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The paper deals with solution of 3D problems with stress concentration using the Trefftz functions. The
modelled stress concentrators are holes and cavities of spherical and ellipsoidal shapes. Moreover, the
random spherical cavity microstructure is modelled. The Method of External Finite Element Approx-
imation (MEFEA) is applied to simulate detailed stress state of mentioned stress concentrators. This
boundary-type method was developed to build special approximation functions that are associated with
surface which causes the stress concentration. The method does not need discretization by classical finite
elements, however, instead of elements the domain is divided into Trefftz type subdomains. The displace-
ment and force boundary conditions are met only approximately whereas the governing equations are
fulfilled exactly in the volume for linear elasticity, making it possible to assess accuracy in terms of error
in boundary conditions.

1. INTRODUCTION

Holes and different cavities are frequent structural concentrators. Accurate enough computation of
stress field is required in order to evaluate static and dynamic (fatigue) behaviour and bearing capac-
ity of the structure. Such computations, especially in 3D and moreover in problems containing the
interaction with other types of stress concentrators (cracks, stiff or weak inclusions, inhomogeneities,
etc.), require large computational times and are also cumbersome for preparation of models, espe-
cially if volume elements (FEM, FVM) are used for the modelling. Meshless methods working with
volume approximation are simpler, but need even more equations than FEM and FVM to achieve
similar accuracy [5].

Boundary type formulations (BEM) need to discretize only the surface of the structure, however,
the numerical algorithms are more complicated and matrices are full or denser populated than by
volume methods. Boundary meshless methods (like MFS) possess advantages of efficiency because of
simplicity of formulation and small density of resulting matrices. However, problems with numerical
stability and accuracy were discovered if the form of the structure is complicated. All boundary
methods use Trefftz functions for approximation of internal variables in their formulation [3]. An
exception is the BEM, where the fundamental solution satisfies the governing equations in all points
except the source point itself.

In this paper, a Method of External Finite Element Approximation (MEFEA) will be presented
to model stress concentration problems. MEFEA is an enhanced classic FEM with idea of external
approximations. The method does not need discretization by classical elements, however, instead
of elements the domain is divided into Trefftz type subdomains. There are shape functions in the
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discrete solution space that do not belong to the infinite dimensional solution space. The domain
is split in subdomains (cells) and the approximation is built on each of these subdomains inde-
pendently of each other. The method is similar to Hybrid Trefftz Finite Element Method, where
Trefftz functions are used inside of each element (subdomain). The displacement and force bound-
ary conditions are met only approximately whereas the governing equations are fulfilled exactly in
the volume for linear elasticity, making it possible to assess accuracy in terms of error in boundary
conditions. The main benefit is that the discretization can be done directly on a 3D CAD geometry
with all details (features) for the analysis.

2. THE METHOD OF WEIGHTED RESIDUALS (GALERKIN’S METHOD)

The base of MEFEA is the Method of Weighted Residuals (Galerkin’s method) [1]. It is one of the
mathematical approaches for obtaining approximate solutions to differential equations. Problems of
theory of elasticity, fluids mechanics and mathematical physics are formulated as boundary value
problems. The aim is to find an approximate functional representation for field variable u which
fulfils governing equation

Au=f  inside domain {2 (1)
and boundary conditions
Lu=g on the boundary I" of the domain 2 (2)

where A and L are differential operators.
We approximate field variable u with 1,

umﬁ:ZNicich, (3)

where IN; are assumed functions, c¢; are unknown coefficients and m is number of unknown coeffi-
cients.
Since u # u, then Au — f # 0. We can write

Ai—-f=R (4)

where R is the residual (or error). The method of weighted residuals seeks to find the m unknowns ¢;
so that R over all domain is “small”.
Unknown coefficients c; are calculated from the equation system

/ [Aﬁ—f]W.L-dQ:/RW,;dQ:O, s 5 bek S (5)
J N N

where m is linearly independent weighting function W, . W; are chosen to be same as the functions
used to approximate u. Thus W; = N; for ¢ = 1,2,...,m. If the boundary value problem is linear
then Eq. (5) is the system of linear algebraic equations.

The final formulation should be maximal simple using the weak formulation, Green’s theorem
and suitable weighting functions. In case of Galerkin’s method the suitable weighting functions are
the same as basis functions.

3. T-POLYNOMIALS FOR LINEAR ELASTICITY

The governing differential equilibrium equations in displacements for linear isotropic elastic solid
under static load condition (known as Lamé-Navier equations) have the form [2]

(A g g & puggs + b5 = 0 (6)
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where

E v
i d A= ——————— 7
P e A+v)l-20)’ (™)
E is modulus of elasticity and v is Poisson’s ratio of material.
The components of the displacement field are expressed as

uy P(x) 0 0 o
Gy ip = g My c® (8)
us 0 0 Px) c®

where P(x) is the full polynomial of the n-th order (the initial set of functions)

Pig) = {1, Y B2, B3, e s Bty .7;7{_11‘2, e wgmg'_l > 5T 9)
and CU) is the vector of unknown coefficients.

The equilibrium equation (6) contains the second derivatives of the displacement. Thus, the terms
of the 0-th and 1-st order satisfy this equation automatically. However, the higher order polynomials
cannot be chosen arbitrarily in order to satisfy the equilibrium equation (1).

Equation (8) is split into the form

uy A0 0 a( BL o 0 b
wp=H 0 A% 0 a® k| 0 BP 0 b(?) (10)
ug 0 0 A® a® 0 o B® b3

where the matrix B contains as many terms as many terms has the two order lower polynomial. The
terms of each order of the polynomial are computed separately and they are functions of material
properties only. As example the third order polynomial terms can be split so that the upper three
terms will be included into B() and the lower part terms into A1),

.T)%.’I)Q .TJ%LL‘?,
2 2 (11)
1T T1T2T3 xT1r3

The terms for BU) and A are obtained by changing cyclically the component indices and set into
Eq. (6). In this way we can obtain the relation

[M(a:)] {b} + [N(:)] {a} = {0} (12)

The vector b contains dependent coefficients which have to be expressed through the independent
coefficients a in order to satisfy the equilibrium equations in each point.

The solution of this problem can be done analytically or numerically. In the last case, we choose
so many or more discrete points, as many dependent terms are in the corresponding order of the
polynomial (in the given example of the third order polynomial there are at least three points).
Note that if more points are chosen than is number of the dependent terms, the system of equations
will contain more equations as the number of unknown terms, but it will be not solved in the least
square sense, as redundant equations are a combination of the others [2].

We get Eq. (12) in the form

[M(Wazy)] {b} = —[N(Dz;)] {a} (13)
from which we have

{b} = —[M '] [N]{a}. (14)
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The upper left index corresponds to the nodal point for determination of coefficients of the T-
polynomial displacement. With this, the T-polynomial displacement is

{u} = ([A(z0)] - [B(a:)] [M™'] [N]) {a} = [U(z:)] {a}. (15)

Each column of the matrix U in Eq. (15) introduces a T-displacement function for each compo-
nent defined by corresponding row. The T-polynomial contains then one independent term of the
polynomial and the dependent terms, too. Note, that in this way, the matrix U contains polynomial
terms of both matrices A and B. The number of T-polynomial functions which can be defined is
(2n + 1) for 2D and (n + 1)? for 3D problems with n being the polynomial order (containing all
orders from 0 to n).

4. DEGREES OF FREEDOM IN MEFEA

In MEFEA the degrees of freedom have no physical meaning comparing with traditional FEM where
degrees of freedom are displacement of nodes, temperature, etc. There are three types of degrees of
freedom: Boundary DOF, Internal DOF and Concentrator DOF. Concentrator DOFs are functions
associated with the surfaces which cause stress concentration. They correspond to the special basic
functions intended to accurately simulate the stress state near stress concentration regions.

1

The special basic functions are f; = -, a concentrator basis function with asymptotic behaviour

(radial functions), i = 1,2,...,n is the number of concentrator degrees of freedom,

n m
=3NSyt (16)
=1 =k

Functions IN; approximate the global behaviour of the structure. Functions f; approximate the local
behaviour around the holes, different cavities, cracks, stiff or weak inclusions, inhomogeneities and
other structural concentrators.

5. ERROR ESTIMATION

Because the basic functions which approximate the displacements of the subdomains exactly fulfill
the governing Eq. (1) in the volume, it is then possible to completely characterize the accuracy of
the solution through the error in the boundary conditions. The following parameters are controlled
during the convergence process: strain energy, error in displacement BC, error in the force BC, error
in the continuity conditions for displacement and stresses on the dividers:

e Displacement BC

U =0
vV =V (17)
W =w*

where U*, V* 'W* are defined components of the displacement on the surface.

e Force BC
i
T, = T;j (18)
¢ et [y

z

where T3, T}, T are the defined components of traction on the surface.
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On the divider surfaces of the subdomains, there are continuity conditions:

e Continuity of displacement

| 5 gl
Vv =V~ (19)
Wt =W~
e Force BC
I =1
+ o WS
iriad-dpe (20)
T =1,

where symbols “+” and “-“ identify quantities witch correspond to adjacent subdomain.
All conditions can be rewritten as follows,

U-U*"=0 on surfaces with defined displacement, (21)
IT-T=0 on surfaces with defined force, (22)
Ut-U =0 on divider surfaces, (23)
T -T =0 on divider surfaces, (24)
U Tx
where U = { v\\// } is the displacement vector and T = { ?J } is the vector of tractions.

As we have an approximate solution, i.e. there are approximate values U, and tractions 7}, on
the boundaries and divider surfaces, so

U,-U* =U.#0
Ty T =T.#0
Ui =040
T2, =T 40

(25)

where |Ug/|, |T.|, [U.|, |T%| are modules of the vectors and characterize the error in the BC and
subdomain continuity conditions.

The modules are calculated at many points on each surface of the structure. This gives the error
functions

2%
O] 100%, [T|

max displacement max stress

100%. (26)

Errors in displacement BCs decrease by the increase in boundary DOFs, errors in force BCs
decrease by the increase in internal DOFs and by addition of stress concentrator DOFs.

6. INTEGRATION OVER THE DOMAIN

To build the matrix of dependence the coefficients of initial set of functions and subdomain boundary
degrees of freedom of each subdomain, the integration is necessary to do. The Green’s theorem is
used to calculate the integrals of following type: [ rri'zy d.

MEFEA enables to make 3D subdomains of complex form. In this case the subdomains geom-
etry is possible to define through the composition of enough simple surfaces (parts of subdomains
boundary). The examples of smooth parts of either the boundary of the part or a divider surface are
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plain triangle, quadrangle, planar quadratic triangle, quadrangle and boundaries of higher orders.
The different types of smooth parts of either the boundary of the part or a divider surface are
defined using parametric equations

s= . HBar. | i=523 27)
j=1

where t = (t1,t2), f;j(t) are polynomials and a;gj )
parts of subdomains boundaries.

For example planar non-linear (quadratic) triangle n = 6, p = 2:

are coordinates of nodes situated on the smooth

fi=t(2-1);  fa=ta(2t2—1); f3=(1—t1 —t2)(1 — 2ty — 2t3); (28)

fa = dtity; fo=4t(1 -t —t2);  fo=4t1(1 —t1 —t2).

Boundary DOFs are described by the functional [1]

/ giN; dvy (29)
ar

where OI" is the subdomain boundary, g; are functions defined on the subdomain’s boundary and
N; are functions to be approximated.
In the functional (29), dv is equal to

dy=1/9f + g5 +g3dt (30)

where dt = dtdts,
Oxo Oxz  Ox3 0xo - gr3 8z Oz10x3 0x10zy Oxo 021

T i W ilas st o B B by Be srer ity cilligs: 1 0N Blg!
and z;, @ = 1,2, 3 are parametric polynomials (27).

To calculate the integrals [, 27"z% dz, the Green’s theorem is used,

Oy ou :
—+ — dm':/ uny + unsg) dv, 31
[ (o +pe) o= [ om+un)n @)
where ny , ny are cosines of normal line the outward to the subdomain boundary, respectively.
For the term 27"z}
mA+1 1
St = 1 il 1 dre (32)
122wl 0n 2(n+1) Oz
then
1 pmtln pMmpntl
MmN dp = = & 2 1572 d~.
/lerz % 2/31«(m+1 4% n+41 i f £ (33)

Building of the matrix of products between the initial set of functions (9) and boundary
DOFs (29) for each subdomain is required in order to build the final set of T-polynomials and
thereafter the stiffness matrix.

7. NUMERICAL RESULTS — 3D STRESS CONCENTRATION PROBLEMS

In the following, 3D problems with stress concentration using the Trefftz functions are presented.
The modeled stress concentrators are holes and cavities of spherical and ellipsoidal shapes. Moreover,
the random spherical cavity microstructure is modelled. The Method of External Finite Element
Approximation (MEFEA) is applied to simulate detailed stress state of mentioned stress concentra-
tors. The results are compared with both analytical solution (if it exists) and p-version of classical
FEM (pFEM). With p-version of FEM, local areas of stress concentration are simulated by elements
with high polynomial order. To refine the approximate solution, the element size is kept constant
and element p-order is increased.
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7.1. 3D Kirsch problem

The problem shown in Fig. 1 illustrates the state of stress in the vicinity of a cavity by uniaxial
stress in infinity. The problem is modelled for a = 1 mm, b = 10mm, p = 1 MPa and v = 0.27. The
analytical solution for normal stress oy, in plane y = 0 is given as [4]

4-5v ra\8 9 a\d
st (G :
s p[ Tatr—m) \r) Tam—m) \r o
where r is the radial distance from centre of the cube to the point of interest.
Figure 2 shows the comparison among the analytical solution and numerical solutions presented

by pFEM and MEFEA. The domain is meshed by 1301 p-elements (tetrahedrons) with maximum
order 4 and the domain is split by 28 subdomains (Fig. 3) with order 4.

I ]P y
4 4
s
'y y
a
s T
()
G Z
4
l .
- = -

Fig. 1. 3D Kirsch problem

Stress oyy along x-axis

Analytic. solution
-pFEM
|— - —MEREA

oyylp

1 12 14 1.6 1.8 2

x /mm/

Fig. 2. Comparison of oy, along the x-axis for Kirsch problem
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Fig. 3. Detail of splitting for Kirsch problem

Table 1. MEFEA results of two different splittings

Variant | Number of Achieved convergence criteria Polynomial | Number of | Max. |Time
subdomains | Max Displ | Total RMS Trac | Max Trac order passes | stress yy
BC Error BC Error BC Error [MPal
A 4 0.94% 1.42% 15.83% 6 and 10 8 1.74 125
B 28 0.9 % 14 % 18.62% 4 3 2.00 22s

Stress concentrators are added to the solution on the inner surface of cavity.

The MEFEA results of two different splittings are presented in Table 1. The increasing the
number of subdomains in vicinity of cavity (Fig. 3) decreases number of passes and polynomial
order. The convergence criteria are not improved and CPU time is increased. However the number
of subdomains increased, it is two orders lower number than the number of p-elements in using the
same polynomial order. The difference between the MEFEA and analytical maximum stress yy is
1.5%.

7.2. 3D Lame problem

3D Lame problem consists of a hollow sphere with inner radius a and outer radius b loaded by
internal pressure p. (Fig. 4) The analytical solution in polar coordinate system is given as [4]

3 3
pa’r b
o et e 0 G T ad g
333 3 3(p3 3
Lpaih =) « paclh 4 2r°)
TP T 33 —dd) (36)

where r is the radial distance from centre of the sphere to the point of interest.

The problem is modelled for a = 1mm, b = 2mm, p = 1 MPa and £ = 1 MPa, v = 0.3.

Figures 5-7 show the comparison of the analytical solution and numerical solutions presented
by pFEM and MEFEA. The domain is meshed by 123 p-elements (tetrahedrons) with maximum
order 4 and the domain is split by 26 subdomains (Fig. 8) of order 4.

The MEFEA results of two different splittings are presented in Table 2. We can make the similar
observation as in the previous case. The increasing the number of subdomains in the vicinity of
the cavity (Fig. 8) decreases number of passes and polynomial order. CPU time is increased, but
the convergence criteria are improved. However the number of subdomains increased, it is one order
lower number than the number of p-elements in using the same polynomial order. The is no difference
among MEFEA, pFEM and analytical radial stress results.
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Fig. 4. 3D Lame problem

Radial displacement
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E
2 Analytic. solution
§ — _pFEM
oy _ . _MEFEA
2
8
©
8 0.2 ; :
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r /mm/
Fig. 5. Comparison of u, along the z-axis for Lame problem
Radial stress
1 1.2 1.4 1.6 1.8 2
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3 ;
s Analytic. solution
§ 06 | ___ _pFEM
£ a8 MEFEA
»
-1
1.2
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Fig. 6. Comparison of o, along the z-axis for Lame problem
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Stress /MPa/

0.8

Tangential stress

Analytic. solution
— . _pFEM
- MEFEA

12

Fig. 7. Comparison of oy along the z-axis for Lame problem

Fig. 8. Detail of splitting for Lame problem and distribution of tangential stress

‘Table 2. MEFEA results of two different splittings

‘Variant | Number of Achieved convergence criteria Polynomial | Number of Max. Time
subdomains | Max Displ | Total RMS Trac | Max Trac order passes |radial stress
BC Error BC Error BC Error [MPa]
A 4 6.06% 2.87% 17.12% 6 and 7 9 —0.87 16s
B 26 3.0 % 2.55% 13.81% 4 8 —1.00 58s
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7.3. Modified 3D Lame problem with ellipsoidal cavity

The problem is modelled for sphere of radius r = 1 mm with central ellipsoidal cavity. The cavity
is represented as an ellipsoid with the long (semi-major) axis ¢ = 1 mm and semi-minor axis b =
0.2mm (E = 1 MPa, v = 0.3) and internal pressure p = 1 MPa. The length of the ellipse is 2a and
its width is 2b (Fig. 9).

Figures 10-12 show the comparison between numerical solutions presented by MEFEA and
pFEM. The very fine agreement is achieved between MEFEA and pFEM results. The domain
is meshed by 267 p-elements (tetrahedrons) with maximum order 5. The MEFEA model consists
of 79 subdomains (Fig. 13) with orders 4, 5 and 6. Stress concentrators are added to the solution.
The MEFEA results are shown in Table 3.

Fig. 9. Modified 3D Lame problem with ellipsoidal cavity and quarter of model

Table 3. MEFEA results

Fig. 10. Comparison of oy, along the z-axis for Lame problem

Number of Achieved convergence criteria Polynomial | Number of Max. Time
subdomains | Max Displ | Total RMS Trac | Max Trac order passes stress yy
BC Error BC Error BC Error [MPa]
79 2.63% 0.63% 30.00% 4,5, 6 6 1.32 159s
Stress yy along x-axis
1.4
4
-] 12
E 1
g % + MEFEA
g 0.4 |
N g2 ]
0 . e e e et
0 0.1 0.2 0.3 04 0.5 0.6
X /mm/
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Stress yy along y-axis
0 0.1 0.2 0.3 0.4 0.5 0.6
0
S 02
s =
-0.4 | .
> [—— pFEM
> -06 }
@ '« MEFEA
& -08 A
5
D -1
-1.2
y /mm/
Fig. 11. Comparison of oy, along the y-axis for Lame problem
Stress yy along z-axis
1
-~ ®
é 0.8 |
el —pFEM |
@ 04 + MEFEA
(]
=
& 02
0 : : ; ;
0 0.1 0.2 0.3 0.4 0.5 0.6
z /mm/

Fig. 12. Comparison of o, along the z-axis for Lame problem

Fig. 13. Splitting and its detail
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7.4. 3D random spherical cavity microstructure

3D random spherical cavity micro-structure is representative of more complex structure (Fig. 14).
The discontinuities are spherical cavities with diameter d = 0.4 mm. The control volume of mi-
crostructure consists of 16 randomly situated cavities of the same size. The size of control volume is
b = 2mm. The upper surface has prescribed displacement u, = 5 x 10° mm. The symmetry condi-
tions are applied for all other surfaces of control volume. Modulus of elasticity £ = 2 x 10° MPa and
v = 0.27. Whereas the analytical solution does not exist for such problem, the comparison results
are results computed by pFEM.

Figure 15 shows the comparison between numerical solutions presented by MEFEA and pFEM.
The domain is meshed by 1963 p-elements (tetrahedrons) with maximum order 7. The MEFEA
model consists of only 1 subpart with order 4. Stress concentrators are added to the solution. The
results are compared along curve depicted in Fig. 14.

Table 4 shows that the increasing the number of subdomains does not improve neither the
convergence criteria, nor number of passes. The splitting B is not suitable. The results for comparison
are achieved by use of 1 subdomain even if it has very complex shape.

The cavity marked by ® (Fig. 14) is the cavity of the maximum stress o, detected by both
MEFEA (12.0 MPa — variant A, 12.5 MPa — variant B) and pFEM (12.8 MPa).

prescribed displacement

e

Fig. 14. 3D random spherical cavity microstructure

Stress yy

— pFEM |
|
— _MEFEA

stress yy /MPa,

90 120 150 180

angle /7

Fig. 15. Comparison of stress oy,
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Table 4. MEFEA results of two different splittings

Variant | Number of Achieved convergence criteria Polynomial | Number of | Max. |Time
subdomains | Max Displ | Total RMS Trac | Max Trac order passes | stress yy
BC Error BC Error BC Error [MPa]
A 1 2.13% 1.27% 3.84% 4 3 12.0 38s
B 17 1.06% 3.39% 20.43% 4 10 12.5 501s

8. CONCLUSIONS

In this paper, the computational simulation of holes and different cavities of spherical and ellip-
soidal shapes as frequent structural concentrators was performed using classical displacement FEM
formulation using p-refinement and a Trefftz-type FEM formulation called the Method of External
Finite Element Approximation (MEFEA). The use of large T-elements makes possibility to reduce
the problem and also reduce the number of subdomains. However, the special stress concentration
functions and mentioned large T-elements are used; the higher density of subdomains is needed to
appropriately simulate stress state.

We will continue in this research and the present results will be used for further development of
simulation materials with microstructure.
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