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Investigation of crack propagation can sometimes be a crucial stage of engineering analysis. The T-element
method presented in this work is a convenient tool to deal with it. In general, T-elements are the Trefftz-
type finite elements, which can model both continuous material and local cracks or inclusions. The authors
propose a special T-element in a form of a pentagon with shape functions analytically modelling the vicinity
of the crack tip. This relatively large finite element can be surrounded by even larger standard T-elements.
This enables easy modification of the rough element grid while investigating the crack propagation. Nu-
merical examples proved that the “moving pentagon” concept enables easy automatic generation of the
T-element mesh, which facilitates observation of crack propagation even in very complicated structures
with many possible crack initiators occurring for example in material fatigue phenomena.

1. INTRODUCTION

Fracture analysis of engineering structures often requires investigations of large variety of objects
with different forms and positions of cracks. The crack propagation is often a key problem in practical
engineering analysis. A path of the crack development can decide whether the final fracture causes
damage of the whole structure or only eliminates its small part without total failure. Hence, such
an analysis can influence a shape of a designed object. The main difficulty of this analysis is a large
variety of possible development paths depending on a form and position of the initiation crack [1].
Therefore, it is important to possibly decrease the time of a single calculation in a searching loop.
The T-element method is a convenient tool to deal with the problem. In general, T-elements are the
Trefftz-type finite elements, in which internal shape functions fulfil governing differential equations
of a certain boundary-value problem [23, 24]. They can model both continuous material and local
cracks or inclusions.

Usually, the field near the crack tip is modelled with increased accuracy, which in case of the
finite element method involves considerable remeshing in this area [9]. Recent investigations enable
improvement of accuracy with minimal remeshing or field enrichment through a partition of unity
methods [2, 10]. However, the most efficient way of proceeding seems to be in this case introduction
of an analytical solution in the vicinity of the crack tip [4, 6, 11, 20]. It usually results in a hybrid-type
finite element, because shape functions of the local solution do not conform with surrounding finite
elements. The authors follow this path. They propose a special T-element in a form of a pentagon
with shape functions analytically modelling the vicinity of the crack tip. This relatively large finite
element can be surrounded by also large standard T-elements [5, 7, 8]. This enables easy modification
of the rough element mesh while investigating the crack propagation.

The study includes detailed investigation of the T-element solution in comparison with the
standard finite elements (ALGOR®, ANSYS®) [14]. Also, influence of geometry of an investigated
object on stress intensity factors (SIF) and strain energy distribution has been studied. Finally,
the interesting comparison of the crack propagation paths obtained by the standard finite element
method and the hybrid Trefftz elements has been made [14].



354 H. Sanecki, A.P. Zielinski

Several numerical examples performed by the authors proved that the “moving pentagon” concept
enables easy automatic generation of the T-element mesh, which facilitates observation of crack
propagation even in very complicated structures with many possible crack initiators occurring for
example in material fatigue phenomena.

2. T-COMPLETE SETS OF FUNCTIONS

A first step in formulation of any T-element is derivation of a complete system of functions (T-
functions) identically fulfilling an equation of a considered problem. A review of such functions can
be found in [7, 12, 25]. In case of an element with a V-notch (Fig. 1) T-complete systems are known
as the Williams eigenfunctions [12, 22], which have the following form,

o1 =Y Re {)\np’\"‘lﬁn [(2 + An c08 2a + €08 2Anc) c08( A — 1)8 — (A — 1) cos(An — 3)6)]
G (34 Gacos 2 cos ) in(Gn — 1)+ (G 1) sinGn — 9}, (1)

o022 =Y Re {)\np’\"_lﬂn [(2 = An OS2 — €08 2Anx) c08(An — 1)8 + (A — 1) co8(An — 3)6]
G (24 Gucona 008 26a)snlGe 10— (Ga 1) snca~ 301}, (2

12 =Y Re {)\np’\"_lﬂn [= (An €08 2 + 08 2Anc) sin(A — 1)8 + (An — 1) sin(An — 3)]
n

+ Cnpc"_lnn [(Gn cos 2a — €08 2¢,0x) cos(Cn — 1)8 + (¢ — 1) cos(Cn — 3)‘9]} ) (3)

0 for plane stress state,
s & v(o11 + o92) = 4VZR€ {)\np’\”_lﬂn cos(Ap, — 1)8 (4)

n
— CnpS I sin(Gn — 1)0} for plane strain state,
where
sib %"—Z for plane stress state, (5)
7 3 —4v for plane strain state,

p =r/a, a is a scale parameter, 3, , 1, are constants to be calculated from the element continuity
conditions, and A, , (, are the eigenvalues fulfilling the characteristic equations:

sin 2\pa + Apsin2a =0 (6)
for the I kind of the notch (tension) and

sin 2{pa — (psin2a =0 (7
for the II kind of the notch (in plane shear).

It should be underlined that in case of the T-elements the stress intensity factors can be obtained
using only two constants for n = 1: $; and 7, . For a@ = 7 (crack) they have the form

K; = V2ma-p, K =—V2ma-n. (8)
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Fig. 1. Finite region containing special T-element with V notch; £2° — domain of element, I'® — its boundary

3. HTD T-ELEMENT FORMULATION

In the HTD element standard relations between nodal forces r and nodal displacements d in the
form r = ¥ + kd, where k is a symmetric positive-definite stiffness matrix, are obtained from the
condition (7, 8]

e&ﬁu-@df:&&'eTﬁu—mdr=o (9)
and fhe relation 1
‘/!éﬁTtdI‘= eaﬁTEdIt+6dTr (10a)
or Ft
6d” FiNTtdfzzédT FZNTEdI“+6dTr, (10b)
: ¢

where the coefficient variation can be reduced.
The displacement vector u is expressed here by unknown coefficients ¢ and a matrix IN containing
T-complete functions

u =1+ N, u € ¢, (11)
where 11 is a particular solution. Analogously we define tractions

it 3 Te, tel® (12)
and the boundary frame function u has the form

a=Nd, a=1I° (13)

where d are unknown frame coefficients (element degrees of freedom) and N is a polynomial matrix.
If the element is situated near the object boundary I'Y along which the Neumann conditions are
imposed, the tractions t should be introduced as in Eq. (10).

The scale parameter a in functions (1)—(4) allows to avoid numerical problems (real overflow or
underflow). In the T-element modelling a crack it is usually taken as an average distance between
an element mass centre and its nodes, Fig. 3.
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4. DIRECTION OF CRACK PROPAGATION

An extended plate with a skew crack [19] was taken as the first numerical example. Following
investigations presented in [6, 7] the authors repeated the tests and compared the results (stresses)
with commercial programmes [14]. In Fig. 2 we can see two different FE meshes for the HTD
formulation compared with the standard mesh used in the ALGOR® code. The next Fig. 3 shows
the moving pentagon modelling the end of existing crack and indicating a new direction of the
propagation path defined by angles 8¢, and y,, where n is the number of a calculation step.

a) 25,86 b) c)
it M,
RSN = s ® / :E
EQH%T:ZS > Lu o
ERL A DS .
; e L & = f)‘
37 bl N e
T R

W =40 mm

g=a/t, thickness t = 10 mm

Fig. 2. Two different FE meshes for HTD formulation and coordinate system (r, #) used for skew crack;
a) irregular pentagon, b) regular pentagon, c) mesh obtained with ALGOR®

The following data were input to calculations: crack angle v = 315°, length of the crack [ =
20 mm, overall dimensions W x L x t = 40 x 100 x 10 mm, unit force ¢ = 2000 N/mm uniformly
loading the upper and lower edge of the plate, Poisson’s ratio v = 0.3.

Stress intensity factors K; and K7, Eq. (8), related to

Ko =A/4rl ao, (14)

were calculated with the T-elements for the example defined in Fig. 2 (Ko = 100.3 MPam'/2). The
results (presented in [13]) K;/Ko = 0.6015, K7/ Ko = —0.2911, were in good agreement with values
(0.6015 and —0.2910) published in [6, 7].

To determine direction in which a crack may grow, two classical hypotheses were taken into
consideration. The first one was proposed by F. Erdogan and G.C. Sih [3] and is known as the
maximum hoop stress criterion (MHSC). The hypothesis states that the crack extension starts at
the crack tip and it grows in a radial direction indicated by the maximum tensile stress oy .
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Fig. 3. Moving pentagon modelling end of existing crack and indicating new direction of propagation path
defined by angles Ocr , vn (n — number of current calculation step)
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Fig. 4. Relative hoop stresses 0g/0¢ versus angle 6 and radius r; crack propagates in direction of maximum
of 0g , i.e. for Oc = 41°

For the plate with the skew crack, Fig. 2, the distribution of oy along circles » = constant is
presented in Fig. 4. The T-element solution with the transformation formula

1 s
05 = 5 [(911 + 022) — (011 — 022) c0s 2(6 + ) — 2012 510 2(6 + )], (15)

where 05, the stress output data of the system SAFE [6-8] is here applied. We observe a visible

difference between this function and the other effort measures. The maximal value of oy, calculated

for possibly small r, indicated direction of the crack propagation defined by the angle 6o = 41.0°.
A comparative solution with the use of the T-element code can be calculated from the formula

=55 {5+ ) (5 1) 0 5+ ) (5 41)
+n |~ (g +1) sin (g ~1)6+ (g — (1)) sin (g +1)6]} (16)
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obtained by transformation of the tensor components (1)—(3). The condition

0og = =140 0 30 =
79?—0 — (sm§+sm7)K1+(cos§+3cos?>KH—Rn—O, (17)

where the residual term R,, vanishes for » — 0, after introduction K; = 0.6015Ky and K =
0.2910K gives the result 6o = 39.5°.

According to the MHCS hypothesis a crack starts its extension if the maximum hoop stress
reaches a critical value oj¢ of the first crack mode (tension). This leads to the condition

K0 > KICa (18)
where
1 0 0 30
K = Het Vs ditiiy it (3000 20 oos Y0y i i gl i 390k (19)
»il 4 2 2 4 2 2

K¢ is the crack resistance of a particular material. For ¢ = 39.5° (from Eq. (17)) the left-hand
side of that equation results in Kp = 76.5 MPam'/2 and for 6o = 41.0° (direct calculations with
SAFE) gives Ky = 77.2MPam!/2. Assuming, for example, that the investigated plate is made of
tempered alloy steel (0.03%C, 0.2%Al, 8%Co, 5%Mo, 18%Ni, 0.6%Ti, K;c = 78 MPam!/?) the
tension oy = 200 MPa will not initiate the crack propagation in the plate. However, because of the
very small differences between Ky and Ko we should consider this state as not admissible.

The second hypothesis applied by the authors was first proposed also by Sih [16-18] and is based
on strain energy density w, which for 2D problems can be expressed by the stress tensor components
as

1 u
w = 1 NI (011 + 0'22)2 —2(011022 — 0%2) : (20)
Figure 5a presents this energy in vicinity of the crack tip of the discussed plate as related to

i %51 4

“wNE 2y

calculated for its loaded edge.
Sih introduced also a stress energy-density factor S

S = w¥, (22)
which is more convenient in engineering calculations. To present it in a non-dimensional form
(Fig. 5b) the authors proposed

Sq = WqTq, (23)

where r, is the smallest distance from the crack tip to the loaded edge of the plate. This second
Sih’s hypothesis postulates that the crack extends from its tip in the radial direction defined by
a local minimum of the stress energy-density factor S. This minimum should be situated between
two local maxima in front of a line normal to the crack tip [21], i.e. [-90°,+90°], Fig. 5. Using that
criterion and the results obtained with the T-element code, the value 8¢ = 36.6° defining direction
of the crack propagation was obtained.

Following considerations presented above (compare Eq. (17)), which lead to

[sin20 — (k — 1) sin6] K? — 2[(k — 1) cos§ — 2cos 20] K1 K7 + [(k — 1)sinf — 3sin20] K% =0
(24)

after numerical solution of that equation the value - = 35.04° was determined. A condition of
crack propagation for the strain energy-density hypothesis [18] can be written as

Smin > Sc(Kic , Knc). (25)

The critical value S depends here on both K;o and Kjj¢ , which is less convenient, because the
shear crack resistance is in many cases unavailable.
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Fig. 5. Relative strain energy density w/w, (a) and relative factor of strain energy density S/S; around tip
of crack (b)

5. PREDICTION OF CRACK PROPAGATION PATH

The basic idea of the proposal is the moving pentagon, which is presented below in an example
of crack propagation in a so-called T-junction (Fig. 6) [14, 15]. This welded joint of two sheets
1,2 reinforced by a member 3 is often met in engineering applications, e.g. in frames of vehicles.
The concept of the moving pentagon is illustrated in Figs. 6a and 6¢, in which we can observe
automatically defined initial and final T-element meshes. In the latter case the SAFE model was
built with 82 elements and 281 nodes, however even more rough meshes gave acceptable results.
For comparison, we present a classical ALGOR® mesh and the deformed model — Fig. 7 with the
stress distribution similar for both FE systems.

One of advantages of the analytical T-element code is a fact that the stress intensity factors
K1, K7, and the angle 6o, can be explicitly obtained as the output data of the system SAFE.
Nevertheless, for verification of the solutions distribution of the hoop stress og and the factor of strain
energy-density S around the tip of the initial crack were investigated. Diagrams of both quantities
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Fig. 6. T-junction of plates 1, 2 with fillet member 3; a) load Q, boundary constraints and dimensions (mm):
crack 4 of length I = 10 mm, thickness ¢ = 10 mm, initial angle v = 315°; T-element (moving pentagon) around
tip of crack noted as 5, b) definition of angle 6¢ , ¢) propagation path after 8 steps
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Fig. 7. T-junction with initial crack modelled with ALGOR® (1006 elements, 2949 corner and mid-side
nodes); a) tip of crack surrounded with dense mesh (radius s = 0.08 mm) to calculate SIF, b) distribution of
von Mises equivalent stresses o, (displaced model with scale = 20)

a) o(r,6)/ op b) S(r,0)/Sq
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Fig. 8. T-element results around crack tip - curves concern circles » = 0.053 < 1 mm; a) diagram of relative
hoop stress o¢/0 (05 = 1000 MPa) with maximum for fc = 2.82° and b) diagram of relative factor of strain
energy density S/S,; (Sq = 5.94N/mm) — with minimal value of S for ¢ = 3.29°

are presented in Fig. 8. The stress oy is here related to a reference bending stress aj, = %92’—‘ and the
factor S to S, calculated in a way similar to definition (23).

Initial stress intensity factors calculated in the presented example for @ = 66.6 kN/m were equal
K; =55.1MPam!/2, K;; = —1.7MPa m?/2 which resulted in 6 = 2.82° for the MHSC hypothesis
and 0o = 3.29° for the strain energy—density criterion.

In the investigated problem a final task was to define entire path of the crack. On every n-step
of the analysis a new direction of the crack propagation was established,

Yn = Yn-1+ Ocn - (26)

Table 1 contains results of the crack propagation in the investigated T-junction for the crack
increment length [ = 10 mm. Assuming [ we simultaneously choose a radius a = 5mm of a circle
circumscribing the leading pentagon. To check influence of the user-defined increment / on shape of
the path, the calculations were repeated for a = 2.5 mm. Figure 9a presents both paths. It is clearly
seen that on this level of the increment length its influence is rather small.
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Table 1. Results of crack propagation simulation made with use of T-elements: stress intensity factors
K;, K1 and propagation angles f¢c and ~y, for n =1 to 8 (a = 5mm)

¢, | Ki=Ci(229)" | C, | Ky=Co(228) | 6 | "7 | Ko

n Yn1+ Ocn

MPa | Nmm® | MPam"] MPa | Nmm®? | MPam"] ° e MPa m'?
0 0 315
113109 1742.6 551 9.7 -54.4 -1.7 3:57- - 1-318:57 :{ '55.19
2 | 407.8| 2285.7 72.3 9.4 -52.9 -1.7 2.65 | 321.22 72.34
3 | 477.3| 2675.3 84.6 10.8 | -60.5 -1.9 2.59 | 323.81 84.67
4 | 536.6 | 3007.4 95.1 11.8 ] -66.1 -2.1 2.51 | 326.32 95.17
51591.2| 3313.8 | 104.8 | 134 | -75.3 -2.4 2.60 | 328.92 | 104.87
6 1644.1| 3610.2 | 1142 | 152 | -85.1 2. 2.70 | 331.62 | 114.26
716974 3909.0 | 1236 | 17.7] -99.2 -3.1 2.90 | 334.52 | 123.73
8 1751.3] 4211.3 ] "133.2 1 22.0 | :=123.1 -3.9 3.34 | 337.87 | 133.34

y=330°

y=315°

y= 300"

Fig. 9. Crack propagation path in T-junction obtained with T-elements (similarity of notations accidental);
a) paths of crack built: 1 — with pentagon of a = 5mm and 2 — with pentagon of a = 2.5mm, b) paths of
crack with different initial angles v: 300°, 315°, 330°

A more significant effect observed in the investigated phenomenon is shown in Fig. 9b. We can
observe that even considerably different initial crack angles result in nearly parallel propagation
paths, which can be very important in prediction of failure of the considered T-junction.

6. OTHER EXAMPLES OF CRACK PROPAGATION
6.1. Welded joint

Another example of searching of a crack path with application of T-elements is presented in Fig. 10.
It illustrates a welded T-joint of two steel plates. The plate 1 is loaded with a force @), which draws
it away from the plate 2. Figure 10 presents the shape and dimensions of the complete joint (a) as
well as the fillet welds 3 (b). A preliminary stress analysis in cross-sections: I-I, II-II, III-III of the
joint has been made in order to choose the initiation point of the crack.

The following example was chosen to numerical calculations (dimensions in mm): weld length
lo =20, h =60, t; =ls =tz = 10, t = 15, § = 0.1, material — low-carbon steel (R, = 355 MPa),
force @ = 2800N, angle 3g = 45°. It occurred that the most significant stress concentration, which
could create the initial crack, was in the first cross-section. The FEM result was 504 MPa in point 4,
Fig. 11a, which obviously refers to section I-I. Similar analysis was done for the model with the
initial crack — point 5 in Fig. 11b — where the von Mises equivalent stress o, achieved (for a similar
mesh) value 585 MPa.
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Fig. 10. Two steel plates 1, 2 with fillet weld joint 3; a) dimensions and loadings of the joint, b) dimensions
and characteristic cross-sections of welds with thickness t, = tz//2

Fig. 11. Von Mises equivalent stress (o,a) distribution in region of welded joint; figures present deformed
models (scale = 20); a) joint without crack — concentration at point 4, b) model with initial crack —
concentration at point 5
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Fig. 12. Model of welded joint with T-elements including moving pentagon 6 (a = 0.5 mm); a) mesh
in a starting phase of simulation (with notch 5), b) fragment with crack path plotted after some steps of
calculations
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Figure 12 presents a model of the welded joint, which uses the T-elements including the moving
pentagon 6. In Fig. 12a we observe mesh of the Trefftz FEA model in a starting phase (with initial
crack 5) of the simulation, whereas Fig. 12b presents a fragment of the joint with a crack path
plotted after several steps of the calculations. The T-element mesh uses the regular pentagon with
the radius @ = 0.5mm (see Fig. 3). Application of such a small element was caused by the mesh
configuration near the very narrow gap (6 = 0.1 mm) under the vertical joint member (see Fig. 10b).
However, this inconvenience may be eliminated by introduction of other two pentagons containing
the ends of the inter-member gap.

6.2. Crack propagation in a ratchet-wheel

In Fig. 13 shape, dimensions and loads of the ratchet-wheel 1 and other coworking elements are
defined. Torque of shaft 3 is introduced by a pusher. One tooth of the ratchet-wheel is loaded by
the pusher with force @), which — mainly through the keys 2 — is then transmitted to the shaft 3.

The ratchet-wheel 1 has a possible failure path along cross-section CD, width and position of
which can be changed by moving the position of the shaft keys 2. This position is defined by angle
. Changing this angle leads to a solution, which preserves the ratchet from failure.

The end of the line CD marked in Fig. 13 with point C and angle . can define the initial
crack angle. The angle €. (between segment CD and a tangential to circle R — see Fig. 13) can be
expressed by the following geometric formula

R — Hycoseg — %sinsQ

tane, = 27
. —Hjsineg + %cossQ i
where
™
EQr =t z — number of teeth, (28)

and may be used to set the initial crack angle ~.

Figure 14 presents the T-element meshes with the moving pentagon 5 used for crack propagation
in the ratchet-wheel. The object was clamped in nodes 6. Two different initial notches 5, one near
the tooth corner C' and the other at the keyway corner, were used for searching the crack path.

Position of the key against the tooth, which is loaded with the force @, can be changed with the
angle €. This may lead to certain optimal solution decreasing probability of failure. Full optimisation
of this structure is not the aim of this paper, however, results presented here may be used as outlines
for a designer.

Figure 15 presents results obtained by simulation of the crack propagation for two cases
(a) and (b) defined in Fig. 14. Position of the key against the tooth loaded with the force Q
was assumed in such a way that (ref. to Fig. 13) the angle ¢, = 90°, the angle g = 13.57° and the
angle ¢ = 1.43°. Remaining data were as follows (dimensions in mm): z = 6, d = 50, key height
h =9, key width b = 14, s = 4.5, key length [y = 10, R = 41.6, H; = 19.5, Hy = 29, tooth height
hi = 8, hg = 6, Q = 17.46 kN. Initial crack direction refers to angle €. = 90° and gives the values:
v = 120° for case (a) and v = 300° for case (b) (Figs. 14, 15).

In case of starting point C' (Fig. 15a) the end of the crack path cuts the bottom surface of the
keyway, which causes failure of the rim of the ratchet-wheel. In the second case (Fig. 15b) the end
of the crack path crosscuts the side surface of the tooth, which also leads to failure.

Another set of results obtained by simulation of the crack path in the ratchet-wheel is presented
in Fig. 16. They concern the wheel with a shifted keyway (angle ¢ = —13.57°). Calculations were
made with use of the T-elements including the moving pentagon (¢ = 1 mm) with the initial crack
positioned near the corner of the tooth root. Four cases of the angle v were investigated: a) 120°,
b) 150°, c) 180° and d) 210°.
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Fig. 13. Geometry and loading of ratchet-wheel 1 and other elements: keys 2, shaft 3; CD — possible failure
cross-section, € — angle defining position of key

Fig. 14. T-element mesh for crack propagation in ratchet-wheel with boundary constraints 6; two different
initial notches 5 for searching path of crack: a) at tooth root corner, b) at keyway corner
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b)

7=300"

Fig. 15. Crack paths in ratchet-wheel (¢ = 1.43°) defined with use of T-elements including moving
pentagon (e = 1 mm) with initial crack a) at tooth root corner, b) at keyway corner

y=150°

Fig. 16. Crack paths in ratchet-wheel with shifted keyway (¢ = —13.57°) determined with T-elements
including moving pentagon (a = 1 mm); initial crack angle v: a) 120°, b) 150°, ¢) 180°, d) 210°
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Fig. 17. Equivalent stress intensity factor Ky = f(n) for two cases (a, b) of simulation of crack path in
ratchet-wheel (¢ = 1.43°) defined in Figs. 14 and 15; n — number of simulation step
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Fig. 18. Equivalent stress intensity factor Ky = f(n) for four cases of crack path simulation in
ratchet-wheel defined in Fig. 16 (¢ = —13.57°); n —number of simulation step
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A changed position of the key against the loaded tooth — & = —13.57° instead of 1.43° — was
applied in order to avoid a rapid failure of the wheel. The remaining data (load and dimensions)
were left unchanged.

Crack paths visible in Fig. 16 show a more optimal propagation path in comparison with the
cases presented in Fig. 15. Most probably, in this case the same loading of the tooth side will not
make the immediate failure of the ratchet-wheel rim.

Figures 17 and 18 present results concerning the equivalent stress intensity factor Ky = f(n),
according to the definition (19), where n is a number of the simulation step. The first diagram,
Fig. 17, contains curves referring to simulation of the crack propagation for the two cases (a, b)
defined in Figs. 14 and 15. A strong growth of the factor Ky at the end of the path — particularly
in case (b) — confirms predictions about the immediate failure of the rim. The second diagram,
Fig. 18, contains curves referring to simulation of the crack propagation for the four cases (a, b, ¢, d)
defined in Fig. 16. Rather soft growth of the factor Ky and its significant decrease at the end of the
path can be observed on the diagram in this case. It confirms observation that the rotation of the
keyway position with the angle e = —13.57° makes the connection safer.

The growth of the function Kj(n) observed in Fig. 17 is caused by the force P, (Fig. 15a) or
by the force @ (Fig. 15b) and by the remaining cross-section of the rim decreasing during the path
propagation. It makes the strong tensile hoop stress near the tip of the crack, hence, the factor Kjy
grows. Different situation takes place in Fig. 18, where the decrease of the function Ky(n) at the
end of the path is observed in every of the four cases. In this case (Fig. 16), forces Q and P, always
act on the same side of the crack path. A special effect is made by the force P, which compresses
the remaining, decreasing cross-section of the rim. It makes smaller the tensile hoop stress near the
tip of the crack and diminishes the function Ky(n).

7. CONCLUSION

The procedures of simulation of the crack propagation in 2D elastic objects as well as other inves-
tigations described in the paper show that the T-element code is a convenient tool to deal with
fracture problems in practical engineering analysis. Advantages of that approach can appear even
more evidently if the investigated objects are more complex and assembled of numerous parts as,
for example, entire frames of vehicles. In such cases, members of regular shapes can be modelled
with large T-elements, whereas local openings or notches — with special elements presented in the

paper.
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