysis duration be split into a certain number of time steps. Direct
approximations are assumed in the current time step (0 < ¢ < At) for the unknown displacement,
velocity and acceleration fields,

u(z,y,1t) ZVVn ) un(z,y) iV, (8)
n=0
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N-1

v(x,y,t) = Y Walt)va(z,y) in V, (9)
n==h)
N-1

a(z,y,t) = Y Wa(t)an(z,y) in V. (10)

fi=6

In the above equations, weights u,, , v,, and a,, typically do not embody field values at given moments
in time, representing instead generalized displacements, velocities and accelerations, respectively.
The time domain approximation basis is constructed on NV linearly-independent scalar functions W, ,
whose choice is not restricted in any way to Fourier exponentials or any other function space.

In general, approximations (8), (9) and (10) do not satisfy a priori the velocity and acceleration
definitions 4 = v and ¥ = a, which are instead enforced weakly, using the (complex conjugate
of the) scalar functions W, , with m = 0, N—1, for weighting. A number of N uncoupled sets of
equations of type (11) and (12) are obtained,

At

Wn(v—1)dt =0, (11)
J0
&
/ Woite 2o =0, (12)
0

Applying the procedure presented in [8], the following velocity and acceleration estimates are ob-
tained,

N-1
Otult) = Wi (t) Ynu, — 0o(t)u®, (13)
n=0
: N-1
Ata(t) = Y Wy(t) Trun — 01(t) u® — Op(t) At v°, (14)
n=0

where

Oy (t Z Wa(t) TFopn,

n=0
N-1 S

= Z Hmn VVm(O)a
m=0

and ¥, , v, and H,,, are constants depending on the approximation basis.

Besides the displacement field (8), the time variation functions of the unknown strain and stress
fields are directly approximated in the current time step (0 < ¢ < At) using the same arbitrary
time basis W,,(t),

(it ZI/Vn Yeu(zy) vin V. (15)
n=0
N—1

o(x,y,t) Z Walt)en(z,y) in V (16)

n=0
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and the governing equations (1)—(5) are enforced in weak form in the same time interval, using the
scalar functions W,,, as Galerkin weighting functions, to yield

Doy + by +wipu, =Fp) inV, (17)
e, =Dy, in V, (18)
an = ken in. V. (19)
No,—tr, =0 on- 1%, (20)
Ty = U7, on 1y, (21)
where w, = —1 Z’; is a complex generalized frequency, 7 is the complex imaginary unit, and the

generalized density matrix p = py — %do incorporates both density (py) and structural damping
(dp) effects and is no longer Hermitian.

The generalized forces associated with the initial conditions (6) and (7), the generalized body
forces and the contributions of the prescribed forces and displacements are defined as follows,

) A~
1 N—l_ AL
by = o Him : Wnbdt, (23)
m=0
S
ir. = — Hoen Wmtr dt, (24)
At m=0 0
1 N—l_ ok
an, i Z‘}: "; H’IL'ITL/0 m‘n,u[‘ dt (25)

Substituting the compatible strain field given by Eq. (18) in the elasticity equation (19) and the
resulting stress field in the equilibrium condition (17), the Navier equation results in the form

DD up + by + wipu, =F)  in V. (26)

Though no provisions were postulated for the analyzed problem, which may be discontinuous and
of non-repetitive nature, nor were any restraining conditions placed on the selection of the time
basis W,, , which may be defined on any complete function basis, the semi-discretized domain (17),
(18), (19) and boundary (20) and (21) equations are rather similar (except for the initial field
vector F%) to their spectral forms, obtained for periodic problems via discrete Fourier transform
and reported in [28]. This observation opens the possibility of analyzing any kind of phenomenon,
regardless of its steadiness, using the same, spectral-like resolution algorithm.

4. SPACE DISCRETIZATION

The hybrid-Trefftz displacement and stress elements for the space discretization of the “spectral”
problems defined by Eqgs. (17)—(21) are obtained from the correspondent hybrid formulations re-
quiring that the approximation functions in space satisfy the homogeneous form of the domain
differential equations |7, 27|. In the following derivations, the subscript n associated with the cur-
rent “spectral” problem is dropped for notation convenience.
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4.1. Trefftz compliant approximation bases

Let the displacement field in the domain of a displacement element be approximated as
u=UX+uy in V. (27)

In Eq. (27), vector X collects the generalized displacements associated with the functions listed in
the matrix U, while vector ug collects particular solutions usually associated with the body forces
and with the initial condition vector.

What typifies the Trefftz formulation is the requirement that the functions collected in the
basis U satisfy locally the homogeneous form of the domain equations. This condition is secured by
solving the homogeneous form of the Navier equation (26) and using its complete set of solutions
as approximation functions. Consequently, the following expression holds,

(DkD* +w?p) U = 0. (28)
Dependent bases can be formulated for the approximation of the domain strain and stress fields

f = BXSep BV (29)

o=8X+ao inV, 30}

where the approximation bases F and S are derived from the displacement basis U such to satisfy
locally the compatibility (18) and equilibrium (17) equations, respectively. It follows that the elas-
ticity equation (19) must be also locally observed, and thus the following properties of the resulting
Trefftz basis can be stated,

E = D*U, (31)
S =kE, . (32)
DS + w?pU = 0. (33)

The particular solution vectors ug, €9 and o present in definitions (27), (29) and (30), respec-
tively, may, but do not necessarily do satisfy the non-homogeneous form of the Navier equation (26).
Nevertheless, they are subjected to the traditional constraint of (pure-)hybrid formulations which
requires that for a displacement (stress) model the domain strain (stress) field locally satisfies the
domain compatibility (equilibrium) condition

g0 = D*uy for the displacement model, (34)
Do+ wpug=F° - b for the stress model. (35)

Bounded to satisfy locally the all domain equations, the relation between the domain displace-
ment (27) and stress (30) fields is unique. Thus, the distinction between the definitions of the
displacement and stress approximation bases, U and S, used as primary bases for the displacement
and for the stress models, respectively, can only be formal, in the sense that for the displacement
model the displacement approximation is direct and the stress basis is derived such to satisty lo-
cally the equilibrium equation, while the opposite is true for the stress model. For saturated porous
media, the derivation of the approximation bases is given in [27].

4.2. Displacement element

Apart from the domain displacement field approximation (27), the traction field is independently
approximated on the Dirichlet boundary I, , as

=29 on 1. (36)
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The functions used to define the (strictly hierarchical) boundary traction basis Z only bear the
restrictions of completeness and linear independence.
The finite element equilibrium equation

DX - Bp=1% -t} + F,, (37)
where
o / O ' NSar, (38)
T
Bl / 0" zar,, )
B =T
T = /U tpdl,, (40)
= [ U Noodr ' 41
Iy g ) ( )
e / 0" (Doo+ b+ wpug — F) dV, (42)

is derived by imposing on average the equilibrium condition (17),
/ U (Do +b+w’pu) dV = / U’ F0av, (43)

integrating by parts the above equation, substituting the field approximations (27) and (30), and ex-
plicitly enforcing condition (20) on the Neumann boundary and approximation (36) on the Dirichlet
boundary.

The finite element displacement compatibility equation is derived by enforcing on average the
Dirichlet boundary condition (21) using the traction approximation functions defined in Eq. (36)
as weighting functions

ST
/ Z (u <2 'u,p) dFu =). (44)
Substituting the displacement approximation (27), one gets
T Sheos s
b X-u—uf, (45)
where
e i
uf = [ Z urdly, (46)
o Bt
uf = [ Z wodly. (47)
Equations (37) and (45) are used to construct the finite element governing system as
i B X t%—t% +Fp
o [ ]:[rurﬁ_uﬂ_ (48)
=1 0 P Up — Up

4.3. Stress element

Apart from the domain stress field approximation (30), the displacement field is independently
approximated on the Neumann boundary [, as

w=Ziq on il (49)
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The functions used to define the (strictly hierarchical) boundary displacement basis Z only bear
the restrictions of completeness and linear independence.

The finite element compatibility equation is derived by imposing on average the compatibility
condition (18),

T :
/s (e —= D*u)dV = 0. (50)
Integrating by parts the above equation, substituting the field approximations (29) and (30), and

explicitly enforcing condition (21) on the Dirichlet boundary term and approximation (49) on the
Neumann boundary, the following expression is obtained,

A / (NS) zar,, (52)
uz = / (NS)Tupdl,, (53)
Sl o ‘

Ut = / (NS) uodl’, (54)
cx o T =

g = /S ('D Wy — Eo) dVv. (55)

The finite element boundary equilibrium equation is derived by enforcing on average the Neumann
boundary condition (20) using the traction approximation functions defined in Eq. (49) as weighting
functions,

~T
/Z (No — tr)dl, = 0. (56)
Substituting the stress approximation (30), one gets
Lo bt S
Ax=%-%, (57)
where
T ~T
% = | Z trdly, (58)
7 = | Z' Noodr
7 = 0dT, . (59)
Equations (51) and (57) are used to construct the finite element governing system as,
8 ki g —u% + T,
~T = T 2 (60)
—A 0 q tr, —tfr

For either model, the governing system results highly sparse and strongly localized, as vectors X
list the degrees of freedom associated with each structural element, thus being strictly element
dependent, while vectors p and g, present in Eqgs. (48) and (60), respectively, are shared by at most
two neighboring elements.

4.4. Absorbing boundary elements

Half-space problems are treated by artificially splitting the domain V' into a bounded part, Vj,;,
enclosing the region of practical interest, and an infinite sector, V.;; , which is not included in the
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calculation. The delimitation is done by means of an imaginary boundary I, (absorbing boundary),
which must be designed such to prevent the spurious reflection of the incident waves back into the
interior domain. To secure this, the far-field asymptotic expressions of the functions collected in
the domain displacement and stress approximation bases can be used to formulate the following
Robin-type relation,

t = Cu at far-field. (61)

In the above equation, C' is a matrix of constants, depending on the specific characteristics of the
analyzed elastic medium. Its expression for saturated porous media can be found in [27].

Condition (61) is strictly true if only the absorbing boundary I, is placed infinitely far from
the source of perturbation. On the other hand, placing the absorbing boundary at close-range
generally renders Eq. (61) inexact, that is, its enforcement generally does not guarantee the absence
of spurious reflected waves. However, as shown in [27], its damping capacity, depending on the kind
and frequency of the incident wave, is sufficiently good for practical situations.

4.4.1. Displacement element with absorbing boundary

The displacement element absorbing boundary equation is derived by directly approximating the
traction field (62) on I', and by subsequently enforcing on average condition (61) using the (hierar-
chical) basis Z, for weighting,

b= 20, o ihai (62)
AT
/Za (u—C)dI*=0 on I3, (63)
Inserting definitions (27) and (62) into Eq. (63), one gets
e
_Ba. X+sza:m7 (64)
where
~T
By / iz AT (65)
u o ~1
pYs P ertrgiar (66)
2oy
Uap =5 | Zq updly. (67)

Equation (64) can be included into expression (48) to obtain the following form for the governing
system,

D BB T IEEAT,

—Ba D’g 0 Pa i uao s (68)
i ==

-B 0 0 P uy, — up

4-4.2. Stress element with absorbing boundary

The stress element absorbing boundary equation is derived by directly approximating the displace-
ment field (69) on I, and by subsequently enforcing on average condition (61) using the (hierarchi-
cal) basis Z, for weighting,

U= Z.q, on:, I, (69)

/ Z, (No—-Cu)dIt=0 on I,. (70)
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Inserting definitions (30) and (69) in Eq. (70), one obtains

_;faTX +* nga = Qﬁ ! (71)
where
B = / (NS) z,4r%, (72)
T
D? = / . Coary (73)
S BT,
oy = / Z, Noodl,. (74)

Equation (71) can be included into expression (60) to obtain the following form for the governing
system,

e I et

Bio iy =R T X Ty R U1

= =
A, DET R gy 1= _tay : (75)
S 5l (1370 q b It

The generalized traction and displacement vectors p, and g, list the static and the kinematic
degrees of freedom associated with the absorbing boundary and are strictly element dependent,
as an absorbing boundary cannot be shared by two elements. Thus, the sparsity and localization
features stated above for the finite element governing systems remain valid.

5. TWO-DIMENSIONAL CONSOLIDATION TESTS

An external load suddenly applied on a body of saturated soil causes a local increase of the pore
pressure, triggering the flow of the fluid. As the fluid leaks through the porous material, the solid
skeleton suffers a gradual change in volume, a process called consolidation. Detailed theoretical
treatment of the consolidation phenomenon was first given by K. Terzaghi [32], for the small strain
problem. His theory was later extended to include finite strains by J.P. Carter [3].

5.1. Consolidation test on a bounded domain

The consolidation process is first modelled on the bounded two-dimensional saturated poroelastic
medium presented in Fig. 2, which is subjected to a vertical load f(z,t) = f - H(t), applied on the
medium surface and acting exclusively on the solid phase, with f being a constant unit pressure
and H(t) the Heaviside time distribution. Free surface drainage is allowed for the fluid phase and
the walls of the tank are considered rigid and frictionless. The material under consideration is
a water-saturated Molsand soil, with a hydraulic conductivity of k£ = 0.0001 m/s. The porosity is
assumed to be constant for the entire duration of the analysis. The total width of the loaded edge is
2L = 10.0m. Four finite elements are adopted for the spatial discretization, with a single time step
to cover the duration of the test, At = 10.0s. A hybrid-Trefftz stress model is used in the analysis,
with the domain and boundary approximation bases built on Bessel functions of the first kind and
on Tchebychev polynomials, respectively, resulting a total number of 228 static and 132 kinematic
degrees of freedom. The time basis is constructed with fourth family Daubechies scaling/wavelet
functions, with a resolution level of 5, which generates 64 problems in space.

Conversely, the parallel simulation implemented in ABAQUS™ involves the structure dis-
cretization in 100 finite elements. The finite-strain CPE4P element is used in the analysis. This
is a 4-node bilinear displacement and pore pressure element, with 3 degrees of freedom per node
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Fig. 4. Pore pressure profiles at various instants; (a) ¢t = 0.1s, (b) t = 0.5s, (c) t = 5.0s, (d) t = 10.0s

(2 displacements and the pore pressure). Thus, the total number of structural degrees of freedom
is 363. The time integration is performed applying a direct method based on the Newton’s backward
difference formula [1] on 250 time steps.

The time-history of the fluid pore pressure in point A is plotted in Fig. 3. For all results presented
here, the hybrid-Trefftz solution is plotted with dots, while the corresponding result predicted by
ABAQUSTM is represented by the solid line. As it is the usual practice in geomechanics [32], the
pore pressure is scaled to the magnitude f =1 of the applied traction, while the non-dimensional
time factor T, is defined as T, = %1}, where ¢, represents the consolidation coefficient and d is
the length of the drainage path. Thus defined, a unit time factor roughly corresponds to the total
consolidation time. It should be noted that in the initial phase of the consolidation, there exists an
increase in the excess pore pressure, before it starts to dissipate. This Mandel-Cryer effect can only
be captured in a two-dimensional analysis (classical one-dimensional Terzaghi consolidation test
does not exhibit this trait). Its magnitude is larger when the Poisson coefficient is zero and is less
important when more realistic values are adopted [32]. Subsequently, the fluid drainage predictably
diminishes the excess pore pressure, first near the free surface, than gradually at greater depths in
the reservoir. This process is captured by the pore pressure profiles (Fig. 4), consisting in plots of
the excess pore pressures as a function of depth, at various times during the analysis. The drainage
at the top surface is obvious from the initial stages of the consolidation (Fig. 4a), and a loss of pore
pressure in the top region is consequently reported. The effect propagates down the reservoir until
the entire medium is steadily loosing pore pressure throughout its length (Figs. 4c and 4d). The
steady-state solution corresponds to zero pore pressure everywhere, with the load being entirely
supported by the solid phase. In spite of the significant coarseness of the adopted temporal basis,
the predicted results are clearly in good agreement with the ABAQU STM solutions.
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5.2. Consolidation test on a semi-infinite domain

The model presented in Fig. 5a is used to simulate the consolidation phenomenon on a semi-
infinite medium. The same vertical load f(z,t) = f - H(t) as for the finite test is applied on
a 2Ly = 4.0m strip on the medium surface, acting exclusively on the solid phase and the same
material characteristics are considered. For symmetry reasons, only half of the body is considered
in the analysis. Fourteen finite and four absorbing elements, with the leading dimension L = 2.0m,
are adopted for the spatial discretization, as presented in Fig. 5b. A single time step is used to
cover the entire analysis duration, At = 1.0s. A hybrid-Trefftz displacement model is used in the
analysis, with the approximation bases built on Bessel functions of the first kind in the domain and
on Tchebychev polynomials and trigonometric functions on the Dirichlet and absorbing boundaries,
respectively, resulting a total number of 966 kinematic and 666 static degrees of freedom. The time
basis is constructed with fourth family Daubechies scaling/wavelet functions, with a resolution level
of 4, which generates 32 problems in space.

(a)

B 2N oty e

Fig. 5. Physical and finite element model for the unbounded problems; (a) Physical model, (b) Finite
element mesh

The simulation implemented in ABAQUS™™ is not actually performed on a semi-infinite body
of porous saturated soil, as, to the best of the authors’ knowledge, the infinite elements there offered
are unable to properly model biphasic media (they don’t have pore pressure degrees of freedom) [1].
A 50 x 50 m medium is, however, considered sufficiently large for the close range stress and pore
pressure fields not to be affected by the artificial boundaries and therefore adopted for the analysis.
The dimension of a finite element is 25 cm, leading to the discretization of the body into 40 000 finite
elements. The 4-node bilinear displacement/pore pressure element CPE4P element is adopted for
the analysis. Thus, the total number of structural degrees of freedom is 121 203. The time integration
is performed applying a direct method based on the Newton’s backward difference formula [1] on
128 time steps.

The time-history of the normalized fluid pore pressure at point A(1,—1), see Fig. 5b, is shown
in Fig. 6. Initially, a significant part of the applied traction is supported by the fluid, but the
subsequent fluid drainage reduces the magnitude of the pore pressure to about 10% of the applied
load at the end of the time interval. A Mandel-Cryer effect is predicted by the hybrid-Trefftz model
in the early stages of the analysis, but it is less noticeable in the ABAQUS™™ results. Except for
the initial instants, however, the two simulations generate similar results.

The normalized pore pressure variation along a vertical plane situated under the applied load
(z = 1) is presented in Fig. 7 at four selected time points. At the free surface, drainage occurs from
the initial phase of the process, causing the pore pressure to be null at all times. Immediately below,
however, the drainage is not instantaneous, and the pore pressure increases to about 50% of the
applied load (Fig. 7a). The excess pore pressure induces (and is dissipated by) the seepage motion
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of the fluid phase, occurring first in the top region, then propagating towards larger depths, where
the pore pressure remains relatively constant for a longer time.

The same conclusions can be drawn from Fig. 8 which gives a color scale representation of
the pore pressure field throughout the medium, up to a depth of 10m at the same instants. The
stress/pore pressure fields obtained with the hybrid-Trefftz model (upper plots) are in good agree-
ment with those predicted by ABAQUS™ (lower plots) at all times. They are continuous over the
inter-element boundaries and model adequately the enforced boundary conditions.

6. CONCLUSIONS

Non-periodic and transient saturated porous media problems are attended here using the displace-
ment and stress models of the hybrid-Trefftz finite element formulation. The integration of the gov-
erning equations involves the uncoupling of the temporal and spatial components of the unknown
fields, followed by a time domain semi-discretization process [8] to yield a series of elliptic differ-
ential equations in spatial variables only. Each of the resulting problems in space are subsequently
discretized using either the displacement or the stress model of the hybrid-Trefftz formulation.

Unbounded media are treated using a Robin-type localized absorbing boundary condition, which
is approximate at close-field. A bounded and a semi-infinite domain consolidation analyzes yield
predictions that are consistent with the Terzaghi consolidation theory and with the results obtained
for similar tests with ABAQUST™ | in spite of the coarseness of the adopted temporal and spatial
meshes.
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