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A contact algorithm, based on the hybrid-Trefftz (HT) finite element method (FEM), is developed for the
solution of contact problems with Coulomb friction. Contact conditions are directly imposed with the aid
of a direct constraint approach. On the other hand, static condensation technique is used to reduce the
contact system to a smaller one which involves nodes within the potential contact surfaces only so that it
may save computing time significantly. The final contact interface equation is constructed by considering
contact conditions as additional equations. An incremental-iterative algorithm is introduced to determine
proper load increments and find correct contact conditions. The applicability and accuracy of the proposed
approach are demonstrated through three numerical problems.

1. INTRODUCTION

As an efficient and well-established numerical tool in computational mechanics, the HT finite element
(FE) model has gained considerable attractions since its nascence [4] 30 years ago. This model, which
is based on the idea of Trefftz method [25], assumes two groups of displacement fields independently.
One, defined in the domain of the element, is often known as the intra-element field (or internal
field, Trefftz field); the other, defined on the element boundary, is called the inter-element field
(or frame field). In contrast to conventional FE or boundary element (BE) models, as highlighted
in several reports [8, 18, 21], the HT FE model preserves the advantages of conventional FE and
BE counterparts and discards some of their drawbacks. For example, in absence of body forces
the HT FE formulation calls for integration along the element boundary only, as a consequence, it
may be viewed as a special, symmetric, substructure-oriented boundary solution approach and thus
possesses the advantages of conventional boundary element method (BEM); on the other hand, it
also avoids the introduction of singular integral equations, appearing in BEM, which may be very
laborious to build. So far the HT FE model has been successfully applied to plates |3, 13|, Poisson’s
equation [7, 31], plane elasticity [6, 12], elastodynamic problems [2, 16], transient heat conduction [5],
geometrically nonlinear plates [14, 15, 17, 23], materially nonlinear elasticity [22, 30], etc. Recently,
Wang et al. [26] developed an algorithm for analyzing elastic contact problems without friction.
This paper is an extension of our previous work [26] to include friction effect. The structure of
this paper is arranged as follows. The HT FE theory is concisely reviewed for the completeness.
Subsequently, the corresponding numerical implementation for the HT FE formulations is derived.
In the contact analysis static condensation technique [27] is used to reduce the considered system
down to a smaller one so that much more computational efforts may be remarkably saved. In
addition, contact conditions, namely compatibility of displacements and equilibrium of tractions on
the interface are directly imposed with the aid of a direct constraint approach [11]. An automatic
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incremental-iterative algorithm has been employed to determine the load increments and find the
correct contact conditions. The performance of the proposed procedure is assessed though three
classical examples. The obtained results show a good agreement with those from commercial FE

software ABAQUS.
2. THEORY
2.1. Assumed fields

The governing differential equations for the linear response of an elastic body with domain {2 and
boundary I', may be summarized as follows,

Lo +b=0, o = De, e=L"Tuy, in 2 (la—c)

together with

=1 en.L,... 2 (1d)
t=Aoc=t on-I;. (le)

In the HT FE form, Eqgs. (1a—e) should be completed by the following inter-element continuity
requirements,

U, =up on I'; N I}, (conformity), (1f)
t, =t on I'y N I}, (traction reciprocity), (1g)

where u, €, o, t and b are displacements, strains, stresses, boundary tractions and body forces,
respectively, i and t designate prescribed values, and D, L, A are given as
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where E* = E, v* = v for plane stress analysis and E* = E/(1 — v?), v* = v/(1 — v) for plane
strain analysis. Here, F' and v are Young’s modulus and Poisson’s ratio, respectively, n, = cosa,
ny = sina, and « is direction angle of the outward normal at a given point on the element boundary
as shown in Fig. 1, I, and I’ are the boundaries on which prescribed displacements and surface
tractions are imposed.

To perform the HT FE analysis, the whole domain {2 is divided into a number of subdomains 2,
(see Fig. 1). For each {2, two groups of independent fields are assumed in the following way [6]:
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Fig. 1. Typical four-node HT element together with its frame functions
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1. The non-conforming Trefftz field is expressed by

m
U, = il + % Nejbej = e+ Nac: < in 02 (3)
j=1

where 1, and N, are, respectively, the particular and homogeneous solutions (Trefftz functions)
to Eq. (1a), c. stands for unknown parameters, and m represents the number of homogeneous
solutions (Trefftz terms). In plane elasticity, a complete set of homogeneous solutions N, can
be generated in a systematic way from Muskhelishvili’s complex variable formulation [6] and is
presented in Appendix A for reference.

2. An auxiliary conforming frame field
i, = Ned, on I}, (4)

is independently assumed along the element boundary in terms of nodal DOF d., where N,
designates the frame functions, namely the conventional FE interpolating functions. Such field
is required to conform across the inter-element boundary.

2.2. Element analysis and numerical implementation

Based on the modified principle given in [19, 20] one can derive the HT FE formulation for plane
elastic problems. The correlative functional is given as

1 AR o) o b
A e B //Q EUZCaedQ—/teuedf—/(te—te)uedf—/teuedF (5)
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where! C. = D}, Lo = Ty U T Uler y Len: = Ly QL Lot = 4y il ey Lot is. the inter-element
boundary, o, t. stand for the element stress and boundary traction fields respectively such that

m

Oe =+ Y Tejci = &e + TeCe, (6)
j=1
m

te = te + Z ercj = te + QeCe, (7)
j=1

where &., t. and T., Q. are, respectively, the resulting stress and boundary traction partlcular
and homogeneous solutions pertinent to i, and N.. The detailed expressions of 0., ¢, % 0L,
T., Q. are listed in Appendix A.

Substituting Egs. (4), (6) and (7) into the functional (5) and applying stationary condition with
respect to ¢, and d., one may obtain the customary force-displacement relationship, namely the
HT element stiffness matrix

K.d =P (8)
where

= GTHF Gy Po=Clllge il (9a,b)
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are, respectively, the HT element stiffness matrix and equivalent nodal force vector. And the involved
matrices He (the so-called element flexibility matrix), G., h, and g, are explicitly expressed as

= / QIN.drI = / NTQ.dr, (10a)

Fe Fe

G, = / QIN. 47, (10b)
Pet+[‘e1
¥ P e 1 oyt

h, =~ /Q NeTbedQ——é/ (QXu, + NTE,) dr + / e u.dl (10c)

ge = / N7 (t.—t.)dr - / NIt 4r: (10d)
Ley Ier

In numerical implementation of the HT FE model, a dimensionless coordinate system

£=ala
{ n=y/a (D)

has to be used to ensure a good numerical conditioning of the element flexibility matrix H, and
prevent overflow, where z,y are local Cartesian coordinates, a stands for the average distance
between the element nodes and its centroid (the element characteristic length), their expressions
read

1 n
;L':X—XO:X—ﬁZX,,;, ; (12a)
f=1
y=Y- YO—Y——ZK, (12b)

(LZEZ\/L + 2, (12¢)

and in which XY are the global Cartesian coordinates, n stands for the number of nodes on an
element.

It should be noted that the previously defined matrices and vectors associated with the element
are constructed in the local Cartesian coordinate system (z,y). Now, let us transform them into the
dimensionless coordinate system (¢,7), the matrices involved in K, may be rewritten as

N, = Ne(m,y) 5T Ne(fﬂ?)‘l’

(
Qe = Qulw1) = -QulEn) &, (13b)
Ne e Ne(l‘?y) = Ne(f?ﬁ)a (13C)
Be = (7 ) U) = 56(577])7 (13d)
. = 1_18(.71, ,U) T ﬁ(.’(fv 77)3 (136)
be = Ee(:‘L', y) = fe(ﬁ,U% (13f)
Ue = ﬁEi(:];) l/) e (12 ﬁe (57 77)7 (13g)
te = te(z,y) = ate(&,n), (13h)
¢ =2 .97 .23 . 3

where ® = diag(a a a a® a* a® a* @®> a® ---) may be called the element characteristic diagonal
matrix. Substituting relations (13a,b) and dI" = a ds into Eq. (10a), one can obtain

H, = H,(z,y) = /F QY (z,y) Ne(z,y) dI' = / ®TQL(¢,n) Ne(€,m) ds

Ie

= ®TH,((,n) ® = PH,(£,n) D. (14a)
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Analogously,
H'=H'(cy=0"H ()% =8TH ({8 (14b)
Ge = Ge(z,y) = BT Ge(£,m) = ® Ge(&, 1) (14c)
h; = he(z,y) = ®The(£,n) = B he(¢,7) (14d)
ge = 8e(z,y) =8e(£,n) (14e)

Then, Egs. (9a,b) can be rewritten as
K. = Ke(, y) = Ke(&,m), P, = P¢(z, y) =P.(&n), (15a,b)

by substitution of Egs. (14a—e). It is obvious that K. and P, remain unchanged not only in form and
but also in magnitude from the local Cartesian coordinate system to the dimensionless coordinate
system. In practice one can, therefore, replace z and y by ¢ and 7 directly to evaluate the HT
element stiffness equation.

3. APPLICATION TO CONTACT PROBLEMS
3.1. Contact conditions

Consider a two-body contact system which occupies domains 2! and £2? (Fig. 2). The parts I'}
and I'? of their respective boundaries I" Land I'? qualify as potential contact surfaces which should

be chosen to be sufficiently large to contain actual contact interface I'. (I} N I'?). It is observed
that the boundaries I'? of individual body consist of three disjoint parts Ff : Ftﬁ and I, cﬂ , where
=19 and T, /o 2 tﬂ are the parts where displacements and tractions are prescribed.

The discrete points on both potential contact surfaces should match so that the contact behavior
occurs just between each pair of opposite nodes (i' — %) as shown in Fig. 3. A contact coordinate
system as shown in Fig. 3 is defined in the undeformed configuration. Obviously, the approximate
common unit normal at node-pair (i! — %) may be taken as [10, 28]

2 )
i ()

n;

Rotating n; anticlockwise by 90° | one can obtain the corresponding tangential direction T; as
shown in Fig. 3, in which ¢; designates the angle between 7; and X axis.

The contact conditions can be determined by considering compatibility of displacements and
equilibrium of tractions on the contact surfaces consist of four statuses (open, stick, forward sliding
and backward sliding). Coulomb frictional law, represented in Fig. 4, was used in this work. With

! L

u

Fig. 2. Schematic representation of contact problem Fig. 3. Contact coordinate system



324 Q.-H. Qin, K.-Y. Wang

Stick zone
kot e <O

r+ur, =0

Fig. 4. Coulomb friction law and sub-zone of contact

Table 1. Incremental solution conditions for various statuses

Contact statuses

Incremental solution conditions

Ar}n + Arfn =0

Arl + Ar2 =0

Open Ar}n = Ar}T =10
: Arl FArED ArliyrArd =0
T Aub, — Aud, = gi,  Aul - Add, =0

Forward sliding

Arl +Ar2 =0
Au%n oy Au;zn = gfn

Arl + A EY
Arl +uArl =0

Inverse sliding

Arlo+ Ard =0
Aul — Ay?

HE Y
in in = Jin

Ak b Are =0
Arl — uAri =0

n

the Coulomb frictional law the tangential component of the contact forces, or frictional force, can
be exerted without slip (under stick status) until a certain threshold is overcome to allow sliding.
The threshold is proportional to the magnitude of the normal contact forces as well as friction coef-
ficient . In Fig. 4, stick zone, forward and backward sliding zones are, more especially, subdivided
graphically. Table 1 demonstrates all the incremental contact conditions for each status of the node-
pair (i' —i?). In which Aufn and AuiﬂT designate the normal and tangential displacement increments
on the potential contact surfaces whereas Argl and Arfi denote the normal and tangential force
increments, g7 is the normal gap at beginning of the sth load step.

3.2. Incremental contact interface equation

A set of equations can be established by assembling Eq. (8) over all the elements according to the
standard assembly procedure. Doing so separately for each of the contacting bodies the resulting
sets of equations may be formulated respectively as

K’d? = P? + R? (17a)

or in a submatrix form

Ry /x5 L4 & P/ 0
{K[ K@szf}*{Pf L S

where K and P are the global stiffness matrix and equivalent nodal force vector, R stands for the
contact force vector and the subscripts ¢ and r designate, respectively, the parts associated with
the contact region and with the remaining region.

Generally, the contact region is small compared to the domain of the whole structure [24]. There-
fore, one can use static condensation [27] to reduce each of the bodies to including the individual
potential contact surface of each contact body. This may save computing time significantly. Then
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introducing the prescribed displacement condition (1d) into (17a,b) and performing the Gaussian
elimination process yields a reduced system of equations

*KPd? — R =*PF (18)
where
* -1 i
Kﬁ T K?c = Knggr K?r ) (193‘)
*pf — PP _KAKPA P8, (19b)

Here *K?7 is a 2n. x 2n. matrix and *P? is a 2n,. vector and both of them are obtained simultaneously
at an intermediate step of the Gaussian elimination process, and in which n. is the number of
candidate node-pairs.

To solve Eq. (18) for d? , it is necessary to use contact conditions defined on the interface. For
convenience, the contact conditions for each node-pair as shown in Table 1 are transformed into the
global Cartesian coordinate system using the following transformation matrix,

cos ¢; sin ¢y

v, = : ;
i —sin¢; cos@;

(20)

The final system, namely the contact interface equation, may be synthesized in the incremental
form

ZAX = AO (21)
where
2i—1 2n.+2i—1 dn.+2i—1 6nc+2i—1
l 2i L on42i L ang42i L6not2i
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AX = { AU}X Auiy .- AT%X A'r‘%y ‘e AU%X Aufy ‘e AT%X A'r'%y c o }T (23)
* * 1
A = { AP%nc ’ SR Ll D R ol o | Apgnc } (24)

Here i represents the node-pair (i' — i?); Auf ¥ Aufy, Ariﬂ y and Ariﬁy are, respectively, contact
displacement and force increments in the global Cartesian coordinate system; ¢ = cos ¢;, s = sin Oi,
St = ¢ F hus, o = s+ huc; P = 0, 1 = 1 for stick status whereas ¢; = 1, ¥y = 0 for sliding
statuses; and p = 1, h = 0 for open status whereas p = 0, h = 1 for contact.

Using the contact interface formulation presented previously, a HT FE program has been written
in FORTRAN. The corresponding flow chart is shown in Fig. 5. In this figure there exist two loops
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Input data defining the HT FE
model, initialize contact status to
stick, etc.

!

Calculate the element stiffness
matrices and equivalent nodal force
vectors

[
Y

Increment  the applied loads|
according to current load factor

!

ICondense HT FE model to potential
contact surfaces

5
: 4

Synthesize incremental contact
equation and solve it by GEPP Modify

to obtain force and displacement
increments on potential contact
surfaces

Contact status changed ?

Yes

Accumulate the forces and
displacements on potential contact
surfaces

Total load reached ?

Yes

contact status

Determine next
load factor

Output results

Fig. 5. Flow chart of incremental HT FE procedure for contact analysis

Table 2. Iterative criterion for contact conditions

Previous Future iteration
iteration Open Stick Forward sliding Inverse sliding
Al <0 Al <0 Al €0
O en Alln > O ()4 T = W
. (AL € —plhky Alyr > —plAly, Alir < plli,
Stick v 2B Tin> 0 Tan > D rigi=0
'7'2'7‘, < UTin Tir S —UTip Tir 2% fl%n
Forward sliding | r;, <0 Fon 20 g =0 Foy > 0
~2urin S Al”- <0 AliT >0 Al” < —2[1,1”1‘»,1
7 g >0 Tir >0 [ Ll
Inver lid b 0 i mn in
s b, 5 = 2/147'1'77, 2 Alrr 2 0 Alz-r > zﬂTin Alz-r = 0

where Al = Aul, — Au? 2

R e 2 - s 7 R
in ) Ali; = Auir o AuiT’ Tin = Tin,y Tir =T,
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where the outer loop is used to determine the load increment while the inner loop to trigger iteration
according to the criterion [1] given in Table 2. Due to the fact that zero appears on the diagonal of =
in Eq. (21), the solution process was carried on using Gaussian elimination with partial pivoting
(GEPP) [29].

The procedure in determining load increment follows that of [28] and we will omit it here. The
basic idea is that within each increment just one node-pair comes into contact and iterations are
performed over all the current contacting node-pairs until convergence is achieved. Therefore, the
vector X containing accumulated contact forces and associated displacements after s increments is
updated as

X=X AN (25)

After the total load is applied, the final contact forces and associated displacements are achieved.
Then the normal and tangential contact stresses o, , 0;; of the node-pair 7 may be written as

Uzn 23 T'1:111/Si ) UiT < T}T/SI ’ (26)
and the tangential relative slip s;are given by

S; = U%T = u2 . (27)

1T )

where S; stands for the sub-area controlled by node-pair 3.

4. NUMERICAL ASSESSMENTS

To illustrate the performance of the procedure developed in this paper, there examples of a punch
indented on a foundation, a cylinder on a rigid half-space, and a layer pressed on a substrate are
considered. In all the three examples, only the right half of the solution domain is modeled using
four-node HT elements due to the symmetry of the problems. The plane strain condition is assumed
in the analysis. Results obtained from HT FEM are compared with ABAQUS 6.2 whose normal
and tangential contact behaviors are respectively selected to “hard” contact and Lagrange multiplier
and element type is set to 4-node bilinear plane strain quadrilateral, hybrid, constant (CPE4H).

4.1. A punch indented on a foundation

The geometry, properties, loads and boundary conditions shown in Fig. 6a are considered in this
example [26]. Because of the symmetry of the problem, only the right half of the system is modeled
by an element mesh, as illustrated in Fig. 6b. It should be mentioned that the proper choice of the
number m of Trefftz terms is of great significance to the element performance and to the stability
of the solution [9]. In order to find the optimal number of Trefftz terms, a range of m as shown in
Table 3 according to the limited conditions (A7) and (A8) of Appendix A are chosen. Then, a test is
carried out on a punch indented on a foundation depicted in Fig. 6a. The identical elastic properties
for the two bodies are selected such that E' = E? = 4000 MPa and v! = v2 = 0.35. The uniform
pressure of ¢ = 1.2 MPa is loaded along the upper face of the punch and a frictional constitution
with a Coulomb frictional coefficient of 1 = 0.2 is used in the HT FE approximation.

Table 3. A range of the number of Trefftz terms

k 1 2 3 .
b 1 o2 45 S e D 1 2
mi b T D b id 15
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Fig. 6. A punch indented on a foundation
Table 4. Results with various number m of Trefftz terms
Node-pair 1 5 9 13 17 21
X coordinate 0.0 10.0 20.0 30.0 40.0 50.0
on | 1.054976 1.044437 1.044623 1.077558 1.239684 4.355683
m=7 o- | 0.000000 0.037462 0.081258 0.152383 0.247937 0.871137
s+ | 0.000000 0.000000 0.000000 0.000000 0.000438 0.002864
on | 1.068314 1.047577 1.045805 1.074607 1.215687 4.552451
m=9,11,13,15 | o~ | 0.000000 0.036973 0.077333 0.1297468 0.243124 0.910490
s, | 0.000000 0.000000 0.000000 0.000000 0.000593 0.003211
= e T ! !
15 it 2 g :
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w 55
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Distance X (mm)

Fig. 7. Relative errors at 5 node-pairs
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Mesh A (a coarse mesh) consisting of 250 HT elements and Mesh B (a fine mesh) of 1190
HT elements are used in our analysis. The example is, in fact, a simple contact because its actual
length ¢ of contact is known to be 50 mm. The results show that the case of m = 5 can give
convergent results for Mesh A, but not for Mesh B. This indicates that the minimal number of
Trefftz terms may not provide stable results. Table 4 shows the results for a range of m from 7
to 15. It is observed that m = 9, 11, 13 and 15 can provide robust and stable results. For clarity,
the curve of relative error

e, = 100 x Jm=1 = fm=9 (28)

fm:Q

is plotted in Fig. 7. It is observed that m = 9 is the optimal number from the point view of either
computational time or convergent performance and used in the calculation. As a result, the explicit
expression of the 2 x 9 matrix N, in Eq. (3) involving the 9 homogeneous solutions (truncated
T-complete functions) and the resultant 3 x 9 matrix T, , 2 X 9 matrix Q. are obtained and listed
in Appendix B.

Figures 8 and 9 demonstrate the contact stresses and corresponding relative slips on the contact
interface with m = 9 and a stick zone of a slightly larger that 30 mm is obtained. The results of the
HT FEM analysis are compared with those of ABAQUS analysis. It is evident that the results of
the HT FEM agree well with those of ABAQUS 6.2.

45 T  ; T T T T T T T 00035 - | o T T T r T T T
- Bn & —— ABAQUS 6.2 RN ¢
g T SRR T e HT FEM (m-=9) : —— ABAQUS 6.2
s | T 0.0025 |
t{ 3.01— E
o 25t " 0.0020 |
@ L 2
» % L
P 2 0.0015
25 1.5 o, s !
5 7 ¥ € 0.0010 |
c 1.0p= L
o
i 0.0005 |-

0.0 IR SPESIERE o i vASeA i B S S 0.0000 1 Y 1 1 L el e

0 8 10 15 20 25 30 3B 4 45 50 0 5 1015 20 i125--30.; 36,40 45 50
Distance X (mm) Distance X (mm)
Fig. 8. Contact stresses on the contact interface Fig. 9. Relative slips on the contact interface

4.2. An infinite cylinder rest on a rigid semi-infinite medium

The classical Hertz contact of an infinite elastic cylinder on a rigid semi-infinite medium (Fig. 10a),
together with geometry and prescribed boundary conditions, is treated here. The same material
property as in previous example is used for the sphere and the concentrated force P is 2000 MPa.
Coulomb frictional coefficient p is 0.5. The sphere is discretized in 726 HT elements and the cor-
responding mesh is shown by Fig. 10b. A potential contact arc of £ = 17.189° is chosen on each of
the surfaces where is distributed with 31 nodes of interval size 0.573°.

Figures 11 and 12 illustrate the distribution of the stresses and relative slips on the contact

interface. The hollow square points are ABAQUS 6.2 solutions while the black square points indicate
HT FEM results. Again, agreement between ABAQUS 6.2 and HT FEM results is satisfactory.



330 Q.-H. Qin, K.-Y. Wang

Axis of |
symmetry |

200 (e e
180 E
—0— ABAQUS 6.2 ] —0— ABAQUS 6.2
160 —=— HT FEM (m=9) 20.01 k —m— HT FEM (m=9) 4
B
E
o
a 0021 -
]
(]
= Ll
© 0
& -0.03} : 4
=
-0.04 1 1 1 1 I 1 1 !
9 0 1 2 3 4 B 6 7 8 9
Distance X (mm) Distance X (mm)
Fig. 11. Contact stresses on the contact interface Fig. 12. Relative slips on the contact interface

4.3. A layer pressed on a substrate

Figure 13a shows a classical receding contact problem: a layer pressed on a substrate. The geomet-
rical and prescribed conditions are given in the figure. The problem is discretized with 1040 HT ele-
ments (see Fig. 13b). A potential contact length of ¢ = 30 mm is chosen on both bodies, and contact
surfaces on both bodies are defined by 30 equidistant nodes. The concentrated force P is 5 MPa,
elastic properties are assumed to be E' = E? = 4000 MPa, v' = v? = 0.35 and Coulomb frictional
coefficient y is 0.8. The results of stress and relative slip distributions are plotted in Figs. 14 and 15.
It is observed from Fig. 14 that the ABAQUS 6.2 results are in oscillation at the first 3 node-
pairs, and more seriously, the 2nd node-pair has an unacceptable negative tangential stress value
of —0.02916 MPa. In contrast to ABAQUS 6.2 results, the HT FEM ones appear to be stable and
reliable. The relative slips predicted by both approaches are close to each other as shown in Fig. 15.

The effect of Young’s modulus, Poisson’s ratio, Coulomb frictional coefficient and external load
on contact behavior can be found from Figs. 16-21. Figure 16 shows the stress distribution on the
contact interface for a range of Young’s moduli £? = E' = 10, 500, 2000, 4000 and 8000 MPa.
The results indicated that the stress distribution does not change with the variation of Young’s
modulus. This applies both to the frictionless case and the frictional case. However, when the
Young’s modules of two contact bodies are different, i.e., (E?/E' # 1), the contact behavior was
significantly affected by the value of Young’s modules (Fig. 17). As the substrate becomes more
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Fig. 13. A layer pressed on a substrate
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rigid than the layer (E?/E' > 1), the normal contact stress at the axis of symmetry increases
remarkably, whereas the length of contact decreases. Furthermore, the stick zone reduces slightly in
the frictional case.

The contact stresses o, and o, versus distance X (from the contact centre), with £? = E! =
4000 MPa, P = 5MPa, is shown in Figs. 18 and 19 for a number of values of Poisson’s ratio.
Figure 18 shows also that the contact stresses is not sensitive the variation of Poisson’s ratio when
v? /vt = 1, except that the two contact bodies approach incompressible (12 = vl =045, 0.47). It
is, however, when the Poisson’s ratio of two contact bodies are different, i.e., (1?/v! # 1), shown
in Fig. 19 that the variation of Poisson’s ratio do affect the stick zone appreciably. The stick zone
slightly grows along with an increase in the value of v?/v!.

Investigation on effect of Coulomb frictional coefficient on the contact behavior is also important
because the frictional forces can cause irreversible non-linearity and affect stress distribution. Fig-
ure 20 shows the results of contact stresses versus distance X for several values of y. It can be seen
from Fig. 20 that the length of contact increases distinctly along with increasing ju, which leads to
a decrease in the normal contact stress.

Finally, the effect of external load on the contact behavior is shown in Fig. 21. It is evident
that the normal and tangential stresses on the contact interface increase remarkably along with
increasing P. it is also observed, interestingly, that the length of contact and the stick zone remain
unchanged.
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5. CONCLUSIONS

The HT FE approach is successfully applied to the elastic contact problems with friction. It is found
that the optimal number m of Trefftz terms equals to 9 in plane four-node elements. The results
computed by HT FEM with m = 9 show a good performance of the element model and agree well
with those from ABAQUS 6.2.

The proposed approach is proved to be a promising tool for analyzing contact nonlinear problems.
Further extension to the elastoplastic case is possible. On the other hand, mathematical program-
ming technique [24] coupled with HT FEM for the solution of contact problems is underway.

APPENDIX A

In the presence of constant body forces b, = [Em by ]T, the particular solutions are given by

g (" 53 L Ba:yz
1 Skeity 4 voslrn it

- 0
Fom=okicy sspumen it o (A1)
Ozy by + byz

¢ t S i
e nhi

while the displacement homogeneous solutions appearing in Eq. (3) can be generated by the following
set,

Ni. = Ei { ﬁl‘j 22 } v Ze= (3= v)iz" F L E) Rzt (A2a)
Njp1 = Ei { f;s 2’; } y oo Zok = (3—v*) 2" — (1 + 1 )kzz"1, (A2b)
Njys = % { Eﬁ 2’; } ; Zag, = (1 +v*)izk, (A2¢)
Njis = —;— { ﬁi?j: } o Bl (A2d)

where 1 = /-1, z =2 +1y, Z =z — iy, kK = 1,2,---; Re(e) and Im(e) stand for the real and
imaginary parts of a complex variable, respectively.
For each Nj,the corresponding homogeneous stresses T; are

Re le — Re Slk

ey i = ik(zk_l — Z_,k‘])
TJ = Re R;:;l-‘;Re S1k ; { S i(k) = 1)kz""_25 (A3a)
1k
Re Rzk —Re SQk = k—1 |
Tjr1 = ReRgy, +ReSy o, { Ba=be s & 7»’—2—) (A3b)
Tty 22 Sor = (k — 1)kz¥"°z
—Re Sgk
Bipg = ReSs; p,  Sap=kiz"? A3c
J

Im S3y,
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—Re S4k .
Tis=1{ ReSw o, Sy=4h"". (A3d)
Im Sy,
Once T, have been evaluated, eaéh Q; can be given as follows,
. A nfl?(R(’ le ~Re Slk) +Tby IIllSlk
Metq 1 { ny(Re Ry + Re Sij) + ng Im Sy, (Ada)
| na(Re Rg, — ReSay) + ny Im Sy,
el { ny(Re Ra, + Re Sai) + ng Im Sy, (A4b)
~_ J —ngReS3 +nyIm Sy,
Sy { ny Re Sz + ng Im S, (Adc)
—ng Re Sy + n, Im Sk
Qj+3 { ny Re Sy + ng Im Syp, (A4d)

In order to make the resulting stiffness matrix have full rank, the choice of the number m of

Trefftz terms has to obey a stability condition

m > NDOF — 3 (A5)
as well as a simple ‘truncation rule’
m=4k+2t—1 (A6)
where
ol 1 truncated after (A2b), (A3b) and (A4b), A7
"7 12 truncated after (A2d), (A3d) and (A4d). ok
APPENDIX B
The homogeneous solutions of N, T, and Q. for m = 9 are explicitly expressed by
T 1 | (k-Dz y —=x —2KxY (k—2)2% — (k+2)y?
*T 2G| (k-l)y Ty (k+2)2? - (k—2)y? 2Ky
2zy  y? -2 (3-3k)z’y + (k+3)y® (k—3)z3 — (3K+3)zy? (B1)
22 —y?2 2y  (k+3)z® — (35—3)zy® (3k+3)x?y — (k—3)y°
[2 0 -1 -6y 2z 2y -2z —12zy —12y2
W= 250 T 2o B2 v D —12zy L s (B2)
|9 1o 0 B By 2 Oy 6P gt) D
e [ 2n, Ny —Ng 2NyT — 6ngy 2n,x — 2nyy  2nyx + 20y 2nyy — 2N,
: | 2ny Ny Ny 20,7 —2nyy 6nyxT — 2ngy 2n.T — 2nyy  2nyx + 2nzy
6ny (22 + %) — 12n,2y  —12n,y>
2 2 2 ) (B3)
e 9 V- 120,32y - 1on,28
where
E*
G=——— =3 = 4p*.
e "% (B4)
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