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Grammatical evolution (GE), which is a kind of evolutionary algorithms, is designed to find a function,
an executable program or program fragment that will achieve a good fitness value for the given objective
function to be minimized. In this study, GE is applied for the coefficient identification problem of the
stiffness matrix in the two-dimensional elastic problem.
Finite element analysis of the plate with a circular hole is performed for determining the set of the stress

and the strain components. Grammatical evolution determines the coefficient matrix of the relationship
between the stress and strain components. The coefficient matrix is compared with Hooke’s law in order to
confirm the validity of the algorithm. After that, three algorithms are shown for improving the convergence
speed of the original GE algorithm.
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1. INTRODUCTION

Genetic algorithms (GA) [1] and genetic programming (GP) [2] are very popular evolutionary
computation techniques. Their objectives, however, are a little different. While the aim of traditional
GA is to find the optimal or better solution of the optimization problem, GP is designed for finding
the function representation, executable program or program fragment.
Grammatical evolution, shortly GE, was first presented by Ryan, Collins and O’Neill [3, 4]. The

aim of GE is to find an executable program or program fragment that will achieve a good fitness
value for the given objective function. The interesting feature of the GE is to represent function
or program not by tree structure employed in GP but by binary numbers (bit-strings) in GA.
The translation rules defined in the Backus-Naur form (BNF) are used for translating genotype
(bit-string) to phenotype (function or program). A population of potential solutions evolves toward
better solutions by using the genetic operators such as crossover, selection, mutation, and so on.
Except for the use of translation rules, the GE algorithm is very similar to traditional GA. Therefore,
the genetic operators designed for GA are available for GE.
GE is successively applied to the function identification problems [4, 5]. In the function identifi-

cation problem, the data set is given and then, the function representing the data set is determined.
In this study, GE is used for the identification of the coefficients of the stiffness matrix in the plane
strain state when the set of stress and strain components is given. The stiffness matrix is defined in
two- or three-dimensional matrix. The matrix components have to be determined so as to satisfy the
relationship between the stress and strain components. Therefore, the stiffness matrix identification
problem is more difficult than the ordinary function identification problem. The set of stress and
strain components is calculated from finite element analysis of two-dimensional elastic body. Then,
the coefficients of the stiffness matrix between the stress and strain components are determined by
GE. The coefficient matrix is compared with Hooke’s law. After that, three algorithms are shown
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for improving the convergence speed of GE. Finite element method is used for evaluating the stress
and strain components [6–9]. Since it is a very popular tool in numerical analysis, it is very often
employed for several identification and optimization problems [10–15].

The remaining part of this paper is organized as follows. In Sec. 2, the two-dimensional elastic
problem and finite element analysis are explained briefly. The original GE algorithm and the im-
proved algorithms are explained in Sec. 3 and 4, respectively. The numerical examples are shown
in Sec. 5 and the results are summarized in Sec. 6.

2. TWO-DIMENSIONAL ELASTIC PROBLEM

2.1. Basic relationship

The vectors of the displacement, traction, strain and stress components in the two-dimensional
elastic problem are represented as u, t, ǫ and σ, respectively;

u = {u1, u1}T , (1)

t = {t1, t2}T , (2)

ǫ = {ǫ11, ǫ22, ǫ12}T , (3)

σ = {σ11, σ22, σ12}T , (4)

where the subscripts 1 and 2 denote x1- and x2-axis, respectively. The subscript T denotes the
transposition of the vector.

The relationship between the displacement and the strain components is given as follows:

ǫ = Au, (5)

where A is defined as

A =




∂/∂x1 0

0 ∂/∂x2
∂/∂x2 ∂/∂x1


. (6)

The relationship between the strain and the stress components are given as

σ = Dǫ, (7)

where D is defined as

D =
E(1 − ν)

(1 + ν)(1− 2ν)




1
ν

(1− ν)
0

ν

(1− ν)
1 0

0 0
(1− 2ν)

2(1 − ν)



, (8)

where E and ν denote Young’s modulus and Poisson’s ratio of the material, respectively. The
relationship between the stress and the traction components are given as

ti = σijnj, (9)

where nj denotes the xj-component of the outer normal vector on the boundary.
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2.2. Finite element formulation [7, 9]

The principle of the virtual work without the body forces is given as
∫

Ω

δǫTσdΩ =

∫

Γt

δuT tdΓ, (10)

where Ω, Γu and Γt denote the domain occupied by the object under consideration, its displacement-
and traction-specified boundaries and the whole boundary, respectively; that is Γ = Γu

⋂
Γt. The

symbol δ and the superscript T denote the virtual changes and the transpose of the matrix or
vector, respectively.
Discretizing the left-hand side of Eq. (10) into Ne finite elements, we have

∫

Ω

δǫTσdΩ =

Ne∑

e=1

∫

Ωe

δǫTe σedΩ. (11)

The displacement components at element e are approximated by the interpolation functions N
with the nodal displacements U e;

ue = NU e. (12)

The stress and the strain components may then be expressed as

ǫe = Aue = ANU e ≡ BU e (13)

and

σe = Dǫ = DBU e. (14)

Substituting the above approximate expressions into Eq. (11) gives

∫

Ω

δǫTσdΩ =

Ne∑

e=1

∫

Ωe

δǫTe σedΩ =

Ne∑

e=1

∫

Ωe

(BδU e)
TDBU edΩ ≡

Ne∑

e=1

δUT
e heK

′
eU e, (15)

where he and K
′
e denotes the thickness and the stiffness matrix at the element e, respectively.

Discretizing the right-hand side of Eq. (10) by Nl boundary elements gives

∫

Γt

δuT tdΓ =

Nl∑

l=1

∫

Γtl

(NδU )T tdΓ ≡
Nl∑

l=1

δUT
l f

′
l, (16)

where f ′
l denotes the equivalent nodal force vector at the boundary element l.

Substituting Eqs. (15) and (16) into Eq. (10) gives

Ne∑

e=1

δUT
e heK

′
eU e =

Nl∑

l=1

δUT
l f

′
l (17)

and

δUTKU = δUTf , KU = f , (18)

where K and f denote the global stiffness matrix and the global equivalent nodal force vector,
respectively.
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3. GRAMMATICAL EVOLUTION

3.1. Original algorithm

The algorithm of an original grammatical evolution (GE) is simply summarized as follows:

1. The translation rules from genotype (bit-string) to phenotype (function or program) are defined
in a Backus-Naur form (BNF) syntax.

2. An initial population of the individuals is defined with randomly generated bit-strings.

3. Bit-strings are translated into the function or the program according to the translation rules.

4. Fitness functions of individuals are estimated.

5. Genetic algorithms update the population of individuals.

6. The process is terminated if the criterion is satisfied.

7. Go to step 3.

The translation from genotype to phenotype is as follows:

1. A genotype (bit-string) is translated to a decimal number every n-bits.

2. The leftmost recursive symbol in the phenotype is referred to as α; The leftmost decimal in the
genotype and the number of the potential symbols for α are nl and nα, respectively;

3. The remainder is calculated as nr = nl%nα.

4. The symbol α is replaced with the nr-th symbol of the candidate symbols.

5. If nonterminal symbols exist, go to step 2.

In the genetic programming (GP), the programs rapidly grow in size over time. This is called
a “bloat” to overcome this difficulty, the maximum size of the programs is restricted in advance.
The similar idea is applied to GE. The maximum size of the programs is restricted to Lmax.

3.2. From genotype to phenotype

We would like to explain the translation from genotype (bit-string) to phenotype (function) by a
simple numerical example.
The example of BNF syntax is shown in Table 1. We notice that the symbol <expr> has three

candidate symbols; <expr><op><expr>, <num> and <var>. This means that the symbol <expr> can
be replaced with the symbol <expr><op><expr>, <num> or <var>. The symbol <op>, <x> and <num>
have four, two and one candidate symbols, respectively.
We would like to explain how to translate the bit-string “1101001001” to the function 1+Y. The

bit-string is translated into the decimal number every 2-bits. The process is illustrated in Fig. 1.

1. A first 2-bit of the bit-string “1101001001” is “11”, which is the decimal number nl = 3. The
start symbol α =<expr> has three candidate symbols; nα = 3. The remainder of nl = 3 with
respect to nα = 3 is nr = nl%nα = 0. Then, the symbol α =<expr> is replaced with 0-th
candidate symbol <expr><op><expr> (A0);
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Table 1. BNF syntax in simple example.

(A) <expr> ::= <expr><op><expr> (A0)

| <num> (A1)

| <var> (A2)

(B) <op> ::= + (B0)

| - (B1)

| * (B2)

| / (B3)

(C) <x> ::= x (C0)

| y (C1)

(D) <num> ::= 1 (D)

Fig. 1. Translation process from genotype to phenotype in simple example.

2. Next, we will consider the leftmost symbol α =<expr> of the symbol
<expr><op><expr>. A second 2-bit of the bit-string “1101001001” is “01”, which is nl = 1 in
decimal number. The symbol α =<expr> has three candidate symbols; nα = 3. The remainder
of nl = 1 with respect to nα = 3 is nr = nl%nα = 1. The symbol α =<expr> is replaced with
<num> (A1) to generate the symbol <num><op><expr>;

3. The symbol <num> is replaced with the number 1 (D) to generate the symbol 1<op><expr>;

4. A third 2-bit of the bit string “1101001001” is “00”, which is nl = 0 in decimal number. The
symbol α =<op> has four candidate symbols; nα = 4. The remainder of nl = 0 with respect to
nα = 4 is nr = nl%nα = 0. The symbol α =<op> is replaced with + (B0) to generate the symbol
1+<expr>;

5. A fourth 2-bit of the bit string “1101001001” is “10”, which is nl = 2 in decimal number. The
symbol α =<expr> has three candidate symbols; nα = 3. The remainder of nl = 2 with respect
to nα = 3 is nr = nl%nα = 2. The symbol α =<op> is replaced with <var> (A2) to generate the
symbol 1+<var>;

6. The last 2-bit of the bit string “1101001001” is “01”, which is nl = 1 in decimal number. The
symbol α =<var> has two candidate symbols; nα = 2. The remainder of nl = 1 with respect
to nα = 2 is nr = nl%nα = 1. The symbol α =<var> is replaced with Y (C1) to generate the
symbol 1+Y.
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4. IMPROVED GRAMMATICAL EVOLUTION

4.1. Difficulties of original GE

The original GE algorithm has two difficulties. One is related to the rule selection algorithm and
another is to the selection probability of the candidate symbols.

4.1.1. Rule selection

The leftmost recursive symbol is referred to as α. The leftmost decimal number and the number
of candidate symbols for α are referred to as nl and nα, respectively. Since a symbol is selected by
the remainder nr = nl%nα, the symbol selection is very sensitive to the variation of the decimal
number nl. Even when the value of nl alters by only one, the symbol to be selected is changed.
This may disturb the development of the better scheme included in the bit-strings. The scheme 1
is designed for overcoming this difficulty.

4.1.2. Selection probability of symbols

The original GE selects one symbol from the list of the candidate symbols. As shown in the example
of Table 1, the symbol <expr> is replaced with the symbol (A0) <expr><op><expr>, (A1) <num>
or (A2) <var>. The selection probabilities of the three symbols (A0), (A1) and (A2) are identical,
33% for each symbol. If, however, one candidate symbol is to be more promising than the others,
the selection probability of the symbol should be enhanced.
The rules are classified into the recursive (non-terminal) and terminal rules. For example, in

Table 1, the symbol (A) is recursive rule and the other symbols are terminal rules. The iterative
use of recursive rule makes the phenotype (function or program) longer and more complicated. On
the other hand, the terminal rule terminates the development of the phenotype. Since the functions
of the recursive and the terminal rules are different, it is appropriate that the different selection
probability is specified for the recursive and the terminal rules. The following scheme 2 and 3 are
designed to control the selection probability of the recursive and the terminal rules, respectively.

4.2. Improvement of original GE

4.2.1. Scheme 1

In the original GE, the symbols are selected according to the remainder of the decimal number
with respect to the total number of candidate symbols. The scheme 1 adopts the special roulette
selection, instead of the remainder selection. The roulette selection is a popular selection algorithm
in GA. In the scheme 1, the roulette selection probabilities for all candidates symbols are identical.
The objective of the scheme 1 is to encourage the development of the better schemata.
We will consider a leftmost decimal as nl, the leftmost nonterminal symbol as α, and the number

of candidate symbols for α as nα. The algorithm is as follows:

1. Calculate the parameter sα = nl/nα.

2. Generate a uniform random number p (0 < p ≤ nl).

3. If (k − 1)sα ≤ p < ksα, select k-th rule from the list of candidate symbols for α (1 ≤ k ≤ n).

4.2.2. Scheme 2

In scheme 2, the selection probability of the candidate symbol in the recursive rule is controlled
according to the depth of the tree structure. The maximum length of the programs is specified
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in advance. If the length of the programs is shorter than the maximum depth Lmax, the selection
probability is increased. If not so, the probability is decreased.
The selection probability of the candidate symbol i in the recursive rule is calculated as

P r
i = 1− L

Lmax
, (19)

where L and Lmax denote the depth and the maximum depth of the programs.

4.2.3. Scheme 3

In scheme 3, the selection probabilities of the candidate symbols in the terminal rules are controlled
according to the total number of the candidate symbols included in all individuals in the population.
The total numbers of the candidate symbols in the terminal rules in all individuals are counted

first. It is assumed that a terminal rule has NN candidate symbols and that i-th candidate symbol
occurs Ni times in all individuals. The selection probability PN

i of the i-th candidate symbol is
calculated as

PN
i =

Ni

NN∑
j=1

Nj

. (20)

5. NUMERICAL EXAMPLE

5.1. Problem

The use of GE determines the stiffness matrix D in Eq. (8) from the pairs of the stress vector σ
and the strain vector ε, which are determined by the finite element analysis.
A plate with a hole is shown in Fig. 2. When the plate is stretched in the horizontal direction,

the stress analysis is performed by finite element method in order to determine the stress and strain
distributions [9]. Triangle finite element discretization of the quarter part of the object domain is
shown in Fig. 3. Parameters of finite element analysis are shown in Table 2.

Fig. 2. Plate with a circular hole.

Fig. 3. Finite element discretization.
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Table 2. Parameters of finite element analysis.

Element-type Triangle constant strain element

Number of elements 34

Number of nodes 27

Young’s modulus E = 10000

Poisson ratio ν = 0.3

The stiffness matrix of the plane strain state is given as

D =




D11 D12 D13

D21 D22 D23

D31 D32 D33


 =

E(1− ν)

(1 + ν)(1− 2ν)




1
ν

(1− ν)
0

ν

(1− ν)
1 0

0 0
(1− 2ν)

2(1− ν)



. (21)

Since the stress and the strain components in the z-axis direction are independent of the other
components, only the other coefficients in Eq. (21) are determined by GE. The stiffness matrix
determined by GE is given as

D =




D11 D12 0

D21 D22 0

0 0
E

2(1 + ν)



. (22)

BNF syntax is listed in Table 3. The simulation parameters are shown in Table 4. The fitness is
defined by the least square errors as

fitness =

√√√√ 1

M

M∑

i=1

[{D11εx +D12εy − σx}2 + {D21εx +D22εy − σy}2], (23)

where M denotes the total number of elements. Fifty simulations are performed and the average
values are estimated. In Eq. (23), the simulation process is summarized as follows:

1. Finite element analysis of a plate with a hole shown in Fig. 2 is performed to determine the
stress component σx and σy and the strain component εx and εy.

2. An initial population of the individuals is defined with randomly generated bit-strings.

3. According to the translation rules shown in Table 3, bit-strings of individuals are translated to
the coefficient D11, D12, D21 and D22.

4. Fitness functions of individuals are estimated by Eq. (23).

5. The evolution of population of individuals is maintained by genetic algorithm.

6. The process is terminated if the criterion is satisfied.

7. The process goes back to step 3.
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Table 3. Translation rules.

(A) <expr> ::= <expr><op><expr> (A0)

| <var> (A1)

(B) <var> ::= <const> (B0)

| <num> (B1)

(C) <op> ::= + (C0)

| - (C1)

| * (C2)

| / (C3)

(D) <const> ::= E (D0)

| ν (D1)

(E) <num> ::= 1 (E0)

| 2 (E1)

Table 4. GE parameters.

Max. generation 500

Number of individuals 100

Chromosome length 100

Selection Tournament

Tournament size 5

Number of elite individuals 1

Crossover One-point

Crossover rate 0.9

Mutation rate 0.1

Radix conversion Every 4 bit

Max. length of sentence MaxN = 100

5.2. Result

The convergence histories of the fitness of the best individuals are shown in Fig. 4. The figure is
plotted with the generation as the horizontal axis and the fitness as the vertical axis, respectively.
The convergence properties of the scheme 1 and 1+3 are similar to that of the original GE

algorithm. The results by the use of scheme 1+2 and 1+2+3 show the faster convergence property
than the ones obtained by the other schemes. Therefore, the scheme 2 is very effective for this
problem and the combinational use of the scheme 2 and 3 is the most promising among them.
The scheme 1+2+3 determines the following stiffness matrix:

D = E




1 + ν
1

2
0

1

2
1 0

0 0
1

2(1 + ν)



. (24)
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Fig. 4. Comparison of convergence speed.

When the parameters E = 10000 and ν = 0.3 are substituted into Eqs. (8) and (24), the following
matrices are obtained:

D =




D11 D12 D13

D21 D22 D23

D31 D32 D33


 =




13461 5769 0

5769 13461 0

0 0 3846


, (25)

D =




D11 D12 D13

D21 D22 D23

D31 D32 D33


 =




13000 5000 0

5000 10000 0

0 0 3864


. (26)

The relative error of the matrix element is estimated by the following equation:

eDij =
‖Dij −Dij‖

‖Dij‖
. (27)

The matrix element errors are shown in Table 5. Although Eq. (8) is different from Eq. (24)
fairly, both matrix coefficients are relatively similar when comparing their values.

Table 5. Matrix element error.

eDij (%) j = 1 j = 2 j = 3

i = 1 3.42 13.3 0

i = 2 13.3 25.7 0

i = 3 0 0 0

6. CONCLUSION

Grammatical evolution (GE), which is one of evolutionary computations, can represent tree struc-
tures such as functions and programs by the binary number. The use of the BNF syntax transforms
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binary numbers to functions or programs. After the original GE algorithm was shown, three im-
proved algorithms were explained for improving the convergence property of the original GE. The
improved algorithms were named as scheme 1, scheme 2 and scheme 3, respectively.
GEs were applied to determine the coefficients of the stiffness matrix in the plane strain state.

The numerical results showed that GE could not find identical but similar stiffness matrix as
Hooke’s law. When the physical parameters were substituted into the stiffness matrix of Hook’s
law and the matrix predicted by GE, the numeric differences of their matrix components were
relatively small. Therefore, the improvement of the GE prediction accuracy may depend on the
fitness function definition and BNF syntax.
Finally, three schemes were compared in their convergence speed. Comparing the convergence

properties of the schemes showed that the scheme 1+2+3 is the fastest and the scheme 1+2 is the
second-fastest. Therefore, we can conclude that the scheme 3 is effective for this problem.
In this study, GEs were applied to determine the coefficients of the stiffness matrix in the plane

strain state, which is one of special examples of function identification problems. We often encounter
the similar problems in engineering application problems. Therefore, we would like to study some
application of GEs to other engineering problems.
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