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This paper reports on the development of a novel wave based prediction technique for the steady-state
sound radiation analysis of three-dimensional semi-infinite problems. Instead of simple polynomial shape
functions, this method adopts an indirect Trefftz approach, in which it uses the exact solutions of the
governing differential equation for the field variables approximation. Since a fine discretization is no longer
required, the resulting wave based models are substantially smaller than the element-based counterparts.
Application of the proposed approach to various validation examples illustrates an enhanced computational
efficiency as compared with element-based methods.

1. INTRODUCTION

In several engineering areas, methodologies based on the Trefftz approach [13] have received a signif-
icant recognition over the last decades [10]. The main reason for rediscovering the Trefftz methods
consists in the fact that they use the exact solutions of the governing differential equation for the
field variables approximation. Especially when solving problems exhibiting a wave-like nature, such
as acoustics, structural dynamics or electromagnetic problems, this becomes a major advantage in
contrast to the conventional element-based methods.

In the recent years, the wave based prediction technique (WBT) [4] has been developed as an al-
ternative method for solving steady-state acoustic problems. The method adopts an indirect Trefftz
approach by incorporating a priori knowledge of the solved problem. Instead of simple polynomial
shape functions, the exact solutions of the governing differential equation are employed to approx-
imate the dynamic phenomena. As a result, fine element discretization is no longer needed which
yields smaller numerical models that exhibit an enhanced computational efficiency as compared
with element-based methods.

The WBT has proven to be a robust prediction tool for interior acoustics [7]. However, a consider-
able class of real-life acoustic applications involves the analysis of problems in unbounded domains,
such as sound scattering or sound radiation problems. This kind of problems poses a real challenging
task since the unbounded region is not admissible for any direct discretization and requires some
additional treatment. Various strategies were developed in order to tackle the unbounded problems
using the standard finite element schemes, such as non-reflecting boundary condition [6], infinite ele-
ments [1] or perfectly matched layers [2]. All these concepts, although based on different approaches,
have the same basic idea in common, namely, introducing an artificial truncation boundary that
divides the infinite domain into two regions — a bounded and unbounded one.
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Recently, the WBT has also been applied for two-dimensional (2D) unbounded [9, 11| and semi-
infinite problems [3]. This paper discusses the application of the WBT for a three-dimensional (3D)
analysis of semi-infinite radiation problems. The conventional wave based interior formulation is used
in the bounded part, while some new additional functions, which inherently satisfy the Sommerfeld
radiation condition and take the infinite rigid baffle into account, are applied in the unbounded
part of the wave based model. Both, the analytical solution and the numerical results are used to
demonstrate the performance of the proposed approach.

2. PROBLEM DEFINITION

Consider an unbounded three-dimensional acoustic problem as shown in Fig. 1(a). The problem
consist of a closed boundary surrounded by fluid characterized by its speed of sound ¢ and the
density p. Assuming that the system is linear, the fluid is inviscid and the process adiabatic, the
steady-state pressure response p(r,t) = p(r)e’? at an arbitrary position r within the solution do-
main {2 is governed by the homogeneous Helmholtz equation

Ap(r) + k*p(r) = 0, (1)

2 2 2 = . . s
where A = %g + %g + a%g represents the Laplace operator in Cartesian coordinates, r the position

vector, ¢ the time, j = \/—1 the imaginary unit, w the circular frequency and k = w/c the wave
number.

0

Fig. 1. (a) An unbounded 3D acoustic problem and (b) the concept of the truncation boundary I'r

Since the Helmholtz equation (1) is a second-order partial differential equation, one boundary
condition has to be specified at each point of the boundary in order to be the problem well-posed.
At the problem boundary 02 = I' three following types of boundary condition forming a non-
overlapping set I' = I, U I, U I'; may be imposed:

e pressure boundary condition (Dirichlet)
re I p(r) = p(r), (2)
e normal velocity boundary condition (Neumann)

j 9p(r)

re F’U s Ev(p(r)) = pr

= tn(r), 3)
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¢ normal impedance boundary condition (mixed)

re Iz La(pr) = Lo(olr)) = 7 o5 =0 (@

with % the normal derivative and 5(r), 0, (r) and Z,(r) the prescribed values of the acoustic pressure,
normal velocity and normal impedance.

Moreover, as the solution domain {2 is unbounded, an additional Sommerfeld radiation condition
has to be imposed at Iy, in order to ensure, that no acoustic energy reflections occur at the infinity

i [ (% +ikale) )] =o. (5)

|r]—o00 8|r|

3. WAVE BASED TECHNIQUE

The WBT [4] is based on indirect Trefftz approach, in which it incorporates an a priori knowl-
edge of the solved problem. The field variables are expressed in terms of globally defined shape
functions, which are the exact solutions of the homogeneous governing differential equation (1),
but which may violate the boundary conditions (2)—(4). In the wave based formulation for interior
problems [7], these functions represent evanescent and propagating plane waves and form the wave
function set ®°(r). Using a weighted residual scheme, the residual errors arising at the boundary
are enforced to zero in an integral sense. Solution of the resulting system of algebraic equations
yields the contribution factors of the wave functions. The wave models are substantially smaller
than equivalent Finite Element (FE) [14] and Boundary Element (BE) [5] models and exhibit an
increased computation efficiency.

In order to tackle the problems involving unbounded domains, an additional treatment of the
interior WB formulation is required [8]. By introducing an artificial truncation boundary I'r, see
Fig. 1(b), the solution domain {2 is divided into a bounded and unbounded part 2 = 2° + 2%. In
the bounded part, the WB formulation for interior problems can be applied [4, 8], whereas, in the
unbounded part, functions which additionally satisfy the Sommerfeld radiation condition (5), are
employed [9].

3.1. Bounded domain

Within the bounded part of the wave model, a linear combination of the shape functions approxi-
mates the exact pressure solution

M
p(r) mpl(r) = D ptel(r) = ®°(r) P, (6)
1=1

with ®°(r) the wave function set
&, (z,Yy, 2) = cos(krgx) cos(kryy) e IFr=2
®’(r) = { By(x,y,2) = cos(ksyx) e Y cos(ks,2) (7
&y(xz,y, 2) = e ik cos(kiyy) cos(ki.z)
and pf’ the M unknown contribution factors forming the interior degrees of freedom,

M = dim ®° = 2(n, + 1)2 4+ 2(ns + 1)% + 2(ns + 1) (8)
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Each function in the set (7) is an exact solution of the homogeneous Helmholtz equation (1).
Since the only requirement for the wave number components in Eq. (7) is that

k2, + k2, + k2, = K2, + k2, + k2, = k& + ki, + ki, = K2, (9)

an infinte number of wave functions (7) can be defined for the expansion (6). The wave number
components are selected as follows [4],

TIr

km:L_m’ o — R0 e EE
T
kpe = & lyy = — (10)
P Y Ly
krs =:{:,/k2—k,?$—k,',?y,
( ST

k'smzL—, Sl )

T

ks- =g ksy = \% s kgz = k.zm (11)

ST

k7:_,

Sz Lz

kio = £1/k2 — k2 — k2,
/8

g k-tyzL—“, Ay T (12)
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The integer sets 7, s and t determine the M degrees of freedom of the interior model and L,,
L, and L, are the dimensions of the smallest rectangular domain, enclosing the considered problem
domain. Desmet [4] proves that the solution approximation (6) converges towards exact solution
for M — oo, provided that the solution domain is convex. If the considered problem domain is
non-convex, a partitioning into non-overlapping convex subdomains is required. At the coupling
interface I'; between two subdomains continuity conditions must be imposed [8],

. a 3 2 a/ 4 5
A O%ln) piln) _ § Opa(r) B v (13)
pw dm Zint pw a"”/2 th :

‘9 g
J Opa(ra) pg_(rg) geripcied pi(r) Pl_(rl)’ X (14)
pw  Ong Lt pw Ong Zint

where n1, ny are the outward oriented normal vectors and Z;,,; = pc is the internal impedance which
equals to the characteristic impedance.

3.2. Unbounded domain

Apart from the Helmholtz equation (1), the pressure approximation for the unbounded domain
has to satisfy the Sommerfeld radiation condition (5), in addition. The following pressure solution
expansion complies with these requirements and converges for L — oo,

L l
p(r,d,0) =3 S pi kP (kr) Y9, ), (15)

=0 m=-1
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(a) (b)

Fig. 2. (a) Spherical coordinate system and (b) an introduction of the rigid baffle

with r, ¢ and ¥ the radial, azimuthal and zenithal spherical coordinates according to Fig. 2(a) with
the following transformation formulas,

x = r sin¥ cos ¢,

y = r sindsinp, (16)

2 =i eos
to the Cartesian coordinates z, y, z. This convention will be used throughout the paper. In Fig. 2(a)

#,  and 9 are the unit vectors in the spherical coordinates. In solution expansion (15) hl(2)(kr) is
the spherical Hankel function of the second kind,

. _
B (kr) =\ 1 (kr), (17)

representing the radial decay function, and Y7*(¥, ¢) are the spherical harmonics,

Yi"(9,0) =

A+1(l—m) . e
= —_——(l—i—m)!Pl (cos9)e™?, (18)

which correspond to the angular portion of the differential equation solution. In the spherical har-
monics (18) PJ™(cos}) is the associated Legendre polynomial. In the following, the identity

Y, ™(0,0) = ()Y, (9, 9) (19)

is used for m < 0. Expansion (15) may be rewritten in an analogous way as the pressure approxi-
mation in the bounded part of wave model (6),

L l

PO~ =) Y P B(r) = 0%(r)pY, (20)

=0 m=—1
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with ®%(r) the wave function set,
@' (r) = 0%(r, 9, ¢) = hi” (kr) Y["(9, 9), (21)
and pj;. the unknown contribution factors yielding the unbounded degrees of freedom,

dim®* = (L + 1)2. (22)

3.3. Semi-infinite domain

Up to now, an unbounded problem, as defined in section 2, was considered. Once a rigid baffle is
introduced, see Fig. 2(b), the original free-space problem is divided into two separate semi-infinite
domains by imposing a rigid boundary condition along the baffle defined by z = 0

e 10

i =0. (23)

9=73,r>0

In order to take the baffle into account, wave functions used in the unbounded part of the wave
model have to incorporate the rigid boundary condition (23), inherently. The selection of appropriate
functions starts from the original full-space functions (21). Expressing solution expansion (15) for
the particular case when a response point coincides with the baffle,

L m=l
21 + 1 — |m|)! "Im)|
= “mh @ (kr eme P,™ (cos ) = 0, 24

= J/
-~

;ef(ﬂ) 20
one may cluster all terms not depending on the zenithal coordinate 9! and isolate the zenith-
dependent part of the expression, which is only the derivative of an associated Legendre polynomial
with respect to ¢. Since the first term of the expression (24) does not depend on ¥, only the
derivative of the associated Legendre polynomial le (0) must equal to zero in order to satisfy the
condition (23). From the properties of the associated Legendre polynomials [12]

0, l 4+ m = even,
FrOSS (CHEEY 1'36' 5"@ ¢ jn"_‘)l),

only the spherical harmonics with a (I + m = even) combination satisfy the baffle condition (23).
As a result, the even configurations are retained in the wave function set, while those with an
odd shape are taken out of the set. Obviously, the size of the original full-space wave function
set (21) will be reduced by removing the odd Y}"(¥, ¢) components. Table 1 captures the spherical
harmonics up to degree | = 3 and the corresponding orders m = —I,—l+1,...,l — 1, +l plotted as
directional characteristics for various azimuths ¢ and zeniths 9. In the diagrams red and blue colors
denote the positive and negative values of the real part of Y;" and similarly green and yellow colors
represent positive and negative values of the imaginary part of Y;", respectively. Functions with an
even configuration forming the semi-infinite wave function set ®* are labeled with checkmarks v/,
whereas those tagged with crosses X (odd ones) are removed, which yields a reduces size of the set

(L + 1)2(L + 2). (26)

l4+m = odd, (25)

dim®** =

! As the baffle was introduced into the problem, the normalization factor became 27 corresponding to a solid angle
of the semi-infinite space.
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Table 1. Spherical harmonics Y;" (¥, ¢) up to degree [ =3

Y (9, ) -3 -2 ~1 m=0 I 2 3
v m R0
B S{Y}>0
; B S{¥"}<o

| mRLRAE
IS S S

4. VALIDATION EXAMPLES

To illustrate the performance of the proposed wave based approach, two different validation examples
are presented in this section. While the first one considers a comparison of the WB results with both
an analytical as well as with a BE solution, the second validation is only based on a numerical BE
solution. All calculations are performed on a 3 GHz single core Intel based system using 1 Gbyte
RAM and running the Windows 2000 operating system.

4.1. Baffled piston

The first validation example represents a circular piston radiator of radius R = 0.15 [m| mounted in
an infinite rigid baffle, see Fig. 3(a). Assuming a piston-like vibrational behavior, all points forming
the surface of the radiator are vibrating in phase with a normal velocity of v, = 0.01 [m/s]. The
surrounding fluid is considered to be air with the following material properties: ¢ = 343.8 [m/ s,
p = 1.2 [kg/m?3].

4.1.1. Analytical solution

For problems considering single or multiple planar radiators mounted in a rigid baffle the sound
radiation phenomena may be investigated by evaluating the Rayleigh integral. In terms of differ-
ential calculus, each point on the surface of the radiator represents an elementary sound source
corresponding to an infinitesimal pressure contribution

_ jkpcvn e Ik¢

dp(¢) B T

to the overall sound pressure at a distance £. £ is measured between the infinitesimal radiating
surface dS laying on the radiator and the field point r located within the investigated semi-infinite
domain above the baffle plane (z > 0),

€ = /12 + 02 — 2rgsind cos(¢ — ). (28)

ds (27)
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24 p(rye,9) 24

Fig. 3. Baflled piston: (a) a general radiator-observer problem and (b) the simplified case p = p(2)

At an arbitrary position r, the sound pressure is determined by integrating all the infinitesimal
contributions (27) over the surface of the radiator,

Jk€
s J’“pc / / Une g, (29)

yielding the aforementloned Rayleigh integral. As the integrand of the Rayleigh integral (29) depends
on both the position of the elementary source dS = pdedyp as well as the field point r, solution of the
general case involves an infinite series expansion. However, a significant simplification of the original
problem can be made by reducing it to an axisymmetrical problem, as depicted in Fig. 3(b). Since
the pressure depends only on the z-coordinate, the expression for the radiator-observer distance &
becomes

E=V0*+ 22 (30)
Furthermore, by taking the piston-like vibrational behavior into account, the evaluation of the

Rayleigh integral (29) can be carried out in a straightforward way resulting in an analytical closed-
form solution,

R2+2
2T —Jk:{ ; j j
Jkpcvn / / = jkpcun / e—Jk£d§ = pcv, [e‘sz i e—Jk\/R7+z7] 25431

z

4.1.2. Numerical models

The computational mesh used in the involved BE model consists of 4729 nodes forming 9216 tri-
angular linear acoustic elements, as shown in Fig. 4(a). For the BE calculations the LMS/Sysnoise
Rev. 5.5 simulation software is used by applying a baffled direct collocational scheme.

According to the problem definition a corresponding WB model is constructed. As the radius of
the truncation hemisphere I'r is chosen to coincide with the radius of the piston R, the resulting
wave model consists only of one convex 2! and one semi-infinite domain 22, see Fig. 4(b). The
bounded part consists of 294 degrees of freedom (wave functions), while in the semi-infinite region
28 wave functions are applied. The WBT routines are implemented in MATLAB.

4.1.3. Frequency response analysis

For the frequency response evaluations two response points are selected: r; = (0; 0; 0.1) [m] located
in the bounded part of the WB model and ry = (0; 0; 1) [m] outside the truncation hemisphere I'r
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(a) (b

Fig. 4. Baffled piston: (a) boundary element and (b) the corresponding wave based model
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Fig. 5. Baffled piston: sound pressure responses up to 4 [kHz| evaluated at (a) r; and (b) ro

within the semi-infinite domain. Figure 5 plots the response spectra for the sound pressure calculated
by the analytical formula (31) and by both BE and WB approaches at response point (a) r; and
(b) ro, respectively. Similarly, Figs. 6 and 7 show the pressure field in the proximity of the radiator
plotted on a slice perpendicular to the baffle plane at 2 [kHz| and 4 [kHz|, respectively. For the
contour plots of the BE and WB results the same color scaling is used. The black solid line in the
right hand side contour plots indicates the truncation hemisphere I'r as used in the WB model.

Figures 5, 6 and 7 illustrate a good agreement between the WB and BE predictions in a wide
frequency range.
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4.1.4. Convergence analysis

In order to provide a fair comparison between the both numerical solution techniques a convergence
analysis is performed. Figure 8 plots the spatially averaged relative prediction error ¢ for the sound
pressure versus the CPU time needed for a direct response calculation at (a) 100 [Hz] and (b)
2000 [Hz], respectively, using various BE and WB models, see Tables 2 and 3, respectively. The
relative error € is defined as follows,

1 N
€=NZ

=1

Do (i) — Prer(r;)
Prer(ri)

(32)

with pe(r;) denoting either a BE or WB solution evaluated at N = 21 different response points
r; located along the z-axis in the range z = (0;2) [m] with a step size of 0.1 [m|. The analytical
solution of the problem (31) is used as a reference pzgr. The indicated CPU times for both BE and
WB models comprise the time to perform the numerical integrations needed to built up the matrix
system, its solution and the postprocessing steps.

Although the WBT, similar as the BEM, yields fully populated matrices with complex coeffi-
cients, the small size of the WB models and the beneficial convergence rate make the technique
more efficient than the element-based methods. Figure 8 confirms the findings of [4, 8] that the
WBT has a beneficial convergence rate as compared with the element-based techniques. Especially,
in the higher frequency range, the WBT provides more accurate predictions with a substantially
smaller computational effort.

—=—BEM|
—e— WBT|
10%
Z 10°
w
10*
10‘5 o e s i 5 bt o 10.5 Lails P e SRR
10" 10° 10’ 10° 10° 10* 10" 10° 10’ 10° 10° 10*
CPU time [s] CPU time [s]
(a) (b)

Fig. 8. Pressure convergence curves at (a) 100 [Hz] and (b) 2000 [Hz] calculated using BEM and WBT

Table 2. Properties of the BE models

Model | #nod | #ele | Amax> [m] | Amin® [m] | fumax® [Hz] | CPU time [s]
bem01 | 1477 | 2820 0.01 0.005 ~ 2510 40
bem02 | 2949 | 5708 0.01 0.002 ~ 2690 80
bem03 | 4729 | 9216 0.01 0.001 = 2715 410
bem04 | 8117 | 15916 0.0035 0.0035 =~ 6500 1235

2The maximum/minimum element edge length.
3Using the “twelve linear elements per wavelength” rule of thumb.



WRBT for semi-infinite sound radiation analysis 349

Table 3. Properties of the WB models

Model | n, =ns=mn; | L | dim®® | dim®** | 3 DOF | CPU time [s]
wbt01 2 6 54 28 82 0.34
wbt02 4 6 150 28 178 1.07
wbt03 4 8 150 45 195 1.15
wbt04 6 20 294 231 525 12,11
wbt05 8 22 486 276 762 36.42
wbt06 10 25 726 351 1077 59.84

4.2. Patch array

The second validation case considers four rectangular planar radiators mounted in a baffle plane,
which form an array having a layout as shown in Fig. 9. Each of the four radiators has the same size
of a = 0.5[m] and vibrates piston-like with a normal velocity of v, = 0.01 [m/s]. All four patches
radiate in phase. The air has the same material properties as the fluid proposed in the previous
case, see Section 4.1.

For the proposed problem, corresponding BE and WB models are constructed. The BE mesh
consists of 10400 nodes forming 10000 quadrilateral linear acoustic elements with a maximal element
edge length of hAmax = 0.01 [m], as shown in Fig. 9(a). Again, the baffled direct collocational
approach of the LMS/Sysnoise Rev. 5.5 is used to perform the BE calculations. Figure 9(b) depicts
the WB model consisting of 14 bounded sub-domains 2—{214 and one semi-infinite domain (25
located outside the truncation hemisphere I'r, which has the radius of R = 1.173 [m]. Each of the
subdomains (21— consists of 96 degrees of freedom, subdomains (219-§214 are formed by 150 wave
functions each and in the semi-infinite region (25 66 wave functions are applied yielding a total
number of 1680 wave functions.

Figure 10 shows the comparison of the pressure response predicted by the WBT with a numerical
BE solution at a response point r = (0.1; 1; 3) [m]. Figure 11 captures the distribution of the sound
pressure on the baffle plane at 500 [Hz| as predicted with the BE and WB approach, respectively,
using an identical color scaling. Again, the WB results are in accordance with the BE predictions.

(a) (b)

Fig. 9. Patch array: (a) boundary element and (b) a corresponding wave based model
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Fig. 10. Patch array: sound pressure responses up to 500 [Hz] evaluated at r = (0.1; 1; 3) [m]
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(b)

Fig. 11. Patch array: sound pressure on the baffle at 500 [Hz| predicted using BEM and WBT; (a) real part
of the sound pressure [Pa], (b) sound presure magnitude [Pa]
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5. CONCLUSIONS

This paper applies a recently developed wave based prediction technique for a steady-state sound
radiation analysis of three-dimensional problems with semi-infinite domains. It is illustrated through
different rigid baffle examples that the wave based technique provides a proper prediction accuracy
within a wide frequency range. Furthermore, the comparison with corresponding boundary element
models indicates an enhanced convergence rate.

From the practical application point of view, the proposed approach is well suited for the in-
vestigations of uncoupled sound radiation problems, e.g. the sound radiation analysis of an engine
bay above a road surface. Future research includes an extension of the existing formulation towards
semi-infinite fully coupled fluid-structural problems.
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