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Problem of locally disordered atomic structure is solved by using a hybrid formulation in which nonlinear
elastic finite elements are linked with discrete atomic interaction elements. The continuum approach uses
nonlinear hyperelasticity based upon the generalized strain while the atomistic approach employs the
Tight-Binding Second-Moment Approximation potential to create new type of elements. The molecular
interactions yielding from constitutive models of TB-SMA were turned into interactions between nodes to
solve a boundary value problem by means of finite element solver. In this paper we present a novel way of
modelling materials behaviour where both discrete (molecular dynamics) and continuum (nonlinear finite
element) methods are used. As an example, the nanoindentation of a copper sample is modelled numerically
by applying a hybrid formulation. Here, the central area of the sample subject to nanoindentation process
is discretised by an atomic net where the remaining area of the sample far from indenters tip is discretised
by the use of a nonlinear finite element mesh.

1. INTRODUCTION

In recent years the numerical modelling of large atomic systems has been performed using methods
based on molecular dynamics; see for example [5, 11, 15, 19, 22, 23]. In these calculations the system
is typically composed of many millions of atoms. For larger and more complicated problems the
number of freedom degrees in the system dramatically increases and one quickly becomes inhibited
by time-constraints affordable for a practical computation. In such cases, for millions of variables,
it is convenient to assume a different approach based on methods of continuum mechanics. The
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champion of which is finite element analysis; see for example [7, 10, 14]. In finite element analysis
one is less hindered by the scale of the system.

The most important and common difference obtained by comparing solutions of atomic and
continuum methods appears at points where forces acting on the particles induce significant rear-
rangement of the underlying lattice structure. Physical phenomena incited by large excursions of
the atoms from their initial position in perfect crystal, have been studied and modelled using a
combination of atomistic and continuum methods; for example, crack propagation [2, 17], stress
wave propagation [20], mechanical dynamics of defects and interfaces [27], dislocation emission at
the heterostructure interface [1, 3] and stress-strain distributions in nanostructures [12, 18]. In cases
cited above, combined atomistic continuum simulations are limited to two-dimensional models or, at
the most, to quasi three-dimensional models with periodicity along one coordinate. From both, the
theoretical and practical point-of-view a combination of atomistic and continuum methods seems
to be a natural way forward for modelling large systems. In this way, the crystalline structure close
to dislocation core is modelled with discrete molecular dynamics, while continuum mechanics aptly
deals with motions of the structure far from dislocations. Thus, in this article we take full advantage
of the both formalisms by considering a hybrid formulation where atomistic and continuum parts
coexist on an equal footing.

This article is organised as follows. In Section 2, we give an overview of used numerical techniques,
in particular, on the specific form of the potential governing atomic dynamics and principles of
nonlinear finite element calculations. Following this, in Section 3, we present and discuss our results
for hybrid atomistic-continuum modelling. Finally, in Section 4, we draw conclusions and summarise.

2. HYBRID ATOMISTIC-CONTINUUM FINITE ELEMENT MODELLING

To simulate the indentation process of nanocrystalline copper we have performed a hybrid molecular-
continuum calculation. In this way we combine discretisation at the atomic level near the indenters
tip and simulation of the surrounding region with a finite element mesh (as illustrated in Fig. 1).
As sketched above, both elastic and plastic deformations take part in the dynamics during the
nanoindentation process. In particular, plastic deformation appears as a result of the rearrangement
of the crystal structure on an atomic level and this should be taken into account in modelling the
indentation process. This phenomenon is taken into account here by performing a regeneration of
the list of atomic interactions at each step of the nanoindentation.

Fig. 1. The initial state of the fractional system with molecular and continuum parts (on the left) and a zoom
of the interface between atomistic and continuum regions (on the right). Here, red blocks denote continuum
finite elements, while green lines denote atomic interaction elements.
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In our simulation the indenter is given by a rigid body with a spherical tip of radius 10 nm.
Impressed atoms ’stick’ to its surface during the indentation process. Pure elastic behaviour of the
crystal far from the indenters tip was simulated by the use of 27-node Lagrangian hyper-elastic brick
elements. The crystallographic orientation was chosen to be [110][—110]; see Fig. 1. This orientation
assures ideal conformity between discrete positions of atoms and nodes of the continuum mesh
on the interface. The sample was assumed to reside on a rigid base while the side-faces remain
unconstrained. This approach allows for the correct dynamics of the system as a whole and in
particular, allows for compression and/or extension of the system in the zy-plane. Furthermore, due
to the four-point rotational symmetry of problem, only a fractional (quarter) part of the sample was
calculated (as in Fig. 1) after applying a proper boundary conditions in the planes of symmetry.
The bottom of sample is fully fixed, outer planes possess periodic boundary condition and inner
planes of symmetry are constrained in normal direction.

The dimension of the calculated sample was arbitrarily chosen to be 40 x 40 x 12.5 nm, while the
atomistic region covers a volume 15 x 15 x 4.5 nm within the finite element mesh. The atomic part of
the system was composed of N ~ 0(104) atoms of copper, the interactions of which were modelled
by a Tight-Binding Second-Moment-Approximation (TB-SMA) potential. In our calculation we
assumeg copper to be face-centred-cubic structure with the conventional lattice parameter a =
3.6151A.

2.1. TB-SMA molecular potential

It is recognised that empirically based many-body potentials can reproduce well the structural
properties of most metals. A relatively simple scheme for taking into account the electronic and
structural properties based on a small set of adjustable parameters, is the Tight-Binding Second-
Moment-Approximation (TB-SMA) potential [4].

The total cohesive energy of the system (see Fig. 2) is given by

E. =Y (By+83), (1)
where the Born-Mayer ion-ion repulsion term E}é and ’hopping’ term E}é are summed over all atomic
positions i,j € {1,..., N}, and defined by

EI(R) = ZAC TOL 1 (2)

(B)

B = 252 iy 3)

where 7o is the nearest neighbor distance and r;; is current distance between atoms. The free
parameters A, &, p and q are fitted to data determined from experiment and, for crystalline copper
investigated here, we assumed the values [4]: A = 0.0855eV, { = 1.224¢V, p = 10.960 and ¢ = 2.278.
The inter-atomic forces are

OE;

In terms of finite element method the molecular interactions can be treated as two-node ‘pseudo-
elements’, so-called because there is no shape function for TB-SMA elements, in contrast to tra-
ditional bar finite elements. On the pseudo-element mesh, each node represents a single atom. By
calculating forces between nodes (atoms) we are able to find configuration of a point at which the
molecular region is in self- equilibrium. Constructing the model in this manner allows one type of
element (TB-SMA) to be connected with a different type of element (continuum) in a relatively
straight-forward way as illustrated in Fig. 1b. A more detailed description is presented in [5].
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Fig. 2. Cohesive, repulsive and band energy

2.2. Nonlinear hyper-elastic finite elements

Anisotropic hyper-elastic models compose a very narrow group among numerous continuum mod-
els describing elastic behaviour of a material. Let us emphasise that the most familiar anisotropic
hyperelastic models, such as the St. Venant-Kirchhoff and the Biot models, change strongly their
instantaneous stiffness under large deformation. Moreover, the stiffness evolution often significantly
differs from the behaviour of real materials. Neglecting anomalous behaviour, we can expect that
with respect to molecular effects the instantaneous stiffness of crystalline solids increases under
compression and decreases under extension. This nonlinear elastic effect is responsible for many
phenomena observed experimentally. For instance, due to the different stress-strain response during
the extension and compression we can observe that around an edge dislocation the volume expan-
sion of the crystal lattice occurs, see [8, 21]. The asymmetry in the elastic stress-strain response is
demonstrated also in the form of negative values of third-order elastic constants measured experi-
mentally for many crystals, see [24-26]. Thus, applying elastic constitutive models which behave just
conversely (i.e. St. Venant—Kirchhoff or Biot model) can be the cause of many undesirable effects
such as improper proportion between stress values, sizes of extended and compressed regions or even
erroneous negative volume expansion induced by interaction of dislocations in elastic continuum.
Therefore, the use of a new elastic and elastic-plastic constitutive models whose behaviour could be
more adjusted to the nonlinear behaviour of real crystal structures, is indispensable.

According to the polar decomposition theorem, the deformation gradient F can be decomposed
into the orthogonal rotation tensor R and the right or left stretch tensor, U or V, respectively,
F = RU = VR. The Lagrangian (&) and Eulerian () logarithmic strain tensors can be defined by
means of the following isotropic functions,

Eg—flnui u; @ u;, (5)
sd——flnvivi®vi, (6)
where u; , u; , v; , v; denote respectively i-th eigenvalues and eigenvectors of the right and left stretch

tensors. It can be proved that to balance the energy for an arbitrarily chosen deformation process
the Cauchy stress has to be governed by the following equation, see [6],

oc=R (ft: ﬁ%) RT detF (7)
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where the fourth-order tensor A decomposed in the vector basis {u;} composed of eigenvectors of
the right stretch tensor is represented by the following non-vanishing components

Oigs o 1 {ug) for U =u;

P_“%W for u; g u;

~

Aiji; = -/Tijji = (8)

where p = pdet F, f'(u;) = d—];%zlu:ui , see [16]. Let us consider the hyper-elastic material governed
by the following constitutive equation stated for the specific strain energy

Ioegse
Y= % £:C:€, 9)
where € is the fourth-order tensor of elastic stiffness. Substitution Eq. (9) into (7) leads to
a:R(,Z:E:é) R” detF~!. (10)

This constitutive model based on the generalised strain measure takes into account the most of the
well-known anisotropic elastic models.

Our finite element (FE) algorithm is based on the integration of the equilibrium equation, which
can be equivalently rewritten in relation to the current and/or reference configuration. Writing this
equation in current configuration we find the following local form,

dive = 0, (11)

where the Cauchy stress is a nonlinear function of the displacement vector a and its gradient Va.
Applying the virtual work principle we find the following nonlinear matrix equation,

Play=4, (12)
where
P :/VTWcrdv, (13)
FF “Weéds. (14)
ov

W denotes here the weighting function determined in relation to the current (wanted) configuration.
In the interior of finite elements the distribution of displacement field is governed by the relation

a(x) = » N}(x)a, (15)

i=1,27

where N and a; denote the second-order Lagrangian shape function spanned on 27 nodes of 3D
brick element and the nodal displacements, respectively.

3. RESULTS AND DISCUSSION

The simulation was divided into small displacement steps. The indentation depth D is given by
finite steps AD = 1.5A of the indenter tip into the sample. Compared to crystallographic distance
between nearest copper atoms equal 2.55 A, this choice of AD makes it possible to take into account
gradual changes in atomic interactions. The authors performed a test comparing the results of
AD =5x0.3A and AD = 1.5 A for a few first steps of the algorithm, the results were exactly the
same. After applying proper values of vertical displacement to atoms interacting with the indenter,
the problem reduces to the solution of a boundary-value problem. Our results are shown in Figs. 3-5.
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From mechanical point of view, simulation of indentation process can be divided into two main
stages. The first part of the nanoindentation runs until the indenter reaches a depth 4.5 —6.0 A and
terminates at the first sign of reorganisation of the atomic bonds. Until this depth the structure
worked wholly elastically and force-depth curve seems to be linear, however its derivative suggest
small instantaneous stiffness drop. The second part of the simulation describes plastic deformation
of copper crystal. During this part the plastic rearrangement of the crystal structure starts and it
is revealed in the energy of the system as a deviation from the linear relation energy-depth, see
Fig. 5. During this stage of deformation, because of reorganisation of the atomic bonds, dislocations
propagate through the molecular region and shift molecular bonds. Rearrangement of the molecular
mesh at each step of the indentation causes a rapid energy change and produces further dislocation.

Finally, we comment that following depth D > 12 A, relative to the sample’s thickness an inden-
tation process exceeds the prescribed 10% rule [9], and loaded system undergoes complete plastic
deformation leading to an approximate flat force-indentation curve, typical for pure plastic materi-
als. However near depth D > 18 A one can observe plastic hardening.

4. CONCLUSIONS

In this article we have presented the results of an atomistic-continuum finite element modelling of
a nanoindentation process on copper sample. Many conclusion yields from these simulation, among
others

e By employing a hybrid framework we were able to model elastic and elastic-plastic processes and
use atomic discretisation for this part of the system where atomic effects are important, while
the remaining part of the system was filled by nonlinear finite element mesh.

e Some difficulties can arise from a possible mismatch in conformity between the natural config-
urations of both structure. In other words, the position of FE nodes situated on the atomic-
continuum border must take the position of atoms to connect with atomic net. This limits the
application of the present method to special crystallographic planes of perfect lattice. Otherwise,
in the case of use the non-conformal FE-MD meshes a transient region in which the atomic mesh
overlaps with the finite element one must be applied.

e There are other reasons why the transient regions are often used in many calculations. For
example, when the nonlinear elastic characteristics of the continuous and atomistic nets differ
significantly under loading then some stress concentration manifesting in deformation disconti-
nuity under loading is observed between the atomistic and FE meshes. To avoid this problem
the transient region is helpful. In our previous works we tested how the instantaneous stiffness
changes under loading for various nonlinear elastic continuum and molecular models [5]. On the
basis of this experience and the present simulation we conclude that in this particular case of
applying the TB-SMA model together with hyperelastic anisotropic Hooke’s law based on the
logarithmic strain measure such concentrations of stress are not observed. This is because the
stiffness of the two parts changes very similarly in the domain of large elastic deformation.

e In the future applications of hybrid FE-MD boundary zone should be automated by use of
computer preprocessors adopted to generate simultaneously the complementary parts of the
molecular and continuum meshes. This will be a new enterprise for preprocessors available mainly
for FE method coinciding here with the use of a molecular net.
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