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In this paper some types of nonlinear potential problems are discussed and some of these problems are
solved by the Trefftz method. The attention is paid to Fundamental Solutions Method (FSM) supported by
Radial Basis Functions (RBF) approximation. Application of FSM to nonlinear boundary problem requires
certain modifications and special algorithms. In this paper two methods of treating the nonlinearity are
proposed. One on them is Picard iteration. Due to some problems of application of this method the
Homotopy Analysis Method (HAM) is implemented for nonlinear boundary-value problems. The results
of numerical experiment are presented and discussed. The conclusion is that the method based on FSM
for solving nonlinear boundary-value problem gives result with demanded accuracy.

1. INTRODUCTION

The world where we are living is essentially nonlinear. Most of phenomenon in the whole cosmos,
either inside or outside us, are described, although more or less approximately, by nonlinear equa-
tions. There exist some types of nonlinearity in mechanical problems. For example, the equation
for isotropic heat conduction with spatially varying thermal conductivity yields the material non-
linearity. The other type of nonlinearity, is caused by internal sources. Moreover in some problems
the geometrical nonlinearity appears. These are problems with a boundary changing in time. The
other nonlinear problems are the systems with nonlinear boundary conditions. How to solve these
nonlinear equations has been the hot point, especially today when we have supercomputers with
high performance. Although the rapid development of digital computers makes it easier and easier to
numerically solve nonlinear problems, it is still rather difficult to give analytical expressions of them.
Most of nonlinear analytical techniques are unsatisfactory. Therefore, the numerical methods are
used to solve such nonlinear problems. Traditionally, these problems have been solved numerically
using finite difference method, finite volume method, or finite element method. Recently, boundary
element method is applied intensely for nonlinear problems.

The literature treating solving the nonlinear problems by numerical methods is very wide. Above
some problems, solved by using meshless methods, are mentioned. The authors of [4] have proposed
quasilinear boundary element method for nonlinear Poisson type problems. The inhomogeneous
part of the equation is approximated by Taylor’s series. Also, the authors of [14] have formulated
and solved inhomogeneous-nonlinear problem by boundary element analysis. The approximation by
polynomials is applied for the inhomogeneous part of the equation. But the method gives the results
with demanded accuracy only for few problems. A meshless numerical method based on the local
boundary integral equation to solve linear and non-linear boundary value problems is proposed
in [15]. One of the most characteristic nonlinear problems is nonlinear heat conduction. For the
problem of heat conduction in material with spatially varying thermal conductivity the solution
is found by homotopy analysis method supported by boundary element method by the authors
of [7]. The other case of nonlinear heat conduction is for the thermal conductivity depended on the
temperature. The authors of [5] applied Kirchhoff’s transform to obtain pseudo-linear equations,
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which have been solved using boundary element method. The described problem has been solved by
the author of [1] by implementing Trefftz indirect method. The other nonlinear problem solved by
meshless methods, described in literature, is a large deflection of a thin elastic plates. The problem is
described by the system of two coupled nonlinear biharmonic equations and the boundary conditions.
This problem is solved in [13] with applying an iterative fashion. For each step of iterations a dual
reciprocity boundary element method is implemented. The method of boundary element has been
applied to solve such a problem in papers [3, 10, 11]. The Kansa’s method has been also implemented
to find the solution for the problem of large deflection of a thin plates by the author of [9]. The Picard
iterations and the method of fundamental solutions is applied for solving the described problem
in [12]. The anisotropic thin plate bending problems is solved by Trefftz boundary collocation
method by the authors of [2]. Of course, these are very few examples of papers treating nonlinear
problems. but, in the literature there are very few papers about implementation of the fundamental
solutions method to nonlinear problems.

Application of the method of fundamental solutions to nonlinear problems requires modifications
and special algorithm, which are subjects of this paper.

2. METHOD OF FUNDAMENTAL SOLUTIONS FOR NON-LINEAR PROBLEMS
2.1. General equations

The nonlinear boundary-value problem can be written in a general form

At = fulx) for x € 02, (1)
where n = 1,...,N., N, is a number of equations, 4, (n = 1,...,N.) are nonlinear partial
differential operators, f,, (n =1,..., N.) are know functions, {2 is the region, which the differential
equations are determined in. The coordinates of the points are given in the form x = (x1,...,2n).
Unknown functions to calculate are u(x) = (u1(x), ..., un,.(x)).

For the considered problem boundary conditions are given by

Bju(x) = g1(x) for xe I, (2)
forl =1,..., Ny, where Ny is a number of the boundary conditions under consideration, I is the

boundary of the region (2. If in the considered problem, the nonlinear operator can be written as a
sum of linear and nonlinear operator, the Picard iterations method is applied.

2.2. Picard iterations

The nonlinear operator A,, is.rewritten as
An, = L'n, 4+ N,l for n= 1,. s 7N6 , (3)

where L,, is linear partial differential operator, A,,, N,, are nonlinear partial differential operators.

The system of differential equations (1) is written as a system of linear differential equations.
The nonlinearity of equation is added to inhomogeneous part of equation. Therefore, the considered
system of equations has the form

Lou(x) = fn(x) — Npu(x) for x € {2, (4)

where n =1, ..., N, . Of course, the boundary conditions (2) are still valid. Proposed transformation
of the system of coupled nonlinear equations gives the system of quasilinear equations in implicit
form. To solve such a system of equations the Picard iterations are implemented. The iterative
fashion of the considered system of equations is given as

Lou®(x) = fu(x) — Nyu®*V(x) for x € 2, (5)
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where n = 1,..., N, for k = 1,2,... Each of the equations determined in k-th iteration step is
solved by Method of Fundamental Solutions with boundary conditions

Bu®) (x) = g;(x) for x e I, (6)

for | = 1,..., Np.. The inhomogeneous part of each equation is approximated by Radial Basis
Functions and polynomials. The iterative process begins with initial approximations of the solution,
which is obtained by solving the auxiliary boundary value problem:

Lou @ (x) = fn(x) for x € 02, (7)

where n = 1,..., N.. The set of equations (7) is the system of uncoupled linear equations. Each
equation with proper boundary condition

Bu®(x) = g/(x) for ' xeT, (8)

for I = 1,..., Ny is solved by Fundamental Solutions Method. If the functions f, (x) are not equal
to zero, they are approximated by Radial Basis Functions and polynomials.

The iterative process has to be stopped when the obtained results reach demanded accuracy.
There are some criteria to decide to stop calculations. In this paper the error of obtained solution
is defined by

11} o 5 2
B = Bt |2 (400 - T6) ®
where {xf}fi, is a set of trial points with arbitrary chosen number of trial points V.
Inconvenience of Picard method, in some cases, is difficulty with reaching the convergence of iter-
ative process. The convergence depends on the initial approximation of the solution. In the algorithm
given above, the initial approximation of the solution is taken as a solution of the boundary-value
problem given by Egs. (7),(8). It is also possible to take the initial approximation by solving the
modified Eq. (7), i.e. the right-hand side function is taken to be equal to zero. Of course, the bound-
ary conditions (8) are still valid. The Picard method is based on an assumption that the nonlinear
differential operator in Eq. (1) can be rewritten in the form (3). If the considered operator has not
this feature or the iterative process divergences, the implementation of Picard iteration is not pos-
sible. In such a case the Homotopy Analysis Method, which is more general than Picard Iterations,
is applied. The HAM does not require that the nonlinear operator includes the linear part.

2.3. Homotopy Analysis Method

The HAM treats the considered problem, given by Egs. (1)-(2), as the one parameter family of
problems. The parameter \ has values from the interval [0, 1]. Let us construct a homotopy

Hix A) =Eh(x.2),....Hn (X, 7)) (10)
which satisfies
Hy(x, ) = A (A, U(x,A) — fn(x)) + (1 — A)Lon U(x, A) (11)

for n = 1,...,N,. The operator Lo, has to be selected. Lo, is a simple linear operator, whose
fundamental solution is familiar to the user of HAM and which may be different from L,, (described
by Eq. (3)) even if L,, exists.

The considered Eq. (1) is equivalent to the homotopy (11) for parameter A = 1, therefore

Hy(x, 1) = Anu(x) £= ](n(x) (12)
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for n=1,..., N.. Moreover, the homotopy (11) for A = 0 gives

H,(x,0) = Loyup(x) (13)
forn=1,...,N,, where ug(x) = (up1(x ) ,Up N, (x)) is known solution of the boundary-value
problem w1th the operator L, for n =1,. N For Eq. (1) the homotopy can be determined as

(1= A)Lon (U(x,A) = uo(x)) = A (A U(x, A) = fu(x)) (14)
forn=1,..., N, , where

Ulx, X (0. . iUn (e, N) (15)

is the solution of Eq. (14) depended on parameter A. The functions U, (x, A1), Upn(x, Xs) for n =
1,..., N, and arbitrary chosen \;, A2 € [0, 1] are called homotopic.

The solution of the considered problem (1) is suitable to the function (14) for parameter A\ = 1.
Therefore

Ulx, 1) = uix). (16)
Moreover the function (14) for A =0,
U(x,0) = uo(x), (17)

is to be determined as the solution of an auxiliary boundary-value problem with the operator Lo,
for n =1,..., Ne. The function ug(x) is used to find solution of the problem (1) in the next steps
of the algorithm. The homotopy (14) satisfies Egs. (16) and (17). It means that the homotopy (14)
is the family of problems and the solution of one of the problems (for A = 0) is known. Using this
known solution, the solution of other member of the homotopy family (for A = 1) is calculated.
This is the solution of the considered boundary-value problem (1)—(2). The homotopy defined by
Eq. (14) should satisfy the boundary condition (2), therefore

BU(x,A) = (1 — A)Bjup(x) + Agi(x) for xeI' (18)

for i = 1,..., Nyc. Let us assume that the continuous deformation U, (x,)) (for n = 1,...,N,) is
smooth enough about A so that

] 8mUn(X >\) 5 ‘
UO?( ) szo, 777,—1,2,3,... (19)
for n = 1,..., N, called mth-order deformation derivative, exists. Then, according to the theory

of Taylor’s series, from Eq. (17) the next formula is obtained,

[m]

x" MUy (x, A Ug
Un(x,A) = Un(x, 0)+Z 8;"1 ) = upn(x) + Z Oml : (20)
A=0

ml m=i

The expression introduced above is called the Taylor’s homotopy series. The following notation

ug’n] = (ugnl], i ug)njlje) (21)

is introduced. Then the boundary-value problem describing the deformation derivatives have the
form

Lonu™ (x) = Ry (%) (22)
for ma==iy ... i Ne: Wehere
Rl,n(x) o A'nuo fn( ) (23)

m— 8777’A1A11U y A
Rm,n(x) =Y (Lonug - a/\m—gx )

) e
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for m = 2,3,... The boundary conditions for Egs. (22) are given by

Bul™(x) = 61 (g1(x) — Bup(x))  for x€ T (25)

forl=1,...,Npo,m=1,2,... Moreover 011 =1 and ;1 =0 for m = 2,

Each of Egs. (22)—(24) with the boundary condition (25) for m = 1,2, ... is numerically solved. In
the literature, there are some suggestions to such problem by Boundary Element Method. This paper
proposes to use the Method of Fundamental Solutions for finding the solution of Egs. (22)—(24) with
the boundary conditions (24) for m = 1,2, ... Having the obtained solutions of the problems (22)-
(24) with the conditions (25) and using Eq. (19) for A = 1, the solution of the considered problem (1)
with the boundary conditions (2) is obtained as

00 ugm] (X)

u(x) = up(x) + n; = (26)
It is obvious that for the numerical implementation the series in Eq. (26) has to be truncated.

This way the approximation of the solutions is calculated with demanded accuracy. Moreover, in

the numerical calculations the convergence of the computed solution is under control of the user.

The parameter h is introduced to control the convergence. Hence, the homotopy depends on this

parameter, too,

(1 =5 )\)LO’H, (U(X: /\a h’) = uo(x)) = hA (AW,U(Xa )‘a h) i fﬂ(x)) (27)
forp=1;...,N; and
Ux, M\ h) = (Ui(x, \,h), ... ,Un.(x, A b)) (28)

is the solution of the problem, depended on the homotopy parameters A € [0, 1] and A # 0.
So, the partial differential equation (22) with the boundary conditions (25) is to be modified.
The new version of the boundary-value problem has the form

Lonul™ (%) = Ry (%) (29)
forn=1,...,N., where

Rl,n(x) =h (Anu(J — s (X)) (30)

m— 1
L [m—1] 0™ A U(x, A, h)

Bpn(x) = m (Lo,luo +h o e (31)
for m = 2,3, ... The boundary conditions for the equation given above are

Bul™(x) = 61 (g1(x) — Biup(x))  for xe€ T (32)

foril=1,...,Np,m=1,2,... Moreover ;1 =1 and 6y, 1 = 0 for m > 2.
Finally, the solutions of the boundary-value problem (1), (2) is described by the formula

M u[m] (X)
u(x) = up(x) + ) = (33)
m=1 i

where M is a natural number, chosen properly to obtain the solution with demanded accuracy.

The series (33) is truncated and the calculations stopped if the mean-square error Ej is less than
small parameter i.e. Es < &, where ¢ is the parameter determining the accuracy of computing and
error is defined as

o 2
B = max — Z(u&’ﬁ(xf)) (34)

1<n<N. N,

In both Picard iterations and HAM the crucial point is to solve the linear boundary problem
(given by Egs. (5)—(6) or (7)—(8) or (29)—(32)). In this paper the implementation of Method of
Fundamental Solutions is proposed. The considered equations are mostly inhomogeneous, therefore,
the approximation by Radial Basis Functions is used.
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2.4. Method of Fundamental Solutions
Let us rewrite Egs. (5), (7), (29)—(31) in a general form

Lot )t fudo) for xe 2 (35)
and the boundary conditions (6), (8), (32) have a general form as

Bju(x) = gi(x) for xe I (36)

for | = 1,...,Ny.. The operator L, (n = 1,...,N,) is a linear partial differential operator of
arbitrary type.

Solution of the problem is a sum of a particular solution uy,(x) = (up,1(x), ..., upn,(x)) of
Eq. (35) and a homogeneous solution uy,(x) = (up 1(x), ... ,up,n,(x)) of the considered boundary-
value problem (35), (36)

u(x) = up(x) + up(x). (37)

The particular solution is obtained using the approximation by Radial Basis Functions and

monomials. The set of trial points {x ;V:"l is chosen. These points lie in the region and on the

boundary of the considered region (see Fig. 1) and are called grid points.

I

/grid points

Fig. 1. Grid points in the region {2 and on the boundary I’

The inhomogeneous part of Eq. (35) is approximated by linear combination of Radial Basis
Functions and monomials,

N, N,
fn(x) = Z an,j‘Pn(T?) a3 Z bn,jPn,j (), (38)
i=1 =1
where n = 1,...,N,, <pn('r§1) is a Radial Basis Function chosen for the operator L, , r? =

\/Z,]L (x) — w;’j)z for j = 1,..., Ny, pn;(x) is a monomial chosen for the operator L, , coeffi-
cients a, j for j = 1,..., Ny and b, ; for j = 1,..., N, are real numbers. Equation (38) is written
for each grid point, which gives a system of linear algebraic equations

Ny Ny

Z(l/n,j@n('rjgj) 2 Z bn,jpn,j (Xlg) e fn(xf> (39)

j=1 y=1
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for i = 1,...  Nyand n ="1,..., Ny "Where r,qj = \/le\:’l (7, — rfy)z Moreover, the following
relationship has to be held
Ny
Za”,jp,,,,,,:(x?) =) for i=t ol b, o MNa (40)
Jj=1

The solution of the system of linear equations (39) and (40) gives the particular solution of the
problem (35), (36) in the form

N, Np
Upn (X) = Z an,j(bn (qu) & Z bn,jwn.,;j (X), (41)
j=1 j=1
where the functions ¢, and ¢, ; for j = 1,..., N, are the particular solutions of the following
equations,
Lndn = on, (42)
Ln,'(/)'n,,j = Pnj, (43)

forn =1, = Ns.

This procedure completes the computation the particular solution. Next part of this chapter is
the description of implementation of MF'S to obtain the homogeneous solution.

The solution given in the form (37) fulfils the boundary condition (36). So, Eq. (37) can be
rewritten in the form

By (up(x) + up(x)) = gi(x) (44)
forl =1,..., Nyp.. And rearranging Eq. (44) gives
Biuy(x) = gi(x) — Biuy(x) (45)
for | = 1,..., Nj.. The homogeneous solution uj,,(x) is approximated by linear combination of
fundamental solutions
Nfs N
Uh,n(x) = Z Z cn,(k—l)NS—f-jfSk,n(f?)a (46)
k=1 j=1

where n =1,...,Ne, 1} = \/Z}I\;] (z; — m;J)Q for j = 1,..., Ny, which yields the system of linear
algebraic equations

NfS Ns
SN enge—vyvi+iBifsin(rs) = 9i(x) — Bittp (%) (47)
k=1 j=1

forn=1,...,Ne,l=1,..., Ny.. The boundary of the considered region is discretized, i.e. the set

of boundary points is chosen as {le’ 11\2’1 . To avoid the singularity of the fundamental solutions the
set of source points {Xf}f\gl is chosen. The sets of points are presented in Fig. 2.

Equation (47) is written for each boundary point

NfS Ns

3> enh-1)NatiBifsun(rly) = 91(x}) — Brupn(x}) (48)
kelg=1

forn=1,...,Np,l=1,..., Ny, where r§; = \/Zﬁl (ab,— a3 ) fori=1,..., Ny, j=1,...,Ns.
In the general case the system of equations given above consists of NN, linear algebraic equa-

tions of NyNyg unknowns. The solution of the set of equations (48) gives the approximation of the

homogeneous solution which is expressed as the linear combination of the fundamental solutions.
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oundary point

source point

N

Fig. 2. The boundary point on the boundary I" of the region {2 and the source points on the contour
similar to the boundary of the region
3. NUMERICAL IMPLEMENTATION — HAM
3.1. HAM for the equation of second order

The inhomogeneous equation of second order is written in the general form as
Aulx) = f(x) for x € 2 (49)

where A is a nonlinear partial differential operator of second order, f is a known function, (2
is a region, which the equation is determined in. The points of the region are written as x =

(z1, ..., xn). The function to calculate is u(x). In the considered problem the boundary conditions
is in the form
Bulxy=nx) for xe I’ (50)

where I' is a boundary of the region 2. The HAM for Eq. (49) with the boundary condition (50)
introduces the homotopy in the form

(1 =X) Lo (U(x,A, k) —up(x)) = hA (AU (x, A, h) — f(x)) . (51)

The auxiliary operator Ly should be linear and the fundamental solution of the homogeneous
equation with the operator Ly should be known. For the equation of second order (49) the Laplace’s
operator is chosen,

Lo= V2. (52)
So, the homotopy (51) has the form

(1 —1t) V2(U(x,t,h) — up(x)) = ht (AU (x,t,h) — f(x)). (53)

To obtain the deformation derivatives it is necessary to solve the following boundary problems,

V2uf" (%) = Rm(x), (54)
where

Ri(x) = h(Au - f(x)), (55)

LAV (x, A h)
8)\m—l

Ben (%)

m <V2ugn*1] + h

,\:0> " (56)
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for m = 2,3, ... The boundary condition for each of the given above equation is
Bu([)m] (x) = 0m,1 (g(x) — Bup(x)) for xe I, (57)

m=12:. . 8086 1=16n;=0fcro 2.
The solution of the boundary problems (54)—(57) is calculated in [6, 8] using the boundary
element method. In this paper for this purpose the method of fundamental solutions is applied.

3.1.1. HAM for problems with spatially varying coefficients

In this subsection the spatially varying coefficients of Eq. (49) are considered. Therefore, the oper-
ator A has the form

A=V-(56V) (58)

where k(x) is a function of the spatial variables, describing the material nonlinearity.
For the operator (58), Eq. (19) is

O™ AU(x, A\, h) _ O™ (V- (k(x)VU(x, A\, h))) (59)
I\ s e O™ o :

By making m differentials of q. (59) and using A = 0, the following formula is obtained,

o™ A A\ h =

%ﬁ”l) ¥ =mV - (ﬁ(x)Vu(() ‘)(x, h)) 4 (60)
Therefore

OmAU(x, \, h) o

e = = mAug ](x, h). (61)

Equation (61) shows, that obtaining Eq. (59) for the operator (60) is just applying the opera-

[m]

tor (60) to the function uy ' (x, h).

3.1.2. HAM for problems with coefficients varying with computed quantity

The procedure to obtain Eq. (49) in the case of the coefficients varying with computed quantity is
presented below. The nonlinear operator under consideration is in the form

Au(x) =V - (k (u(x)) Vu(x)) (62)

where u(x) is an unknown function.
Let us assume that the coefficient is linearly dependent on the unknown function

k(u(x)) = ap + aju(x). (63)
Therefore, Eq. (19) for the operator (62) with the function u(x) = U(x, A, h) has the form
OMAU(x, A, h) O™ (V - (k(U(x, A, h))VU(x, A\, h)))
it SN A S : (64)
8)\771 %) a/\m S0

The mth order differential deformation is given by

M AU(x, A, h)
8/\171, S

= m! (a0V2uo(x) +or Y <ug”‘l‘ﬂ (x) V2ull(x)
0 i=1

[m—1—i] [i] [m—1—i] (i)
Lo 0 dug (x) | Qug™ Y (x) oy <x>>), (65)

ox ox oy oy
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3.2. HAM for the equation of fourth order

The Homotopy Analysis Method is implemented to the problem described by two nonlinear coupled
biharmonic equations. The system of equation is in the form

Anu(x) = fi(x),  Au(x) = folx), (66)

for x € {2, where Ay, Ay are nonlinear partial differential operators of order 4, f;, f» are known
functions, {2 is the region, which the equations are described in. The points in the region are in
the form x = (21, ..., xx). The functions to calculate are: u(x) = (ui(x), us(x)). The boundary
conditions are as follows,

Byuy (x) = g1(x) for xe T,
Bouy(x) = ga(x for xe I,
2u1(x) = g2(x) (67)
Bsus(x) = g3(x) for xe I,
Bjua(x) = g4(x) for xe I,
where I' is the boundary of 2.
To implement the Homotopy Analysis Method in Eq. (27) they are rewritten in the form
(1 = X) Lo1 (U(x, A\, h) —ug(x)) = hA (A1U(x, A, h) — fi(x)), (68)

(1= A) Loz (U(x, A, h) — ug(x)) = hA (A2U(x, A, h) — fa(x)),

where the operators Lg;, Lo2 have to be determined. For the equations of fourth order it is chosen
that: Loy = V4 and Loy = V4, where V* is the biharmonic operator.
Therefore Egs. (68) are as follows,

(1 —X) VH(U(x, A\ h) = ug(x)) = hA (A1U(x, M\, h) — f1(%)),

(1= ) V4 (U A, B) = ug(x)) = hA (A3U(x, A, ) = fo(x)) Lo

To obtain the deformation derivative the boundary-value problems have to be solved

V'ug" (x) = R n() (70)
where

Rin(x) = h(Anuo — fu(x)), : (71)

AR R (v‘* m=1] 4 5, 9" l“g;ﬁ’f Ach) )\:0> : (72)
for n =1,2, m = 2,3,..., with the boundary conditions

Bl“o1(x t) = 0m1 (1(x) — Biug1(x)),

Byuf (x,£) = 6,1 (92(%) — Byuoa (x),

Byulld (x,) = 8,1 (93(x) — B3uoa(x)), o

Byl (%) = dm,1 (94(%) = Bauo(x)),

forxellmdm=12 .., ,8i1=1 8;:=08H>1
One of the numerical experiments presented below is based on the nonlinear operator in the form

Au(x) = V2V2u(x) — aoG (u(x)) (74)
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where u(x) is a vector of two unknowns. It is assumed that the problem is two-dimensional, so
x = (21, 22). The operator G is defined as

0%u1(x) ug(x)  0%uy(x) %ua(x) 0%y (x) 9%uy(x)

= G(u { = - ; : —2 ;

i R 0% e o t ey Oz} 01029 Ox1029 v

For operator (74), Eq. (19) has the form

M AU(x, A\, h) ;LN S

L S e B - 2 S

T LS e (V*V*u(x) — ag u(x)) T (76)

Realisation of m derivatives in Eq. (76) and introducing A = 0 gives

0" AU(x, A\, h) i T ey o = {m [m] li]

AR aog Ye (11,1 (x), ul (x)), (77)

=2 and-dyr =1, 0y = 0derm > 2.
So, the procedure of obtaining the solution by HAM supported by FSM is concluded.

4. NUMERICAL EXPERIMENT
4.1. Steady-state heat conduction in material with spatially varying conductivity

The equation for the steady-state heat conduction in material with spatially varying conductivity
is
V- (k(x)VT(x)) = q(x) for x € £} (78)

where T is temperature, considered region is 2 = {(z,y)|0<2z <1, 0 <y <1}, conductivity
coefficient is taken as

B(x)=1+z+y+zy (79)
and the function

q(x) = weos(rzy) (z(1 + z) + y(1 +y)) — w2 sin(rzy)(2? + y*)(1 + 2 + y + 2y). (80)

The boundary condition is

T(x) = 1 + sin(wzy) for xe I (81)
where

'={(z,y00<2<1,y=0}U{(z,9) |0z <], y=1}

U{(2,9)|y=0,0<y<1}u{(z,y)|z=1,0<y<1}.

The considered problem has been solved by two methods: Picard iteration and Homotopy Anal-
ysis Method. Both are based on the fundamental solution method. The used formulas for the HAM
are presented in Subsection 3.1.1. To implement method of Picard iterations the following formula
is written, “

1 T *=1)(x)

X (k=1) (x

forsde=l; 21 25
The results are presented in Table 1. Both methods give results with the same demanded accuracy.

In considered case the Picard iterations leads to the required solutions performs less calculations
than the Method of Homotopy Analysis.
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Table 1. Mean square error of results obtained by Picard iterations and the Homotopy Analysis Method

i E, Picard E, HAM
iterations

1 | 0.00199321 0.00321878

2 | 0.000148845 | 0.00111504

3 | 0.0000209764 | 0.000395614
4 | 1.66785-10~°% | 0.000155713
5 | 2.38598-10~7 | 0.0000650707
6 0.0000288127
¥ 0.0000133659
8 6.45732 -10~°
9 3.25019 - 106

4.2. Steady-state heat conduction in material with conductivity varying with
temperature

The equation describing the heat conduction in the material with conductivity varying with tem-
perature is

V- (k(T(x))VT(x)) + q(x) = 0, (83)

the considered region is a square 2 = {(z,y)|0<2<1,0<y <1} It is assumed that in the
region there are no sources, therefore ¢(x) = 0.
The boundary conditions are as follows,

T@) =T,  for li={(s,y)|s=00<y<1},

T@) =T,  for B={(@y)|s=10<y<1}, i
2r@)=0  for L={(&y)]z=00<y<1}Uu{@y)|s=10<y<1},

mn

where I' = I'} + I'5 + I'3 is the boundary of the region.
The conductivity is described by the formula

k(T(x)) = ap + o T(x). (85)
The considered problem has been solved by two methods: Picard iteration and Homotopy Anal-
ysis Method. Both are based on the fundamental solution method. The used formulas for the HAM

are presented in Subsection 3.1.2. To implement method of Picard iterations the following formula
is written

(86)

| 1 (T V(x) [ (a7t D(x)\" [oT*-Dx)\’
VZT(’“)(X):H(TWD(X)) T < = >+<—8y )

In this experiment the solutions have been calculated for a set of values of parameters ag, o .
The solutions are obtained with accuracy e < 10~°. Table 2 consists of the number of iterations (for
Picard iterations) and the number of deformation derivatives (in the Homotopy Analysis Method)
calculated to obtained the results with demanded accuracy. It looks that the HAM needs a few more
calculations than the Picard iterations.

The experiment has been performed also for other values of parameters o, o that it is put
in Table 2. But for some values (i.e. a9 = 0.075, oy = 0.925) the iteration process diverges, so
the solution has been not reached. The homotopy analysis method in this case gives results with
demanded accuracy. The error of the results for the parameters g = 0.075, oy = 0.925 is presented
in Table 3. The error of the calculations performed by Picard iterations increases at every next step.
Finally, the solution is not reached. But calculations provided by HAM converge to the solution.
The error defined by the next deformation derivative decreases.
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Table 2. A number of iterations (for Picard iterations) Table 3. The number of iterations and elements in
and number of derivative deformations (in the HAM) Taylor series used in calculation for ag = 0.075,
= 3925
number of | number of Mean-square error
iterations | deformation A Picard iterations HAM
derivatives 1 0.010202 0.0100024
ap =09 a; =01 2 2 2 0.002952 0.00374584
ag =08 a3 =02 3 4 3 0.002124 0.00208754
ap =0.7 a1 =03 3 0 4 0.002026 0.000996911
ag=0.6 oy =04 4 5 5 0.011988 0.000478022
ag=0.5 oy =05 4 6 6 0.183888 0.00023584
ag =04 a, =06 5 7 7 0.010202 0.000114273
ap =03 a; =07 7 8 8 = 5.19416 - 10~°
o ==0.2 “ar =08 8 9 9 = 2.14415 - 10~°
10 B e 103

4.3. Large displacement of an elastic plate

The static large displacement of an elastic plate is described by the system of von Karman’s equations

SslREs Bk
M oape D + DG(w,F), (87)
VAF = —gG(w,w) in R (88)

where w = w(z,y) is a plate displacement, F' = F(z,y) is an Airy’s type function, V4 is the
ER3
T5(1-07)

Young’s modulus, Poisson’s ratio, #* is a region 2-D occupied by the plate. The operator G is
defined by Eq. (75).

At every boundary point the set of boundary conditions is determined. For clamped edge of the
plate the conditions are

g_‘s el i gy feosestiBl drsig (89)

biharmonic operator, D = is a rigidity of the plate of thickness h; F, v are, respectively,

Fig. 3. The large deflection of the plate
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where s is the boundary point.

For the considered example the parameters of the plate are chosen as h = 0.02m, F = 2.068 -
107 Pa, v = 0.3 and the external loading ¢ = 2.5 kg/m?.

The result presented in Fig. 3 shows the deflection of the plate obtained by HAM. The number
of used derivative deformations is equal to 5. The large deflection of the plate is compliant the
expected one.

5. CONCLUSIONS

In this paper two methods are proposed to solve nonlinear problems. Both are based on the method
of fundamental solutions. The obtained results show that the methods are good tool to solve such
systems. Unfortunately, the Picard iteration procedure has some defects. The use of this method is
limited to the problems which contain linear part in the operator. For some cases the method is not
convergent. At the other side the homotopy analysis method has no such limitations as iterations.
But, due to luck of literature, in most cases user is obliged to determined deformation derivatives by
him self. Concluding the results of numerical experiment we can say that the method of homotopy
analysis gives results for the considered examples with demanded accuracy.
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