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It has been recognized by many authors that the enforcement of the essential boundary conditions is not 
an easy task, when it comes to moving least square (MLS)-based meshfree methods. In particular, the 
modelling of non-linear problems requires high approximation accuracy in order to obtain a solution. This 
paper addresses the boundary approximation accuracy of MLS-based meshfree methods and shows more 
specifically its significance with respect to the imposition of essential boundary conditions by the penalty, 
the Lagrange multiplier method and their combination which results in a modified variational principle. 
The later is augmented by a stabilization term which uses individual stabilization parameters determined 
for each numerical integration point by an iteration procedure . 

This methodology is demonstrated on shell deformations in non-linear structural mechanics involving 
the Green strain tensor and two different hyper-elastic material laws. 
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1. INTRODUCTION 

The last decade witnessed increasing research activity in so-called meshfree methods, as these meth­
ods can deal especially well with problems characterized by large deformations, changing domain 
geometry, or necessitate higher order approximation continuity. These are areas, where the more es­
tablished finite element method (FEM) exhibits shortcomings. Essentially, meshfree methods do not 
require a rigid background mesh which is beneficial as finite element modelling of large deformation 
problems usually leads to mesh distortion which makes re-meshing necessary. In most large-scale 
numerical simulations of physical phenomena however, a high percentage of the overall computa­
tional efforts is expended on technical details connected with meshing. These details include, in 
particular, grid generation, mesh adaptation to domain geometry, element or cell connectivity, grid 
motion, and separation of mesh cells to model fracture, fragmentation and free surfaces. Moreover, 
in most computer-aided design work, the generation of an appropriate mesh constitutes, by far, the 
most costly portion of the computational analysis. 

Clearly, meshfree methods have much potential for alleviating some of the difficulties associ­
ated with finite element analysis. Prominent examples are the diffuse element method [18], the 
element-free Galerkin method [4], the reproducing kernel particle method [14], the partition of 
unity method [17] and the hp-cloud method [10]. In particular, the use of moving least squares 
(MLS) [13] within meshfree methods was found very appealing as it results in a smooth global 
approximation of the solution function . 

However, when applying MLS-based meshfree methods to an elliptic PDE the enforcement of the 
corresponding essential boundary conditions provides difficulties. The reasons for this are twofold. 
Firstly, the direct and explicit enforcement of essential boundary conditions, which is the com­
mon procedure in FEM, is not available for meshfree methods. This is rooted in the fact that the 
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Finally the second order derivative of the energy storage function with respect to C provides the 
constitutive tensor C, 

C = 2 8~:C = = 2 [b16ij6rs + b2 ((C-1)ij6rs + 6ij(C- 1)rs) + 

+ (b3 + b4)(C- 1)ij(C- 1)rs - (b5 + b6)(C- 1)'ir(C- 1 )sj] , (B8) 

with the following coefficients, 

-! [ 1 11 - 57 -2 1038 -3 59991 -4 ] 
b) = C RI3 3 ION + 175N2 Il + 1750N3 h + 67375N4I1 + 8758750N5 h +... , 

1 -! [1 1 - 33 - 2 38 - 3 519 - 4 ] 
b2 = -"3CRI3 3 "2 + 5N h + 350N2h + 875N3 h + 26950N4 h + ... , 

1 [1- 1 -2 33 -3 38 -4 519 -5 ] 
b3 = gCR "2h + 5N h + 350N2IJ + 875N3 h + 26950N4 h +... , 
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