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It has been recognized by many authors that the enforcement of the essential boundary conditions is not
an easy task, when it comes to moving least square (MLS)-based meshfree methods. In particular, the
modelling of non-linear problems requires high approximation accuracy in order to obtain a solution. This
paper addresses the boundary approximation accuracy of MLS-based meshfree methods and shows more
specifically its significance with respect to the imposition of essential boundary conditions by the penalty,
the Lagrange multiplier method and their combination which results in a modified variational principle.
The later is augmented by a stabilization term which uses individual stabilization parameters determined
for each numerical integration point by an iteration procedure.

This methodology is demonstrated on shell deformations in non-linear structural mechanics involving
the Green strain tensor and two different hyper-elastic material laws.

Keywords: Meshfree methods; moving least square method; essential boundary conditions; shell analysis

1. INTRODUCTION

The last decade witnessed increasing research activity in so-called meshfree methods, as these meth-
ods can deal especially well with problems characterized by large deformations, changing domain
geometry, or necessitate higher order approximation continuity. These are areas, where the more es-
tablished finite element method (FEM) exhibits shortcomings. Essentially, meshfree methods do not
require a rigid background mesh which is beneficial as finite element modelling of large deformation
problems usually leads to mesh distortion which makes re-meshing necessary. In most large-scale
numerical simulations of physical phenomena however, a high percentage of the overall computa-
tional efforts is expended on technical details connected with meshing. These details include, in
particular, grid generation, mesh adaptation to domain geometry, element or cell connectivity, grid
motion, and separation of mesh cells to model fracture, fragmentation and free surfaces. Moreover,
in most computer-aided design work, the generation of an appropriate mesh constitutes, by far, the
most costly portion of the computational analysis.

Clearly, meshfree methods have much potential for alleviating some of the difficulties associ-
ated with finite element analysis. Prominent examples are the diffuse element method [18], the
element-free Galerkin method [4], the reproducing kernel particle method [14], the partition of
unity method [17] and the hp-cloud method [10]. In particular, the use of moving least squares
(MLS) [13] within meshfree methods was found very appealing as it results in a smooth global
approximation of the solution function.

However, when applying MLS-based meshfree methods to an elliptic PDE the enforcement of the
corresponding essential boundary conditions provides difficulties. The reasons for this are twofold.
Firstly, the direct and explicit enforcement of essential boundary conditions, which is the com-
mon procedure in FEM, is not available for meshfree methods. This is rooted in the fact that the
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approximation functions do not possess the Kronecker-Delta property. Secondly, the boundary areas
exhibit a limited particle support, as there is no support from outside the problem domain. In order
to ensure the minimum necessary support, the influence zones of those particles adjacent to the
boundary have to be larger than within the domain which consequently results in a significantly re-
duced approximation accuracy at and near the boundary. This fact causes difficulties, if the problem
formulation involves boundary integral expressions.

As mentioned before, the traditional boundary collocation method used in FEM can not be
applied to MLS-based meshfree methods. Wagner and Liu [24] therefore proposed to modify the
meshfree shape function in such a way that they interpolated on particles having essential boundary
conditions applied. The Dirichlet boundary conditions could be explicitly imposed on the collocation
points, which are the boundary particles, very much as in FEM. This procedure has been called
modified boundary collocation method. The solution at the boundary particles was obtained with
the highest numerically possible precision which made it numerically very stable.

The procedure appears to be very straightforward as the essential boundary conditions can be
directly enforced, after the discrete equation system has been modified. However, the implementation
is very involved. Firstly, in order to avoid large scale matrix multiplications those parts of the discrete
equation system, which have to be modified, must be determined beforehand. This requires an
elaborate algorithm as the boundary particles only interact with certain particles in their vicinity
and correspondingly, the majority of the discrete equation system is not affected. Secondly, the
coefficient matrix is usually stored in a sparse storage scheme so that only the band structure of it
is considered. After the modification of the coefficient matrix some elements of the original matrix
which happen to be zero become non-zero in the modified matrix. This fact must be taken into
account, when the structure of the sparse storage scheme is initially ascertained.

Another issue is that during the transformation of the discrete equation system the original
coefficient matrix and the modified one must be kept allocated at the same time. Thus, already
medium size problems can exceed the memory limits of a single workstation.

Furthermore, despite the fact that the boundary condition enforcement is precise at the boundary
particles, it is not on the Dirichlet boundary as a whole. This is due to the characteristic of MLS-
based meshfree methods that the boundary conditions are literally enforced only on the boundary
particles but not between them. In case of the Gauss quadrature however, the integration points are
distributed between the boundary particles, where the boundary conditions are not exactly enforced.
Whereas the finite element method can fulfill constant essential boundary conditions exactly on the
entire Dirichlet boundary, this is not the case for meshfree methods using the modified boundary
collocation method. Especially for a curved boundary a sufficiently dense particle distribution on
the boundary must be ensured in order to provide an accurate solution on the boundary and
consequently for the whole domain.

Using the penalty method is probably the easiest way to impose the essential boundary condi-
tions [3, 15]. It results in a banded and positive definite coefficient matrix of the discrete equation
system. The boundary enforcement accuracy corresponds to the magnitude of the penalty param-
eter, which, accordingly, has to be set to a fairly high value. However, the solution is significantly
dependent on the value of the penalty parameter considering that the penalizing physically repre-
sents the stiffness of fictional springs enforcing the constraints. If the essential boundary conditions
affect large parts of boundary, the problem can become unsolvable as the penalty treatment basi-
cally replaces parts of the coefficient matrix of the discrete equation system by values of very high
magnitude which are not related to the initial formulation which describes the physical state of the
body under consideration [7]. Especially in MLS-based meshfree methods the affected parts of the
coefficient matrix are much larger than in FEM due to the larger particle support.

An alternative is the Lagrange multiplier method which introduces to the problem formulation
another unknown field the so-called Lagrange multipliers [4, 6, 23|. Even if the implementation
of this method is not complicated and a very high boundary condition fulfillment accuracy can
be achieved, it has to deal with two main disadvantages. Firstly, the problem size is increased as
it contains a further unknown field and secondly, the coefficient matrix of the discrete equation
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system is neither positive definite nor banded. This procedure is therefore not suitable for larger
problems.

These drawbacks can be partly avoided, if the Lagrange multipliers can be identified with a phys-
ical quantity corresponding to constraint reaction resultant. This leads to a modified variational
principle [16] which holds the benefit that the coefficient matrix of the discrete equations system is
banded. However, the boundary enforcement accuracy is significantly less compared to the original
Lagrange multiplier method. The authors mentioned that an increase of the particle distribution
near to Dirichlet boundary could enhance the imposition of essential boundary conditions. Never-
theless, the presented examples only consider linear geometry and material, whereas non-linearity
requires higher accuracy to achieve a reasonable convergence rate.

The insufficient boundary enforcement accuracy of this kind of modified variational principle can
be improved, if a penalty term is added [19]. The stabilized modified variational principle holds the
benefit that the coefficient matrix is not as much manipulated as in case of the penalty method,
because the penalty term only serves for stabilizing purpose and so the magnitude of the penalty
parameter can be set lower than in case of the penalty method. Nevertheless, the stabilization term
ensures that the coefficient matrix is not ill-conditioned.

Related to this approach is the so-called augmented Lagrangian method [12, 21] which was initially
proposed in order to improve the Lagrange multiplier method by avoiding an ill-conditioned discrete
equation system and so ensuring a higher convergence rate.

This paper now is organized as follows: After a brief introduction to the moving least square
method in Section 2, a modified variational formulation is presented in Section 3. In Section 4 a new
technique is proposed which allows to stabilize the modified variational principle introduced in the
previous section in a flexible and adaptive way. The last section demonstrates the applicability of
our problem formulation on various examples ranging from two-dimensional problem configurations
to demanding shell structures. Further, the impact of non-linearity in geometry as well as in material
is studied with regard to the boundary condition imposition accuracy and numerical stability.

2. MOVING LEAST SQUARE METHOD

In the moving least square method [13] an approximation for a solution is constructed based on
a given set of particles. In the following we outline the MLS method briefly.

Let us consider any function u(z) defined over the field 2. A possible approximation for u(z) is
defined by a complete polynomial P(z) and its non-constant coefficients a(x),

u'(z) = P(a) - a(a), (1)

where scalar products of vectors are denoted by a dot. The basis polynomial is chosen to be of second
order and of the Pascal type. To each particle, a so-called weight function ¢ with compact support
is attached. A parameter p defines the so-called influence radius of ¢. The sum of all particles with
coordinates z;, that support the point z, constitute the set A. With the help of this set a weighted
least square fit in the vicinity of a point 2 can be constructed according to

Ja(@)) = Y- [Plar)-aa) — u(en & (2221 )
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In our case function @ is taken to be a quartic C3-continuous spline.

The unknown coefficients a(z) can be determined by minimizing the functional J with respect
to a(z). Then the substitution of the coefficients a(z) in Eq. (1) provides the approximation of u(x)
as follows,
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where M(z) is the so-called moment matriz of the weight function @,

M) = 3 PG Plar) @ (222 @
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e

and u; are the so-called particle parameters. Lancaster and Salkauskas outlined in [13] that if the
basis polynomial P € C™(£2) and the weight function @ € C'({2), then we have for smoothness of
the global approximation u”(z) € C*(2), where k = min{m,(}. In this work a complete polynomial
of second order is utilized so that the MLS approximation possesses C? continuity everywhere.

The choice for the particle influence radius p is critical, as it effects stability and accuracy of the
method. In this work the influence radius is determined automatically by a computer algorithm.
Essentially, each particle has assigned individual radii for each positive and negative co-ordinate
direction. Since the numerical integration resorts to a finite element background mesh, this mesh
is also utilized to ensure a suitable particle influence radius setting. That is, each particle has to
support those particles which are connected to the same element, we call direct neighbour particles.
Additionally, the direct neighbour particles of the former are included as well which we call indirect
neighbour particles. This method is numerically very efficient, because no search algorithm is needed
which has to account for all particles in the domain. It also allows for high adaptivity and flexibility,
when it comes irregular particle distributions.

3. A MODIFIED VARIATIONAL PRINCIPLE

Let us consider a non-linear boundary value problem on domain B with boundary 0B. Dirichlet
boundary conditions are prescribed on 0Bp C 0B and Neumann boundary conditions are prescribed
on OBy = 9B\ 0Bp .

Now let F(u) = 14 Grad u be the deformation gradient and E(u) = (FTF—1) the Green strain
tensor. Assume a hyperelastic material behaviour and let ¢(E) define the stored energy function
per unit volume. Further, let W,,; define the external potential as follows,

Wca;t(u) :—/b-udV—/ f'udA, (5)
JB 0BNn

where b is the body force and t is the external traction vector prescribed on By . dV is a volume
element of domain B, whereas dA is a surface element of its corresponding boundary 0B. We start
from the following variational statement,

5H(u):/s;5EdV—/b-5udV—/ t-dudA =0, (6)
B B oBn

where S is the second Piola—Kirchhoff stress tensor given by

Sl agga) . (1)

The double dot operator (:) denotes the scalar product of tensors. The above functional corresponds
to the following Euler-Lagrange field equations,

Div(FS)+b =0 in B, FSn—t=0 on 0By, (8)

where n defines the normal vector at the boundary. These field equations are supplemented by
essential boundary conditions, the so-called Dirichlet boundary conditions

u=1u on 9Bp. (9)
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To incorporate the essential boundary conditions in the functional itself, that is to enforce these
conditions as Euler-Lagrange equation, the functional (6) is modified in the following way,

6H(u):/BS:5EdV+/aB 5(A-(u—1)) dA—/l;b-o'udV—/ t-6udA=0. (10)

Making use of Gauss divergence theorem this formulation is transferred back to its strong form
which is the integral form of the Euler-Lagrange equations,

3

I (u) = —/Div(FS)-éudVJr/ FSn-éudA+/ A-dudA
B oB 9Bp

+/ 6A-(u—ﬁ)dA—/b-5udV—/ t-oudA=0. (11)
oBp B BN

Since this integral equation must be valid for any arbitrary du, we can extract the Euler-Lagrange
equations (8) and identify the Lagrange multipliers as A = —FSn on 9Bp . Note that the second
term in Eq. (11) is an integral expression over the entire boundary 9B. The final problem statement
takes the following form,

6H(u)=/S:(5EdV—/ FSn-oudA — 0(FSn) - (u—1u)dA
B OBp oBp

—/b-audV—/ t-6udA=0. (12)
B BN

4. A STABILIZED MODIFIED VARIATIONAL PRINCIPLE

The modified variational principle outlined in the previous section heavily relies on the accurate
evaluation of the boundary integral expression. This is due to the fact that the definition of the
Lagrange multipliers A = —FSn relates to Gauss’s divergence theorem which states the equivalence
of a volume and a surface integral expression. This equivalence however, is not given anymore, if
the numerical accuracy is substantially lacking. Consequently, the essential boundary condition ful-
fillment can not be ensured anymore which also affects the solution for the entire problem domain.
Breitkopf and his co-workers [5] as well as De and Bathe [8] noted that MLS-based formulations can
not be as accurately integrated due to the non-polynomial character of the meshfree approxima-
tion function. Dolbow and Belytschko also made the misalignment between particle support zones
and integration cells responsible for the reduced numerical integration accuracy [9]. Especially the
spherical particle influence zone was said to be disadvantageous. Therefore they proposed a so-
called bounding box technique to match particle support and background mesh and so to improve
the performance of the integration.

However, it can also be found that the meshfree approximation quality close to the boundary is
significantly worse than within the domain. This is clear, as the particle support of the boundary
area is less than that of the domain interior and consequently, the influence zones of those particles
close the boundary must be chosen larger than within the domain in order to compensate this lack
of support. Larger particle influence zone though, result in a solution approximation which is less
local and therefore less accurate. Consequently, the mathematical equivalence of volume and surface
integral expressions is disturbed and so, the solution behaviour can become unstable.

An approach to stabilize the modified variational principle introduced in Section 3 is to incorpo-
rate an additional stabilization or penalty term, the purpose of which is to balance out the lacking
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boundary approximation and boundary condition enforcement accuracy. The problem formulation
introduced in the previous section is then extended as follows,

011 (u) =/ S:6EdV—/ FSn-dudA — O(FSn) - (u—1u)dA
B 9Bp 9Bp

+ 0 (u—ﬁ)-éudA—/b-éudV—/ t-oudA =0, (13)
9Bp B By

where the fourth term in Eq. (13) is a stabilization term together with the stabilization parame-

ter 3 which is constant on dBp . The idea is however, to keep the magnitude of the stabilization

parameter (3 as low as possible to avoid an ill-conditioned discrete equation system.

In case of a linear problem Nitsche showed the existence of a certain minimum positive constant
which ensures that the coefficient matrix of the discrete equation system is positive definite and
the solution is approximated within optimal error bounds [19]. This constant could be related to (3
and was said to be dependent on the used basis polynomial and the chosen discretization of the
solution space. The latter relates in meshfree methods to the covering of the problem domain B by
the particle support zones which basically puts on geometric constraints on the intersections [11].

Applying this idea to solid mechanics we find, similar to the augmented Lagrangian method [23],
that the material parameters strongly influence the determination of the stabilization parameter.
Now it is desirable if a suitable value for the stabilization parameter [ is computed automatically.
To achieve this it was proposed to solve a general eigenvalue problem the following form,

Ax = \Bx, (14)

with the surface part of the stiffness matrix denoted by matrix A and the volume part by B. The
maximum eigenvalue was suggested to be taken as stabilization parameter [11]. Preliminary tests
showed however, that this procedure leads to a magnitude of the stabilization parameter which
is already at penalty levels. Thus, the stabilization term is dominating the problem formulation.
Furthermore, in meshfree methods the boundary enforcement error is varying depending on the
particle support. Therefore, it makes sense to consider the stabilization parameter as function of the
coordinates charts 0! and 02 which describe the boundary 0Bp . We rewrite the modified variational
principle Eq. (13) as follows

0IT(u) = /S:éEdV—/ FSn-odudA — §(FSn) - (u—1u)dA
JB OBp OBp

i B(6*, 02, ) (u—ﬁ)-5udA—/ b-dudV — / t-6udA=0. (15)
aBp JB BN
In the discretized domain this means that the stabilization parameter is computed for each inte-
gration point individually and is not constant on 9B. Inspired by an iteration procedure applied
to the augmented Lagrangian method [23] we are utilizing an iteration procedure to determine the
minimum necessary penalty value at each integration point in order to ensure solution stability and
a high convergence rate.

The idea is to run the problem first as geometrically linear one and to compare at each integration
point the error in the essential boundary condition enforcement ¢ with a given error tolerance 9,

e(0',6%, ;) = |uwi(0*,0%) — 0;(6",6%) | < 4. (16)

The value of this parameter ¢ is usually taken similarly to the limit of the convergence norm
of the displacement field used for the Newton-Raphson method. The magnitude of the error in
the boundary condition enforcement provides an indication of how much the constraint reaction
resultant is too low. Depending on whether the error is higher or lower than the given error tolerance
the stabilization parameter is increased or decreased correspondingly. Using these new adapted
stabilization parameters and assigning to all particle parameter zero values the problem is then
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solved again and the stabilization parameters are again modified if necessary. This process is repeated
until the error tolerance is achieved at all integration points. It usually takes about five to ten
iteration steps to determine a suitable stabilization parameter distribution. At the start of this
procedure 3(6', 6%, h;) is estimated for all integration points individually by the following expression,

Be", 6%, 4y = LT 8

0
where € is the boundary condition enforcement error evaluated after the first iteration step. During
the iteration procedure (0,62, ;) is successively increased or decreased depending on the error
of the boundary enforcement.

Note that in case of the augmented Lagrangian method the iteration procedure is undertaken
with respect to the stabilization parameters as well as the Lagrange multipliers, but the modified
variational principle Eq. (15) only requires the stabilization parameters to be obtained. That is the
error in the essential boundary condition fulfillment is compensated by the stabilization term.

For more details on the iteration algorithm the reader is referred to Appendix A.

(17)

5. NUMERICAL EXAMPLES
5.1. Study on essential boundary condition enforcement

In the following our aim is to study the applicability of the proposed stabilized modified varia-
tional principle on two different examples. Three different cases are distinguished: Firstly, using
the modified variational principle together with the iterative stabilization parameter determination
algorithm Eq. (15), secondly, using this modified variational principle with a constant and uniform
stabilization parameter 5 € 0Bp which is Eq. (13), and finally, applying instead of the modified
variational principle the conventional penalty method to enforce the essential boundary conditions.
That is, only the penalty term with a constant penalty parameter 3 is incorporated in the origi-
nal variational formulation Eq. (12), but not the other boundary terms which led to the modified
variational principle Eq. (13).

Furthermore, two different material laws are utilized. These are the linear Saint-Venant—Kirchhoff
model with the material parameters Young’s modulus E and Poisson’s ratio v and a non-linear
statistically based model of hyperelasticity proposed by Arruda and Boyce [2] which involves as
constitutive parameters the shear modulus Cp, the bulk modulus x and parameter N. The con-
stant N addresses the limited extensibility of the macromolecular network structure of the rubber
material. The details of the model are presented in Appendix B.

Cantilever beam under pressure loading

The first study is a cantilever beam which is subjected to a constant pressure load on its top
surface. It makes use of the Saint- Venant-Kirchhoff constitutive model and is illustrated in Fig. 1.
The beam is modelled using 26 particles in longitudinal and only 2 in thickness direction. The
stabilization parameters in the modified variational principle are kept uniform on 9B, and the
results are compared with those achieved applying the penalty method instead. The boundary
enforcement for different magnitudes of stabilization and penalizing is displayed in Fig. 2 and the

E_=2.0x10“
T DR I e~ R MR

h=1.0

Fig. 1. Problem definition
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corresponding tip deflection in Fig. 3. Note that the curves illustrating the tip deflection fall into
one single line except for the one which represents the solution obtained using the penalty method
with 3 = 1.0 x 10° denoted by the dotted blue curve. We further find that the enforcement of the
essential boundary conditions is best, if 3 is chosen to 1.0 x 10'2. The accuracy of our problem
formulation is identical to the penalty method based formulation for parameters 5 = 1.0 x 102 to
= 1.0 x 10°. The penalty method fails to provide meaningful results for penalty parameter values
8 < 1.0 x 10°. Using our proposed modified variational principle the stabilization parameter 3 can
be chosen absolutely freely in order to achieve an accurate result for the tip deflection. Nevertheless,
the accuracy of the boundary enforcement and the convergence rate become poorer for decreasing
stabilization parameter values. In case of the modified variational formulation the lack of boundary
approximation accuracy is for low values of the stabilization parameter quite significant, nonetheless
we find good solutions for the tip deflection. The reason might be that the area having essential
boundary conditions applied is minor compared to total surface of the problem domain. Moreover,
there is no variation in the boundary approximation accuracy on all four affected particles and all
integration points used for the surface integration of 8.

The deformed configuration depicted in Figs. 4 and 5 are modelled with the modified variational
principle setting 3(6', 6%, ;) = 0 on dBp. Since the pressure acts during the entire simulation
always perpendicular to the surface, the deformation process results in a kind of an ellipsoid.

Next, the above cantilever beam is again modelled with the same particle discretization but
using the non-linear hyperelastic material law instead of the linear Saint-Venant-Kirchhoff and is
depicted in Fig. 6.

Similar to the first study the stabilization term in the modified variational principle is not
needed. It is therefore simulated with 3(0', 02, 4;) = 0 on 9Bp . The displacement diagram for the
cantilever beam’s tip is shown in Fig. 7 and the final deformed configuration in Fig. 9. The use of
the penalty method is again critical, because only with the knowledge of the solution the correct
penalty parameter can be determined.

A i DL L
h=1

Fig. 6. Problem definition
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Fig. 7. Displacement diagram
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Fig. 8. Deformed configuration at loading parameter Fig. 9. Deformed configuration at loading parameter
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Square sheet under dead loading

The next study’s problem configuration is depicted in Fig. 10. It is a square sheet which is clamped
at all four edges and subjected to a dead loading. It can be frequently found in literature. This
problem is much more sensitive with respect to choice for the stabilization or penalty parameter
than the cantilever beam presented in the previous paragraph. This is clear, as the analytical solution
for cantilever beam’s deflection only contains third order exponents of the longitudinal coordinate,
whereas for the clamped plate’s deflection fourth order exponents of the in-plane coordinates.
Considering that the approximation accuracy plays a crucial role especially on the boundary,
different discretization levels are tested starting from the coarsest grid with 9 x 9, further 13 x 13,
17x17, 21 x 21 and the finest with 31 x 31 particles along the in-plane directions. Each configuration
has three particle layers in thickness direction. A larger number of particles in thickness direction
does not significantly improve the accuracy of the results. This fact is conceivable, as the solution of
the displacement field primarily changes along the in-plane directions. As mentioned before we find
on the boundary a particle support deficit which must be compensated by enlarging the influence
zones of particles located in the boundary area. An increased particle support however means a
decrease of approximation locality and thus accuracy which is crucial for the modified variational
principle. In order to circumvent this dilemma it is also meaningful not only to analyze equally
spaced particle distributions, but additionally grids that are denser towards the boundary. This is
achieved by shifting the particles from the center of the plate gradually to its edges. Therefore we
distinguish for each discretization level another four different particle distribution densities ranging

Fig. 10. Problem definition
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from equally spaced to strongly concentrated on the boundaries. By concentrating the particles
towards the plate’s edges the boundary and the inner domain approximation accuracy is expected
to be more in balance, what should improve the overall applicability of the proposed modified
variational principle. It is important to stress that the particle density is continuously increased
towards the boundary. Otherwise, there would be jumps in the particle density and the particle
distribution would be too irregular resulting in a negative effect on the approximation accuracy.

At first, the Saint-Venant—Kirchhoff constitutive law is applied with the material parameters
Young’s modulus E = 2.0 x 10* and Poisson’s ratio v = 0.3. The use of the penalty method exhibits
the general difficulty that various solutions can be obtained for penalty parameters ranging from
(3 = 1.0 to 1.0 x 10'2. This means the problem behaves too soft or far too stiff. The correct result for
the midpoint deflection however, can be found for 5 =~ 1.0 x 10, whereas the boundary condition
enforcement is always the best for 3 = 1.0 x 10'2. It is therefore impossible to find out a suitable
penalty parameter without the knowledge of the correct result.

A

The modified variational principle provides with 3(8', 62, ;) = 0 on OBp for geometrically linear
modelling a solution for the midpoint deflection which is the best achievable for each discretization
level. The essential boundary condition enforcement however, is poor so that geometrically non-
linear modelling fails for whatever particle distributions without utilizing the stabilization term.

regular9x9x3 —
concentrated 9 x 9 x 3 .
regular 13x 13 x 3% ~=——1
concentrated 13 x 13x 3 .
regular 17 x 19 x 3: -~rreee
concentrated 17 x 17 x 3 .
regular 21 x 21 x 3 ]
concentrated 21 x 21 x 3 = 4
regilar3t x31% 3 —— g
concentrated 31 x 31 x 3 .

qx 1.0e-04

3 4 )

midpoint deflection

Fig. 11. Displacement diagram of the midpoint deflection — linear material

Therefore, the iteration procedure introduced in Section 4 is now used to determine a suitable
stabilization parameter distribution 3(8', 62, ;). The load-deflection diagrams illustrated in Fig. 11
are modelled for different discretization levels. Each discretization level is simulated with a regularly
spaced particle distribution denoted by the continuous line and an increased particle density on
the boundary denoted by the dotted line. Note that the regular and the concentrated particle
distribution have each the same total number of particles. The boundary enforcement error tolerance
is set & = 1.0 x 1078, We find for discretization levels 17 x 17 x 3 and above that the minimum
stabilization parameter is determined to Bmin(6', #2) = 0 and for the coarser grids it does not exceed
B(6', 62, 4;)min = 15. The maximum value ranges from Bpmax(f', 62, 4;) = 5.0 x 107 — 1.0 x 10'°
for different discretization levels and modes, whereas lowest maximum stabilization parameter is
achieved for 31 x 31 x 3 particles regularly spaced. The particles distributions 9x9x 3 and 13 x 13 x 3
fail to provide a good solution for the midpoint deflection. The discretization levels 17 x 17 x 3
and 21 x 21 x 3 however, show good solution accuracy especially with the concentrated particle
distribution near the boundary. The solution of the finest grid does not significantly change, if we
apply higher particle density on the plate’s edges.
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In all cases the highest values for 3(0', 62, ;) are always found at the clamped edges of the
plate, whereas the lowest within the domain on the symmetry boundary. The minimum and max-
imum stabilization parameters can not be said to be significantly influenced by varying particle
distribution. It seems that the constitutive law and the magnitude of its parameters have the main
impact. This finding partly coincides with results of the next study, where the stiffness matrix norm

A~

is lower and correspondingly Bmax (01, 02, 4;) has much lower values compared to this example.

In the next step the non-linear statistically based constitutive law is applied which involves
as material parameters the shear modulus Cr = 10 x 103, the bulk modulus £ = 10.0 x 107 and
parameter N = 8. These parameter are chosen in such way to provide a similar rigidity as we had for
the Saint-Venant—Kirchhoff model. The boundary enforcement error tolerance is set § = 1.0 x 1075.
Compared to the previous study with the linear material law we find a substantially better boundary
condition enforcement accuracy and consequently much lower values for the stabilization parameters
Brmin (6, 62, 4;) = 0 and Bmax (01, 62, 11;) = 6.0 x 10* are computed in order to achieve a stable and
fast converging non-linear simulation. Especially the two highest discretization levels do not need
the stabilization term at all. For particle discretization levels 17 x 17 x 3 and above a higher particle
density on the plate’s edges significantly improves the boundary enforcement accuracy, but not
the midpoint deflection. Apparently, the boundary approximation accuracy provided by a regular
particle distribution is in case of the non-linear constitutive model already sufficient enough to
achieve the best possible solution for given number of particles. The convergence rate is almost as
high as having the penalty method used with the optimal penalty parameter. Therefore, the load-
deflection diagrams depicted in Fig. 12 are modelled for each discretization level with a regularly
spaced particle distribution only.

0.8 4
41206 1
<
5]
<
< 04 9%x9x3 ~—r— 1
< 1B X L3 X3 e rpren-s

17x37.%:3 5% ;

21 x21°x.3 = :
02 31X31X3 =mmmmm ;
155 2 2.5 3

midpoint deflection

Fig. 12. Displacement diagram of the midpoint deflection — non-linear material

5.2. Shell deformation examples

After demonstrating the excellent applicability of the modified variational formulation Eq. (15)
in the previous sub-section, three further examples are presented that feature large deformations
of shells. The problem configurations of all examples are discretized bv regularly spaced particle
grids and the modified variational principle is applied using the iterative stabilization parameter
computation algorithm to determine the stabilization parameter distribution 3(8', 62, @;) on B.
The boundary enforcement error tolerance is set § = 1.0 x 1078,
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Pinched cylinder with free edges

This example is a classical one, a cylindrical shell is subjected to two vertically opposite point loads
at its central points (point A) as depicted in Fig. 13. Assuming appropriate symmetry boundary
conditions, the cylinder is modelled using one octant with 6 particles in longitudinal, 16 in radial,
and 3 in thickness direction. The applied constitutive law is the Saint-Venant—Kirchhoff model. The
displacement diagram in Fig. 14 is illustrated for point A and point B. The diagram shows that the
deformation process is split into two parts. The first part is bending dominated which results in large
deformations for small loading parameters. The second part is characterized by a steep slope. In
Fig. 16, the final deformed configuration is displayed. It should be mentioned that this example has
been considered by many authors using different shell finite elements. In fact, our numerical results
are in good agreement with those reported in the literature. The iterative stabilization parameter
determination provides values 3(6', 62, ;) = 118.8 to 6.1 x 10'°. Even if the solution exhibits a final
boundary enforcement error € = 1.3 x 104 the modelling is stable and converges at high rates.

The remaining two applications make use of the non-linear statistically based model involving
as constitutive parameters the shear modulus C'g, the bulk modulus s and the parameter N.

E = 1.05 x 10'N/m’
v=03125 '
L=1035m"
R=4953m
h=0.094 m

Fig. 13. Problem definition

60 T T T T T T T T T

40 - point A DOF 3 —— |
point B DOF 2 ---------- ;

20

10

displacement

Fig. 14. Displacement diagram
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DOF3-displs DOF3-displs
3.0094 3.0094
2.3406 2.3406
16719 16719
- 10031 - 1,0031
0.33437 0.33437
-0.33437 -0.33437
-1.0031 -1.0031
-1.6719 -1.6719
2,3406 -2.3406
z -3.0094 z -3.0094
| & | &
N
6il 6il
Fig. 15. Deformed configuration at loading parameter Fig. 16. Deformed configuration at loading parameter
8.78 53.95

Square sheet under dead loading

The following example is a sheet which is simply supported at all four edges and subjected to a dead
loading on its top surface as illustrated in Fig. 17. Due to the symmetry conditions, only one quarter
of the sheet is modelled using 6 particles in length and 3 in thickness direction. The load-deflection
diagram is presented in Fig. 18 for the vertical midpoint displacement and deformed configurations
are shown in Figs. 19 and 20 for different loading parameters. This is of all our examples the most
sensitive one with respect to the discretization. That is the number of particle layers in length
direction is limited to maximal 7, if 3 particles layers in thickness direction are chosen. The best
results we can find however, if 5 particle layers are utilized in longitudinal direction. The stabilization
parameters in this particular examples is determined to 5(6', 62, i;) = 1.4 x 103 to 3.5 x 107.

C,=1.56
k= 1000
N=8
L=02

h =0.0003

. A
b

Fig. 17. Problem definition

Square sheet under pressure loading

Our last example is a square sheet which is simply supported at two opposite edges shown in
Fig. 21. On its top surface an uniform pressure load is applied. Due to symmetry conditions, only
one half of the sheet is modelled using 11 particles in length, 3 in width and 3 in thickness direction.
Despite a not very refined discretization this example performs a very large deformation which is
depicted in Figs. 23 and 24. The entire deformation process is displayed in Fig. 22 for the vertical
midpoint displacement. The examples is simulated with stabilization parameters 3(6', 62, ;) = 0.0
to 7.0 x 1075.



Essential boundary conditions in meshfree shell computations 137

0.2 ' , ; ; : e ;

0.18 | 1
0.16 | 1
0.14 | 1
0.12 | 1
0.1} 1
0.08 | 1
0.06 | 1
0.04 | 1
0.02 | 1

O 1 1 1 1 1 1 1 1
0 005 01 015 02 025 03 035 04 045

p x 1076

displacement

Fig. 18. Displacement diagram

-

Fig. 19. Deformed configuration at loading parameter
0.015 x 10°

DOF3-displs DOF3-displs
0.41 0.41
0.36443 0.36443
0.31886 0.31886

- 0.27328 - 0.27328

L 0.22771 b 0.22771
0.18214 0.18214
0.13657 - 0.13657
0.090998 0.090998
0.045426 0.045426
-0.00014566 -0.00014566

fm <

fixed

Fig. 21. Problem definition

C,= 1.56 |
k= 1000
N=8
L=02

h=0.0003

Fig. 20. Deformed configuration at loading parameter
0.189 x 10°
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0.5 T T . T . . T
045 4
04 -
035 5
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S  025r _
< SR T8 !
0.15 1
0.1 J
0.05 X
O 1 1 73 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
displacement
Fig. 22. Displacement diagram
DOF3-displs DOF3-displs
0.00021901 0.00021901
-0.083%8 -0.08398
-0.16818 -0.16818
. .0.25238 - 0.25238
-0.33658 -0.33658
-0.42078 -0.42078
-0.50498 -0.50498
-0.58917 -0.58917
, -0.67337 3 -0.67337
-0.75757 0.75757
L ‘ X Wyi x
bil bl
Fig. 23. Deformed configuration at loading parameter Fig. 24. Deformed configuration at loading parameter

0.008 x 108 0.439 x 10°
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6. CONCLUSION

In this paper we demonstrated that the proposed modified variational principle is a real alternative
to the penalty method. This is because the solution dependency on the stabilization parameter
is minimized and so also the stabilization term’s effect on the physical response of the problem.
Furthermore, the magnitude of the stabilization parameters 3(6', 02, ;) are kept at relatively low
levels, but sufficiently high to enforce the essential boundary at all integration points within a given
error tolerance and without sacrificing the numerical stability. This benefits a high adaptivity to
various problems with different essential boundary conditions applied. The difficulty of finding
suitable values for 3(6!, 62, ;) is solved by using an iterative algorithm which allows to determine
them individually for each integration point.

APPENDIX

A. ITERATIVE STABILIZATION PARAMETER DETERMINATION ALGORITHM

The basic idea of the iterative stabilization parameter determination is that the parameters 3 are
individually assigned to each numerical integration point and the final configuration ensures that
at each integration point a minimum value of essential boundary condition enforcement ¢ is given.
Parameter 0 is a constant value applied to the entire problem domain. As already mentioned J can be
related to the displacement convergence norm used for the Newton—Raphson method. Furthermore
the initial setting of the stabilization parameters (3 and its successive increase can be approximated
by Eq. (17). The objective of this algorithm is however, also to minimize the number of iteration
steps needed to computed a suitable distribution for stabilization parameters. The coded algorithm
used for this work looks like follows:

e set the maximum error for all integration points to €. = 0

e loop over all integration points /°; and all their degrees of freedom k& with essential boundary
conditions applied

1. compute the current boundary enforcement error ¢ = |u,{ - u{l and set the stabilization
parameter [ by the following procedure

(a) if the boundary condition enforcement is not accurate enough ¢ > §, then 3 must be

initially set or increased and we first define a factor m = &

i. if m> @ then =m ;
ii. else if m < 2.0 then 8 = (2.0
iii. else B=B*xm
(b) else if boundary condition enforcement is more accurate then required ¢ < § * 10 then
gradually reduced the stabilization parameter by 5 = (3/2
2. adjust the maximum error for all integration points: if €, < € then €. = €

3. check, if the boundary enforcement error is for all integration points lower than the given
error tolerance €y,x < 0 and distinguish two cases

(8) ific i 5 % or it is the first iteration step, then set the parameter of all particles to zero
values and proceed with the new stabilization parameter distribution at 2.

(b) otherwise terminate the iteration procedure
B. HYPER-ELASTICITY

In order to simulate large elastic strains in rubber-like structures the neo-Hookean law was and is one
of the simplest constitutive laws one may deal with. The Mooney-Rivlin law was an improvement
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of this in terms of accuracy. In 1984 Ogden [20] introduced a far more accurate model, which
was dependent on the eigenvalues of the stretch tensor, what made however the calculation of
the tangent matrix extremely costly. All those models incorporated material constants, which had
to be determined by experiments. Though, because the experimental data are directly related to
standard tests, such as uni-axial stretch, bi-axial stretch and shear, the material behaviour might
not be copied for any arbitrary loading or geometry configuration.

Contrarily, the statistically-based constitutive model proposed by Arruda and Boyce [2] assumed
for the rubber material a macromolecular network structure consisting of eight chains and addresses
also their non-Gaussian behaviour. The constitutive formulation involved only three constants:
a shear modulus Cg, a bulk modulus ~ and a parameter N, which addressed to limited extensibility
of the network. Each of these parameters represented a physical property of the material and are
not just experimental data.

Sansour et al. formulated a corresponding constitutive law and so also the stored energy function
as a functional of the invariants of the right Cauchy-Green tensor [22]. The dependency on the
right Cauchy-Green tensor provided the benefits that the computation of the derivatives was not
complicated and also anisotropic material, it was said, could be dealt with. In the following a brief
overview of this approach is given. Let us define first the invariants of the right Cauchy—Green strain
tensor C as

1
L=%Chiade®s [(trC)®> —trC?], I3 =det C. (B1)
Also a pair of modified invariants shall be taken into account,
goin il Gig itk
e R (B2)
I3 I3

Considering the material to be characterized by the volumetric-isochoric split, Anand pro-
posed [1] the energy storage function in compressible form as

W — WiSO + I/VVOI (B3)
with
3 1558 1 Lo 11 £
1so _ T = 3 [ i e
1174 Cr 2( 1—3) % 20N( 1= 9)+ 1050N2(Il 20k
19 5 519 =5
(12— 81) st madohli i 24BN A Nt
* 7ooons (L~ 8 + grmea (T —243) o (B4)
i
Wl = (i V/Is)*. (B5)
Now is the second Piola—Kirchhoff stress tensor S defined as
oW E
SzQa—C—:a11+a2C+a3C1 (B6)
with
1 3 - 1T =92 19 -3 519 =4 -1
) — I i 1 I el AL
a1:=20R (2 T1ov "t 3sone !t Y Tosone T sammonat t ) 3
a2 = 07
2 ] G« 1y & S 5 % 3L T §
5 shlaa I N = AR T LN In+/Ts,
a3 = —3CR <2+ 1ov ' " 35082 T 17sone !t T aamson T ) 1+rnVE
and if one takes into account that
oL oI, 0I5 By
56 i s e AL Sat” (Rt (B7)
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Finally the second order derivative of the energy storage function with respect to C provides the
constitutive tensor C,

2w ) R £
Sy Tt [618i56rs + b3 ((C™1)ij0rs + 0i5(C™V)rs) +
+ (b3 + 04)(C™1)i5(C™)rs — (b5 + b6)(C™)ir(C™ sy , (B8)
with the following coefficients,
L fosth 1l sy §Tvimigun o §OBBr iz g 1BHGGLD Ly
o 3 T
b1 = Crls [1ON+ 175n2 'V T750N3 't T gramsNa L T 8758T50NS ]
e e F e vt S88y S e BB 2 S e BRGNS g
= o CRl S =4 o I g apachas oy g S
br = —3CRls [2+5NII+350N9 L+ g7snat toggsoNt ! T ]
1 = 1 =9 33br 3 38y 519 g
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bs = gCr [211+5NI1 T gsone T grsnett T agosonalt T }
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