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This paper presents the out-of-core solver for three-dimensional multiphysics problems. In particular, our
study focuses on the three-dimensional simulations of the linear elasticity coupled with acoustics. The
out-of-core solver is designed with three principles in mind. First, to store the dense matrices associated
with the nodes of the elimination tree with blocks related to nodes of the mesh, where many degrees
of freedom may be located in the case of multiphysics computations with high order polynomials. The
second principle is to minimize the memory usage. This is obtained by dumping out all local systems from
the entire elimination tree to the disk during the elimination stage. The local systems are reutilized later
during the backward substitution stage. The third principle is that the communication in the parallel
version of the out-of-core solver occurs through the parallel file system. The memory usage of the solver
is compared against the state- of- the- art MUMPS solver.
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1. INTRODUCTION

This paper presents the parallel out-of-core multi-frontal direct solver for multiphysics problems
solved by using hp-finite element method (hp-FEM). Multiphysics problems deliver a non-uniform
structure of the stiffness matrix resulting from utilizing different number of equations on differ-
ent parts of the mesh. The solver can work with 3D problems, where finite elements of different
kind, such as tetrahedral, hexahedral or prism elements can be utilized. The solver is dedicated
to hp-adaptive computations, where the polynomial orders of approximation as well as the num-
ber of equations can vary locally for different finite element edges, faces, and interiors. Additional
complication is the fact the h-refined meshes require usage of pyramid elements, since tetrahedral
elements are broken into four tetrahedral and two pyramid elements.
The solver is the generalization of the ideas utilized in the two-dimensional solver [1–3] for three-

dimensional multiphysics problems. The main challange when switching to three dimensions is the
memory usage.
The out-of-core solver is designed with three principles in mind. First, to store the dense matrices

associated with the nodes of the elimination tree in block structure, with blocks related to nodes of
the mesh, where many degrees of freedom may be located in the case of multiphysics computations
and high polynomial orders of approximation. The second principle is to minimize the memory
usage. It is obtained by dumping out all local systems from the entire elimination tree to the disk
during the elimination stage. The local systems are reutilized later during the backward substitution
stage. The third principle is that the communication in the parallel version of the out-of-core solver
occurs through the parallel file system. In other words, the Schur complement matrices are not
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exchanged via MPI send/receive protocol, rather one processor dumps out the matrix to the disc,
and the other processor dumps it in.
The solver is interfaced with multiphysics extension of the hp-FEM application hp3d [5, 6]. The

out-of-core version of the solver is based on the in-core version of the algorithm presented in [7].
The solver is tested on a challenging computational problem: the acoustics of the human head,
modeled as linear elasticity coupled with linear acoustics [8].
The reason why we focus on the direct solver instead of considering iterative solvers is the

following: multiphysics problems usually generate huge linear systems of equations, which are not
well conditioned; thus, the applicability of iterative solvers is typically limited. In addition, most
iterative solvers exhibit a lack of robustness (in presence of high-contrast materials, elongated
elements, and so on [9]). Moreover, iterative solvers may be slower than direct solvers when a
problem with several right- hand sides needs to be solved, as it occurs in the case of goal-oriented
adaptivity (it is necessary to solve the dual problem [10]) and inverse problems (when computing
the Jacobian and Hessian matrices).
The memory usage of the out-of-core solver is compared against the state-of-the art MUMPS

solver [11–13].
We do not compare the execution times, since our solver strongly utilizes the parallel file system

and its execution time is one order of magnitude larger than the MUMPS solver, thus we use less
memory.

The motivation behind the comparison to the MUMPS solver is the following. In paper [14],
Fig. 2 compares PARDISO and MUMPS solver of the multiphysics problem considered in this
paper. If we compare the execution time, which is not the point of this paper, the PARDISO
is little faster than MUMPS. However, for the largest problem considered in [14], for 3.2 million
degrees of freedom PARDISO crashes because of memory allocation problems. But, if we compare
the memory usage, MUMPS is more efficient than PARDISO, and it does not crash for the largest
problem.
In paper [15], there is a detailed comparison of solvers, including MUMPS and PARDISO, for

positive definite problem, for ANALYSIS, FACTORIZATION and SOLUTION phases, in terms
of execution time and memory usage. In general, PARDISO performs faster than MUMPS, but
it utilizes more memory, compare Fig. 7 in [15]. From the experiments performed in these papers
it follows that MUMPS is a representative state of the art solver in terms of memory usage, and
comparison of our solver to MUMPS indeed makes sense.
In addition, it makes no sense to compare the solver presented in this paper against commer-

cial solvers like ANSYS. This is because the computations presented in this paper utilize special
hierarchical shape functions introduced in Sec. 2 of this paper, allowing for local p refinement. The
commercial solvers like ANSYS do not have the same hierarchical shape functions, and thus the
structure of the matrix as well as the sparsity of the system generated by ANSYS is different and
comparison to ANSYS indeed makes no sense.
The out-of-core solver presented in this paper utilizes block structure of the matrix following

the nodes of the mesh, with different number of degrees of freedom over finite element vertices,
edges, faces and interiors, as it occurs in multiphysics computations. This allows performing the
management of the matrices on the level of nodes of the mesh in the multiphysics application. This
approach is similar to the one presented in [16–18] where the sizes of the blocks depend on types
of finite elements assembled in this block and constrains which are imposed on it (applied to it).

2. PROBLEM FORMULATION

The out-of-core solver algorithm will be tested on two three-dimensional model problems: the
Fichera model problem being the three-dimensional generalization of the two-dimensional L-shape
domain problem [6, 23, 24] and the linear elasticity coupled with acoustics [6, 8, 25]. The problems
are defined in Appendix A.
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The variational formulations for both problems have been discretized with hierarchical shape
functions allowing for p-adaptive computations with hp3d code [6].

1D element space shape functions over K̂ = [ 0, 1 ] are defined as follows:

χ̂1 (ξ) = 1− ξ, (1)

χ̂2 (ξ) = ξ, (2)

χ̂3 (ξ) = (1− ξ) ξ, (3)

χ̂l (ξ) = (1− ξ) ξ (2ξ − 1)l−3 for l = 4,. . . ,p+ 1. (4)

In other words, 1D element of order p has p−1 shape functions.
Then, we extend the definition to 3D element space shape functions over K̂ = [0, 1]3 with

uniform p.
We define vertex shape functions as follows:

φ̂1 (ξ1, ξ2, ξ3) = χ̂1 (ξ1) χ̂1 (ξ2) χ̂1 (ξ3) , (5)

φ̂2 (ξ1, ξ2, ξ3) = χ̂2 (ξ1) χ̂1 (ξ2) χ̂1 (ξ3) , (6)

φ̂3 (ξ1, ξ2, ξ3) = χ̂2 (ξ1) χ̂2 (ξ2) χ̂1 (ξ3) , (7)

φ̂4 (ξ1, ξ2, ξ3) = χ̂1 (ξ1) χ̂2 (ξ2) χ̂1 (ξ3) , (8)

φ̂5 (ξ1, ξ2, ξ3) = χ̂1 (ξ1) χ̂1 (ξ2) χ̂2 (ξ3) , (9)

φ̂6 (ξ1, ξ2, ξ3) = χ̂2 (ξ1) χ̂1 (ξ2) χ̂2 (ξ3) , (10)

φ̂7 (ξ1, ξ2, ξ3) = χ̂2 (ξ1) χ̂2 (ξ2) χ̂2 (ξ3) , (11)

φ̂8 (ξ1, ξ2, ξ3) = χ̂1 (ξ1) χ̂2 (ξ2) χ̂2 (ξ3) , (12)

and the edge shape functions as

φ̂9,j (ξ1, ξ2, ξ3) = χ̂2+j (ξ1) χ̂1 (ξ2) χ̂1 (ξ3) j = 1, ..., p − 1, (13)

φ̂10,j (ξ1, ξ2, ξ3) = χ̂2 (ξ1) χ̂2+j (ξ2) χ̂1 (ξ3) j = 1, ..., p − 1, (14)

φ̂11,j (ξ1, ξ2, ξ3) = χ̂2+j (ξ1) χ̂2 (ξ2) χ̂1 (ξ3) j = 1, ..., p − 1, (15)

φ̂12,j (ξ1, ξ2, ξ3) = χ̂1 (ξ1) χ̂2+j (ξ2) χ̂1 (ξ3) j = 1, ..., p − 1, (16)

φ̂13,j (ξ1, ξ2, ξ3) = χ̂2+j (ξ1) χ̂1 (ξ2) χ̂2 (ξ3) j = 1, ..., p − 1, (17)

φ̂14,j (ξ1, ξ2, ξ3) = χ̂2 (ξ1) χ̂2+j (ξ2) χ̂2 (ξ3) j = 1, ..., p − 1, (18)

φ̂15,j (ξ1, ξ2, ξ3) = χ̂2+j (ξ1) χ̂2 (ξ2) χ̂2 (ξ3) j = 1, ..., p − 1, (19)

φ̂16,j (ξ1, ξ2, ξ3) = χ̂1 (ξ1) χ̂2+j (ξ2) χ̂2 (ξ3) j = 1, ..., p − 1, (20)

φ̂17,j (ξ1, ξ2, ξ3) = χ̂1 (ξ1) χ̂1 (ξ2) χ̂2+j (ξ3) j = 1, ..., p − 1, (21)

φ̂18,j (ξ1, ξ2, ξ3) = χ̂1 (ξ1) χ̂2 (ξ2) χ̂2+j (ξ3) j = 1, ..., p − 1, (22)

φ̂19,j (ξ1, ξ2, ξ3) = χ̂2 (ξ1) χ̂1 (ξ2) χ̂2+j (ξ3) j = 1, ..., p − 1, (23)

φ̂20,j (ξ1, ξ2, ξ3) = χ̂2 (ξ1) χ̂2 (ξ2) χ̂2+j (ξ3) j = 1, ..., p − 1; (24)
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the face shape functions as

φ̂21,i,j (ξ1, ξ2, ξ3) = χ̂2+i (ξ1) χ̂1+j (ξ2) χ̂1 (ξ3) i = 1, ..., p − 1, j = 1, ..., p − 1, (25)

φ̂22,i,j (ξ1, ξ2, ξ3) = χ̂2+i (ξ1) χ̂1+j (ξ2) χ̂2 (ξ3) i = 1, ..., p − 1, j = 1, ..., p − 1, (26)

φ̂23,i,j (ξ1, ξ2, ξ3) = χ̂2+i (ξ1) χ̂1 (ξ2) χ̂2+j (ξ3) i = 1, ..., p − 1, j = 1, ..., p − 1, (27)

φ̂24,i,j (ξ1, ξ2, ξ3) = χ̂2+i (ξ1) χ̂2 (ξ2) χ̂2+j (ξ3) i = 1, ..., p − 1, j = 1, ..., p − 1, (28)

φ̂25,i,j (ξ1, ξ2, ξ3) = χ̂1 (ξ1) χ̂2+i (ξ2) χ̂2+j (ξ3) i = 1, ..., p − 1, j = 1, ..., p − 1, (29)

φ̂26,i,j (ξ1, ξ2, ξ3) = χ̂2 (ξ1) χ̂2+i (ξ2) χ̂2+j (ξ3) i = 1, ..., p − 1, j = 1, ..., p − 1, (30)

and, finally, the interior shape functions as

φ̂27,i,j,k (ξ1, ξ2, ξ3) = χ̂2+i (ξ1) χ̂2+j (ξ2) χ̂2+k (ξ3)

i = 1, ..., p − 1, j = 1, ..., p − 1, k = 1, ..., p − 1. (31)

In other words, a 3D element with uniform order p has 1 shape functions at each vertex, p − 1
shape functions at each edge, (p− 1) (p− 1) shape functions at each face, and (p− 1) (p− 1) (p− 1)
shape functions at interior.
For the definition of shape function over tetrahedral and prism elements we refer to [6].
The hierarchical shape functions are utilized over the computational mesh to discretize the

variational formulations (A8)–(A10) or (A12)–(A19), respectively. The resulting global stiffness
matrix is symmetric in both cases.
The interface to the solver algorithm requires a sequence of element frontal matrices with block

structure described in the next section, with shape functions restricted to particular finite elements,
grouped to mesh nodes, with indices denoting the global numbering of mesh nodes. The interface
to the solver algorithm is summarized in Appendix B.

3. THE BLOCK STRUCTURE OF THE MATRICES

The matrices managed by the solver are stored in the hypermatrix module. The hypermatrix is a
matrix of matrices.

type hyper matrix

c

c type: -2 = rectangular matrix of hyper-matrices

c -1 = lower-triangular matrix of hyper-matrices

c 0 = zero (null) matrix

c 1 = dense lower-triangular matrix

c 2 = dense rectangular matrix

c mrow: number of rows

c ncol: number of columns

c D: pointer to memory for dense block

c H: recursive pointer to hyper matrix blocks

integer :: type

integer :: mrow,ncol

double precision, pointer :: D(:,:)

type(hyper matrix), pointer :: H(:,:)

c

endtype hyper matrix

The exemplary code constructing the 2 × 2 hypermatrix with 2 × 2 blocks filled with zeros is
listed below:
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type(hyper matrix) :: matrix

matrix%mrow=2; matrix%ncol=2; matrix%type=-2

allocate(matrix%H(2,2)); nullify(matrix%D)

do i=1,2

do j=1,2

allocate(matrix%H(i,j)%D(2,2)); nullify(matrix%H(i,j)%H)

matrix%H(i,j)%D(1:2,1:2)=0.d0

matrix%H(i,j)%mrow=2; matrix%H(i,j)%ncol=2; matrix%H(i,j)%type=2

enddo

endddo

This hierarchical structure of the matrix allows for working on the level of blocks associated
with particular nodes of the mesh. Having the matrix stored in blocks associated with nodes of the
mesh is particularly important in multiphysics computations as well as in the case of the usage of
high polynomial orders of approximations.
This is so because the merging of matrices and elimination of rows can be managed on the level

of blocks, and not necessarily on the level of degrees of freedom. For example, the interior nodes
with order p have (p-1)3 degrees of freedom, and for high polynomial orders of approximation this
simplifies the analysis phase of the solver (the construction of the elimination tree with order of
elimination of nodes).

4. DOMAIN DECOMPOSITION AND CONSTRUCTION OF THE ELIMINATION TREE

The computational mesh is partitioned recursively into subdomains, see Fig. 1. It is done be exe-
cuting the following recursive algorithm:

// each element identified with global idnbeg = 1; nend = number of elements;
// level of recursive partitionnlevel = 1;all partition(nbeg,nend,nlevel)
recursive subroutine partition

(ibeg,iend,ilevel)
// construct the adjacency graph

// and partition into twoall partition elements into 2 with metis
(ibeg,iend)ihalf = (iend+ibeg)/2

// we have two subdomains

[ibeg,ihalf] and [ihalf+1,iend]if(ihalf>ibeg)thennbeg = ibeg;nhalf = ihalf;nlevel = ilevel+1;
// recursive call for the 1st subdomainall partition(nbeg,nhalf,nlevel)endifif(ihalf<iend)thennend = iend;nhalf = ihalf+1;nlevel = ilevel+1;
// recursive call for the 2nd subdomainall partition(nhalf,nend,nlevel)endif
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Fig. 1. Four levels of the elimination tree representing recursive partition of the computational domain,
attributed with four processors.

The finite elements from the mesh are numbered. The partition subroutine is called with list of
all elements. It calls METIS library that generates the graph representation of the connectivities
between finite elements, and finds equal partition into two sub-graphs (sub-domains). The procedure
is repeated recursively for each subdomain, until we obtain sub-domains with single elements. The
resulting binary tree is the elimination tree for the solver algorithm. The elimination tree nodes are
attributed by the processor numbers in such a way that parent node inherits processors numbers
from the son nodes.
The above algorithm executed on the human head model results in the elimination tree with

the number of leaves equal to the number of elements, that is, 19 288.
This algorithm is actually the implementation of the nested-dissection algorithm [19–21]. The

nested dissection method as mentioned in the paper is built by recursive calls to METIS library, with
the graph representing the sub-part of the mesh for the partition, with edges labeled by polynomial
orders of approximation over element faces. This algorithm is suitable for complex geometries like
the model of the human head considered in the paper.
The interface to the solver algorithm, summarized in Appendix B, enables to implement other

methods for construction of the ordering and elimination tree, like the minimum degree algo-
rithm [22] that may perform better than nested dissections for some class of problems.

5. SEQUENTIAL OUT-OF-CORE SOLVER ALGORITHM

The sequential out-of-core solver browses the elimination tree in the post-order, starting from the
left bottom leaf. In the leaf node, the fully assembled internal nodes are eliminated, leaving the Schur
complement of interface nodes. Later, the Schur complement for the left bottom leaf is dumped
out and deallocated. The solver moves to the right neighbor of the left bottom leaf, computes the
Schur complement at the node, and dumps it out to the disc. Next, the solver moves to the parent
node, and constructs the new system based on two already dumped out systems. In the new system
fully assembled nodes are identified and eliminated, and the newly created Schur complement is
also dumped out to the disc. The process is repeated until we reach the root of the elimination
tree. The algorithm is summarized below:
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generate local system assigned to node
find internal nodes at node
eliminate internal nodes at nodeelseloop through son node’sif pro is assigned to son node theniret =0all out of core sequential(son node,pro,iret)if iret==1 then return
compute shur1 complement at son node
dumpout the system from son node
deallocate the system at son nodeif pro is 1st proc
assigned to 2nd son of node thenBUFFER = shur1; dealloate shur1;iret =1; returnelse if pro is 1st proc
assigned to node then
dumpout shur1; dealloate(shur1)pro org = proiret =1; pro =1st proc

assigned to 2nd son of nodeall out of core sequential(son node,pro,iret)iret =0;pro = pro orgshur2 = BUFFER; dealloate(BUFFER)endifendifend loopif pro is 1st proc assigned to node then
dumpin previously dumpout shur1
merge shur1,2 into new system at nodedealloate(shur1,shur2)
find nodes to eliminate at nodeendif
compute schur complement at node
dumpout the system at nodeendif

6. SCHUR COMPLEMENT COMPUTATIONS

In this section, we present the implementation of the Schur complement computations over a local
dense system of equations associated with a single node of the elimination tree. Let us assume we
have the following 2× 2 system:

A(1, 1) ∗ x(1) + A(1, 2) ∗ x(2) = b(1),

A(2, 1) ∗ x(1) + A(2, 2) ∗ x(2) = b(2),

where A(i,j) are square matrices, x(i), b(i) are vectors. The Schur complement computations
can be implemented in the following steps:
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1) A(1, 1) = L ∗ U;
2) A(1, 2) = (L ∗ U)−1 ∗ A(1, 2);
3) b(1) = (L ∗ U)−1 ∗ b(1);
4) A(2, 2) = A(2, 2)− A(2, 1) ∗ A(1, 2);
5) b(2) = b(2)− A(2, 1) ∗ b(1).

After these operations, the Schur complement is stored in A(2,2) and b(2). The particular
steps of the algorithm are implemented with calls to level 2 and 3 BLAS routines. The detailed
implementation of these steps is provided in Appendix C.

7. NUMERICAL RESULTS FOR THE SEQUENTIAL SOLVER
WITH THE FICHERA MODEL PROBLEM

The sequential out-of-core solver has been tested on the Fichera model problem. The tests have
been performed on the single node of the Linux cluster ATARI from the AGH Department of
Computer Science, with 16 cores with 2.4 GHz and 16 GB of RAM. In these computations only
single core has been used. The tests concerned the comparison of the memory usage and execution
time with MUMPS solver. The Fichera model problem has been solved for various polynomial orders
of approximations, for various sizes of the mesh structure. The numerical results are summarized
in Tables 1–5.
From the performed experiments we can draw the following conclusions. Our solver utilizes less

memory than MUMPS. The memory usage of our solver with respect to the MUMPS memory

Table 1. Number of degrees of freedom for the Fichera problem for polynomial orders of approximation
varying from p = 2, 3. . .8 and mesh sizes n = 2× 2× 2 or n = 4× 4× 4 or n = 8× 8× 8 (without 1/8 of the

mesh for the Fichera singularity).

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

4× 4× 4 665 1981 4401 8261 13 897 21 645 31 841

8× 8× 8 4401 13 897 31 841 60 921 103 825 163 241 241 857

16× 16× 16 31 841 103 825 241 857 467 441 802 081 1 267 281 1 884 545

Table 2. Execution time in seconds of the out-of-core solver for the Fichera problem for polynomial orders
of approximation varying from p = 2, 3. . .8 and mesh sizes n = 2 × 2 × 2 or n = 4 × 4 × 4 or n = 8 × 8 × 8

(without 1/8 of the mesh for the Fichera singularity).

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

4× 4× 4 1.1 2.21 3.34 6.66 13.32 24.4 43.96

8× 8× 8 62.07 90.67 162.91 374.94 718 1329 2235

16× 16× 16 3913 5787 8218 14 007 23 765 42 339

Table 3. Memory usage in MB of the out-of-core solver for the Fichera problem for polynomial orders
of approximation varying from p = 2, 3. . .8 and mesh sizes n = 2 × 2 × 2 or n = 4 × 4 × 4 or n = 8 × 8 × 8

(without 1/8 of the mesh for the Fichera singularity).

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

4× 4× 4 0.16 0.22 0.36 0.68 1.51 2.81 5.4

8× 8× 8 22 28 42 90 147 327 476

16× 16× 16 1592 2189 3001 5073 8216 14 060
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Table 4. Execution time in seconds of the MUMPS solver for the Fichera problem for polynomial orders
of approximation varying from p = 2, 3. . .8 and mesh sizes n = 2 × 2 × 2 or n = 4 × 4 × 4 or n = 8 × 8 × 8

(without 1/8 of the mesh for the Fichera singularity).

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

4× 4× 4 0.041 0.083 0.2 0.66 2.44 7.89 31.44

8× 8× 8 0.29 1.1 4.38 15.1 46.03 163 351

16× 16× 16 4.9 35.4 169 619 2649

Table 5. Memory usage in MB for the MUMPS solver for the Fichera problem for polynomial orders
of approximation varying from p = 2, 3. . .8 and mesh sizes n = 2 × 2 × 2 or n = 4 × 4 × 4 or n = 8 × 8 × 8

(without 1/8 of the mesh for the Fichera singularity).

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

4× 4× 4 1 4 12 32 84 171 347

8× 8× 8 9 44 141 381 888 2074 3916

16× 16× 16 121 614 1927 4972 10 947

usage is summarized in Table 6. The memory usage of our solver is between 9–22 times better
than MUMPS memory usage in this case. For the comparison, we examine the memory usage
reported by MUMPS (TOTAL MEMORY) which is defined as amount of MB used to store all
non-zero entries during the factorization. We compare the memory usage reported by MUMPS to
the amount of RAM memory used by our solver to store the factors. Thus, the total amount of
memory for MUMPS and our solver is actually higher, since we do not count the memory occupied
by the rest of the hp3d application.

Table 6. MUMPS memory usage in MB divided by our solver memory usage in MB for the Fichera problem
for polynomial orders of approximation varying from p = 2, 3. . .8 and mesh sizes n = 2×2×2 or n = 4×4×4

or n = 8× 8× 8 (without 1/8 of the mesh for the Fichera singularity).

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

4× 4× 4 1976285 15.64492 14.57924 15.46828 18.92397 19.98195 22.76821

8× 8× 8 10.03034 9.525678 9.16336 9.656079 10.37117 12.40738 13.0933

16× 16× 16 9.031625 9.177692 8.663048 9.736382 9.515527

It is worth mentioning that MUMPS with METIS ordering crashes for n = 16 × 16 × 16 for
p = 7 and p = 8 due to a lack of memory, while our solver computes n = 16 × 16× 16 with p = 7
and crashes for p = 8.
With respect to the execution time, MUMPS is faster than our solver, which is summarized in

Table 7. But the goal of this research was to minimize the memory usage, with intensive out-of-
core operations. From the comparison of the execution times it can be implied that MUMPS is
significantly faster than our solver for low polynomial orders of approximation. This is the price to

Table 7. Our solver execution time in seconds divided by MUMPS execution time in seconds for the Fichera
problem for polynomial orders of approximation varying from p = 2, 3. . .8 and mesh sizes n = 2 × 2 × 2

or n = 4× 4× 4 or n = 8× 8× 8 (without 1/8 of the mesh for the Fichera singularity).

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

4× 4× 4 26.82927 26.62651 16.7 10.09091 5.459016 3.092522 1.398219

8× 8× 8 214.0345 82.42727 37.19406 24.83046 15.59852 8.153374 6.367521

16× 16× 16 798.5714 163.4746 48.62722 22.62843 8.97131 12.16638
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be paid for the block structure of the matrices, where, for low polynomial orders, the processing of
the blocks slows down the solver. For high polynomial orders of approximation the difference goes
down, it is between 1–12 times slower than MUMPS.

8. PARALLEL OUT-OF-CORE SOLVER ALGORITHM

The parallel version of the out-of-core solver algorithm browses the elimination tree level by level,
from the level of leaves to the root level, using multiple processors. The communication between
processors is actually happening through parallel file system. Two son nodes compute the two Schur
complements and dump them out to the disc. The parent node constructs new system by reading
the two already dumped out Schur complements. The synchronization of the read/write operations
is performed by sending a single flag through MPI message from son nodes to the parent node.
When the number of processors is less than number of leaves in the elimination tree, the parallel

out-of-core solver switches to sequential out-of-core solver whenever number of processors assigned
to the node is equal to one.
The parallel out-of-core solver algorithm is summarized below:funtion out of core(node, pro)loop through son node’sif pro is assigned to son node thenif number of processors assigned to son node is 1 thenall out of core sequential(son node, pro)elseall out of core(son node,pro)endif

rewrite schur complement from system at son node into shur1
dumpout the system at node
deallocate the system at son nodeif pro is 1st proc assigned to 2nd son of node then
dumpout shur1; dealloate(shur1)dest pro = 1stpro assigned to 2ndson of nodempi send(“dumped out”,dest pro)else if pro is 1st proc assigned to node thenpro soure = 1st proc assigned to 2nd son of nodempi rev(“dumped out”,pro soure)endifendifend loopif pro is 1st proc assigned to node then

merge shur1 withshur2 previously dumped out at disc
into new system at node
deallocate shur1
find nodes to eliminate at nodeendif
compute schur complement at nodeendif

9. NUMERICAL RESULTS

The numerical experiments concern three computational meshes summarized in Table 8. The first
mesh is the coarse mesh with uniform order of approximation p = 2 on edges, faces and interiors of
tetrahedral finite elements and with polynomial orders of approximation p = 3 on prism elements.
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Table 8. Computational meshes summarized in the numerical experiments.

First mesh Second mesh Third mesh

Number of finite elements 19 288 19 288 154 304

Number of degrees of freedom 125 754 287 079 1 058 622

Number of non-zero entries 15 321 155 40 215 303 119 942 591

Maximum memory out-of-core solver 1.2 GB 2 GB 19 GB

Memory MUMPS 922 MB 3 GB 35.9 GB

There are 19 288 finite elements and 125 754 degrees of freedom. This is three-dimensional problem
and what really matters is not the size of the matrix but the number of non-zero entries in the
matrix. The matrix resulting from the first mesh contains 15 millions non-zero entries.
The second mesh is the same coarse mesh but after uniform p refinement. The mesh has the

uniform order of approximation p = 3 over tetrahedral elements and p = 4 over prism elements. The
number of finite elements is the same, but the number of degrees of freedom increases to 287 079.
Also the sparsity of the new matrix implies 40 millions of non-zero entries.
The third mesh is obtained after global h refinement of the first mesh. The mesh still contains

the uniform order of approximation p = 2 over tetrahedral elements and p = 3 over prism elements.
The number of finite elements after uniform h refinement increases up to 154 304. The number of
non-zero entries is huge and is equal to 119 millions.
Notice that number of non-zero entries presented in Table 8 concerns the sequence of element

frontal matrices submitted to the solver algorithm (or to MUMPS). It does not contain the new
non-zero factors generated during the factorization process. This is why 119 942 591 × 8 = 915 MB
and it is not 19 GB for the third mesh. The maximum memory for the out-of-core solver is computed
as the amount of RAM occupied by the factors generated during the factorization. For our solver,
the maximum amount of RAM is equal to the disc’s space occupied by a largest file with largest
local dense system processed by the solver algorithm since we report amount memory used to store
double precision numbers from frontal matrices and dumped out to disc in a formatted way.
The memory usage for the MUMPS solver is reported as provided by the MUMPS for TOTAL

MEMORY used during the factorization. It is equal to the amount of RAM occupied by the factors
generated during the factorization process.
Figures 2, 3 and 4 present memory usage of the sequential version of the out-of-core solver

executed over the first, second and third meshes. The memory usage is related to the sizes of local
systems of equations processed by the solver in consequtive nodes of the elimination tree browsed
in post order. The maximum memory usage for the first mesh is equal to 1.2 GB, for the second
mesh is equal to 2.0 GB, and for the third mesh is equal to 19 GB. The state-of-the-art MUMPS

Fig. 2. Memory usage up to 1.2 GB during execution of the sequential out-of-core solver on the first mesh.
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Fig. 3. Memory usage up to 2.0 GB during execution of the sequential out-of-core solver
on the second mesh.

Fig. 4. Memory usage up to 19 GB during execution of the sequential out-of-core solver on the third mesh.

solver requires 922 MB for the first mesh, 3 GB for the second mesh and 35.9 GB for the third
mesh (compare Table 8). This implies that our solver uses less memory than the MUMPS solver.

The multi-frontal solver algorithm generates a tree of dense matrices. The dense matrices are
stored at nodes of the elimination tree. The solver presented in this paper uses the block structure
of the sub-matrices, with blocks related to mesh nodes. The size of the dense system grows when
we go up the tree. The smallest systems are located at leaves of the elimination tree, and the size is
growing towards the root node. The Figs. 5–7 report the number of mesh nodes in the local systems
within the elimination tree, when browsing the tree level by level, from root to the leaves. The level 1
corresponds to the root node; the level 17 corresponds to the leaf nodes. From Figs. 5–7 we can
draw interesting conclusion that the maximum size of the system is actually located on the third
level of the elimination tree. Each local system from the elimination tree has some number of mesh
nodes fully assembled, and some number of nodes not fully assembled yet. The fully assembled
nodes can be eliminated; the not fully assembled nodes are merged for the next level systems.
These nodes for the next level are called the interface nodes. In Figs. 5–7 it is also assumed that
the top problem has only interface nodes, but this time all of these nodes can be eliminated. The
recursive calls to METIS library has been utilized to generate the elimination trees which statistics
are presented in Figs. 5–7.

Figures 5, 6 and 7 present the number of nodes over particular levels of the elimination tree,
for the first, second and third mesh. The figures allow to predict the sizes of the local systems of
equations encountered while browsing the elimination trees. The elimination tree has 19 288 leaves
so it contains 17 levels. The level 17 corresponds to the leaves, while level 1 corresponds to the
root of the elimination tree. Notice that the root level corresponds to the single cross-section of the
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Fig. 5. Statistics for the ordering obtained by recursive calls to METIS package, for the first mesh, for
polynomial order of approximation uniformly set to p = 2 over tetrahedral elements and to p = 3 on prism
elements. Maximum and minimum number of nodes estimated for each level of the elimination tree. Maximum
and minimum number of nodes on the interface (not fully assembled yet) estimated for each level of the

elimination tree.

Fig. 6. Statistics for the ordering obtained by recursive calls to METIS package, for the second mesh,
for polynomial order of approximation uniformly set to p = 3 over tetrahedral elements and to p = 4 on
prism elements. Maximum and minimum number of nodes estimated for each level of the elimination tree.
Maximum and minimum number of nodes on the interface (not fully assembled yet) estimated for each level

of the elimination tree.

Fig. 7. Statistics for the ordering obtained by recursive calls to METIS package, for the third mesh, obtained
by breaking each tetrahedral element from the third mesh into four son tetrahedrals and two piramids, and
each prism element into eight new prism elements. Maximum and minimum number of nodes estimated for each
level of the elimination tree. Maximum and minimum number of nodes on the interface (not fully assembled

yet) estimated for each level of the elimination tree.

computational domain, the second level corresponds to the interface of the quarters of the domain,
while the third level corresponds to the 1/8 parts of the domain. It can be read from the figures
that the maximum sizes of systems of equations are present at the third level.
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The local systems of equations stored at nodes of the elimination tree are “almost” dense, in
a sense that they may contain zeros, not related to the topology of the mesh, but rather to the
structure of the element frontal matrices resulting from the structure of the variational formulation
and the shape function used. The sparsities of these systems are reported in Figs. 8–10. The zeros
in the systems follow from the tensor product structure of the shape functions used. The sparsity
pattern increases when we increase the polynomial order of approximation. Despite the fact that
we have some sparsities in the systems, we utilize block structure of the matrix and dense algebra
routines BLAS level 2 and 3 to proceed with the Schur complement computations. Please refer to
Appendix C for more details.

Fig. 8. Sparsity of the matrices for the first mesh during the sequential execution of the out-of-core solver
(during browsing the elimination tree in the post order).

Fig. 9. Sparsity of the matrices for the second mesh during the sequential execution of the out-of-core
solver (during browsing the elimination tree in the post order).

Fig. 10. Sparsity of the matrices for the third mesh during the sequential execution of the out-of-core solver
(during browsing the elimination tree in the post order).
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Figures 8, 9 and 10 denote the sparsities of the local systems of equations, from all nodes of the
elimination tree, for the first, second and third meshes. Each dot corresponds to sparsity of a single
system from a single node of the elimination tree. From the figures it follows that the sparsity of
the systems goes down when we perform global p or h refinements. This implies that the additional
memory saving may be obtained by utilizing compressed matrix storage.

The speed-up and efficiency of our parallel solver reported in Figs. 12 and 14 are defined as
follows. The speed-up is defined as E = T1/Tp, and the efficiency is defined as E = T1/(pTp),
where T1 is the execution time of the sequential solver, p is the number of processors, Tp is the
execution time for p processors.

Figures 11 and 13 present the maximum execution time taken from all procesors participating
in the parallel computations. Figures 15–17 present the execution times for particular processors.
Execution time is non-uniform, since the elimination tree is a binary tree, with all processors
assigned to the branches of the tree; however, when the algorithm processes the tree all the way to
the root, at some level of the elimination tree the number of tree nodes is less than the number of
processors. In such a case, some processors become idle.

Fig. 11. Execution time for parallel out-of-core solver for the first mesh with uniform p = 2. The black
line entitled “total” denotes the total execution time for different number of processors. The red line entitled
“sequential” denotes the time spent by each processor to process its local branch of the elimination tree.
The line includes also time spent by each processor on dumping out and in the Schur complement on local
SCRATCH directory on LONESTAR cluster. The green line entitled “dump” denotes the time spent by each
processor on “dumping out” and “dumping in” matrices with the Schur complements to be exchanged between
processors through WORK parallel file system on LONESTAR cluster. The blue line entitled “computation”
denotes the time spent during processing of the parallel part of the elimination tree by parallel MUMPS solver

used to perform the partial Schur complements.

Fig. 12. Speed-up and efficiency of the parallel out-of-core solver for the first mesh with p = 2.
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Fig. 13. Execution time for parallel out-of-core solver for the second mesh with uniform p = 3. The black
line entitled “total” denotes the total execution time for different number of processors. The red line entitled
“sequential” denotes the time spent by each processor to process its local branch of the elimination tree.
The line includes also time spent by each processor on dumping out and in the Schur complement on local
SCRATCH directory on LONESTAR cluster. The green line entitled “dump” denotes the time spent by each
processor on dumping out and dumping in matrices with the Schur complements to be exchanged between
processors through WORK parallel file system on LONESTAR cluster. The blue line entitled “computation”
denotes the time spent during processing of the parallel part of the elimination tree by parallel MUMPS solver

used to perform the partial Schur complements.

Fig. 14. Speed-up and efficiency of the parallel out-of-core solver for the second mesh with p = 3.

Figure 18 presents the execution times for the third problem, and the reason why there are not
times reported for low number of processors is the following: while conducting the third problem
for low number of processors (less than 8) we ran out of memory and it was not possible to solve
the problem with small number of computing nodes without distribution of data into many cluster
nodes.
The following figures summarize the execution times of the solver over the first, second and third

meshes.
From the results for the first mesh summarized in Figs. 11 and 12 we can draw the following

conclusions:

• The efficiency of the parallel out-of-core solver presented in Fig. 12 is about 60 percent on 16
processors, 40 procent on 32 processors, and it goes down to 20 percent on 64 and 128 processors.

• The execution times of the particular parts of the parallel out-of-core solver listed in Fig. 11
imply that starting from 32 processors, the dumping out and in matrices into the parallel file
system becomes the dominating part of the solver algorithm and this is the bottleneck for
improving the efficiency of the solver

From the results for the second mesh summarized in Figs. 13–17 we can draw the following
conclusions:
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Fig. 15. Profile for 8- processor parallel execution of the out-of-core solver for the second mesh with polynomial
order of approximation p = 3. The blue line entitled “total” denotes the total execution time for different
number of processors. The light pink line entitled “sequential” denotes the time spent by each processor
to process its local branch of the elimination tree. The line includes also time spent by each processor on
dumping out and in the Schur complement on local SCRATCH directory on LONESTAR cluster. The yellow
line entitled “dump” denotes the time spent by each processor on dumping out and dumping in matrices
with the Schur complements to be exchanged between processors through WORK parallel file system on
LONESTAR cluster. The blue line entitled “computation” denotes the time spent during processing of the
parallel part of the elimination tree by parallel MUMPS solver used to perform the partial Schur complements.
The dark pink line entitled “other” denotes time spent by processor on other routines including management

of nodes connectivity.

Fig. 16. Profile for 16- processor parallel execution of the out-of-core solver for the second mesh with
polynomial order of approximation p = 3. The blue line entitled “total” denotes the total execution time
for different number of processors. The light pink line entitled “sequential” denotes the time spent by each
processor to process its local branch of the elimination tree. The line includes also time spent by each processor
on dumping out and in the Schur complement on local SCRATCH directory on LONESTAR cluster. The yellow
line entitled “dump” denotes the time spent by each processor on dumping out and dumping in matrices
with the Schur complements to be exchanged between processors through WORK parallel file system on
LONESTAR cluster. The blue line entitled “computation” denotes the time spent during processing of the
parallel part of the elimination tree by parallel MUMPS solver used to perform the partial Schur complements.
The dark pink line entitled “other” denotes time spent by processor on other routines including management

of nodes connectivity.

• The efficiency of the parallel out-of-core solver presented in Fig. 14 is about 50–60 percent up
on 16 processors, 35 procent on 32 processors, and it goes down to 20 percent on 64 and 10
percent on 128 and 256 processors.

• The execution times of the particular parts of the parallel out-of-core solver listed in Fig. 13
imply that starting from 32 processors, the dumping out and in matrices into the parallel file
system becomes the dominating part of the solver algorithm and this is the bottleneck for
improving the efficiency of the solver.
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• The careful analysis of the components of parallel execution for 8, 16 and 64 processors presented
in Figs. 15, 16 and 17 confirms the thesis that the dominating parts of the out-of-core solver
algorithm are dumping out the matrices into the disc.

Fig. 17. Profile for 64- processor parallel execution of the out-of-core solver for the second mesh with
polynomial order of approximation p = 3. The blue line entitled “total” denotes the total execution time
for different number of processors. The light pink line entitled “sequential” denotes the time spent by each
processor to process its local branch of the elimination tree. The line includes also time spent by each processor
on dumping out and in the Schur complement on local SCRATCH directory on LONESTAR cluster. The yellow
line entitled “dump” denotes the time spent by each processor on dumping out and dumping in matrices
with the Schur complements to be exchanged between processors through WORK parallel file system on
LONESTAR cluster. The blue line entitled “computation” denotes the time spent during processing of the
parallel part of the elimination tree by parallel MUMPS solver used to perform the partial Schur complements.
The dark pink line entitled “other” denotes time spent by processor on other routines including management

of nodes connectivity.

From the results for the third mesh summarized in Fig. 18 as well as from Fig. 4 presenting the
memory usage we can draw the following conclusions:

• The third mesh is difficult to solve, bacause of huge amount of required memory. Actually, the
largest local problem requires 19 GB of memory to solve.

• Solution of the third problem requires huge amount of memory. LONESTAR Linux cluster
consists in computational nodes with 24 GB of RAM with 12 cores per node. The maximum
amount of memory that can be utilized per node is 24 GB when we execute a single MPI task
per node. The memory usage required by the third problem results in necessity of utilizing
entire node per processor. Each node has 12 cores, so it implies that when we need to solve the
problem on 64 processors, we actually need to allocate 64× 12 = 768 processors (64 nodes with
12 cores per node).

• We believe that further scalability of the solver could be possible, but we had access to maximum
64 nodes with 12 cores = 768 processors. It should be emphasized that current version of
the solver utilizes only one core during the LU factorization, and further improvement of the
scalability of the solver can be obtained by implementing multi-core LU factorization.
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Fig. 18. Execution time for parallel out-of-core solver for different number of processors for the third mesh.

10. CONCLUSIONS AND FUTURE WORK

The solver obtained 50–60 percent efficiency on up to 16 processors, then the efficiency went down to
35–40 percent on 32 processors, and went down to 20 and less percent on 64 and more processors.
The main reason for loosing the efficiency is the performance of the parallel file-system, since
the solver is performing multiple concurrent “dump outs” and “dump ins” of local system from
particular nodes of the elimination tree.

The future work will include

• Further minimizing the memory usage by storing the systems of equations from particular nodes
of the elimination tree in distributed manner.

• Further improving the scalability of the solver by utilizing multicore algorithms for partial LU
factorizations performed by the solver.

• Further improving the scalability of the solver by minimizing the sizes of the dumped out
matrices. This can be done by switching to compressed matrix storage as well as by dumping
out and in a single local system of equations into multiple files, as it is stored in distributed
manner.

Appendix A

The Appendix presents the details of the two numerical problems utilized for testing of the solver
algorithm.

L-shape domain model problem

The L-shape domain problem is a model academic problem formulated by Babuška in 1986 [23, 24],
to test the convergence of the p- and hp- adaptive algorithms. The problem consists in solving the
temperature distribution over the L-shape domain, presented in Fig. 19 with fixed zero temperature
in the internal part of the boundary, and the Neumann boundary condition prescribing the heat
transfer on the external boundary. There is a single singularity in the central point of the domain
(the gradient of temperature goes to infinity at point O), so the accurate numerical solution requires
a sequence of adaptations in the direction of the central point. The problem can be summarized as
follows:



34 M. Paszyński

find u : R2 ⊃ Ωx → u(x) ∈ R the temperature distribution such that

2∑

i=1

∂2u

∂x2i
= 0 in Ω (A1)

with boundary conditions

u = 0 on ΓD, (A2)

∂u

∂n
= g on ΓN , (A3)

with n being the unit normal outward to ∂Ω vector, and

g (r, θ) = r2/3 sin2/3
(
θ +

Π

2

)
(A4)

is defined in the radial system of coordinates with the origin point O presented in Fig. 19. The
formula (4) is actually based on the exact solution for the L-shape problem.

Fig. 19. The L-shape domain.

Fichera problem

The first problem considered in this paper is the Fichera model problem. It is the generalization
of the L-shape domain problem into three dimensions. It can be summarized in the following way:
find u : R3 ⊃ Ωx → u(x) ∈ R the temperature distribution over the domain presented in Fig. 20
such that

3∑

i=1

∂2u

∂x2i
= 0 in Ω (A5)

with boundary conditions

u = 0 on ΓD, (A6)

∂u

∂n
= g on ΓN (A7)

with n being the unit normal outward to ∂Ω vector, and g is the exact solution of the L-shape
problem.
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Fig. 20. Domain for the Fichera problem.

The weak variational formulation is obtained by multiplying by test function v ∈ V and inte-
grating by parts to get

b (u, v) = l (v) ∀v ∈ V, (A8)

b (u, v) =

∫

Ω

3∑

i=1

∂u

∂xi

∂v

∂xi
dx, (A9)

l (v) =

∫

ΓN

gvdS, (A10)

where

V =



v ∈ L2 (Ω) :

∫

Ω

‖v‖2 + ‖∇v‖2 dx < ∞ : tr (v) = 0 on ΓD



 . (A11)

Linear elasticity coupled with acoustics

The second problem considered in this paper is the challenging multiphysics problem, involving the
linear elasticity coupled with acoustics for the modeling of the acoustic of the simplified model of
human head [6, 8, 25]. The final variational formulation is the following: we seek for elastic velocity
u ∈ ũD +V and pressure scalar field p ∈ p̃D + V such that

bee (u,v) + bae (p,v) = le (v) , ∀v ∈ V, (A12)

bea (u, q) + baa (p, q) = la (q) , ∀q ∈ V, (A13)

where

bee (u,v) =

∫

Ωe

(
Eijkluk,lvi,j − ρsω

2uivi
)
dx, (A14)
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bae (p,v) =

∫

ΓI

pvndS, (A15)

bea (u, q) = −ω2ρf

∫

ΓI

unqdS, (A16)

baa (p, q) =

∫

Ωa

(
∇p · ∇q − k2pq

)
dx, (A17)

le (v) =

∫

Ωe

pincvidx, (A18)

la (q) = 0. (A19)

ũD = 0, p̃D ∈ H1 (Ωa) is a finite energy lift of pressure prescribed on ΓDa , where Ωa part is
occupied by an acoustical fluid, Ωe part is occupied by a linear elastic medium, ΓI is the interface
separating the two sub-domains, ΓDa is the Dirichlet boundary of the acoustic part. The spaces of
test functions are defined as

V =
{
v ∈ H1 (Ωa) : trv = 0 on ΓDe

}
, (A20)

V =
{
q ∈ H1 (Ωa) : trq = 0 on ΓDa

}
. (A21)

Here ρf is the density of the fluid, ρs is the density of the solid, Eijkl = µ (δikδjl + δilδjk)+λδijδkl
is the tensor of elasticities, ω is the circular frequency, c denotes the sound speed, k = ω/c is the
acoustic wave number and pinc is the incident wave impinging from the top pinc = e−ikex e =
(−1, 0, 0). For more details we refer to [8].

Appendix B

The Appendix summarizes the interface to the out-of-core solver algorithm. The solver calls the
following routines that have to be implemented by the user:

subroutine distribute mesh
c Distribute finite elements into processors

end subroutine

subroutine get subdomain system(s)
use hyper matrix mod

use supernodes system mod

type(supernodes system) :: s

c Gets local system of equations in the hypermatrix format

end subroutine

subroutine return solution to subdomain(sol)
use supernodes system mod

type(supernodes solution) :: sol

c Stores the solution in the local subdomain

end subroutine return solution to subdomain

subroutine get shur omplement(s)
use supernodes system mod

use communicators
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type(supernodes system),pointer :: s

c Executes the Schur complement dense solver over the local system

end subroutine get schur complement

subroutine exeute bakward substitution(s, sol)
use supernodes system mod

use communicators

type(supernodes solution) :: sol

type(supernodes system) :: s

c Executes the backward substitution dense solver over the local system

end subroutine execute backward substitution

In other words, the solver allows for user-defined ordering/generation of the elimination tree, for
user defined interface to dense algebra solvers, as well as it requires preparation of the subdomain
local system with global numbering of mesh nodes, as it is defined in the supernodes system
module.

type supernodes system

c number of nodes in rows / columns

integer :: nr rows

integer :: nr columns

type(hyper matrix) :: A

type(hyper matrix) :: b

c global ids of nodes, with pointers to matrix supernodes

type(supernode in matrix), dimension(:),pointer ::row supernodes

type(supernode in matrix), dimension(:),pointer ::column supernodes

c number of nodes to be eliminated (=0 if full system)

integer :: ncount

end type supernodes system

The optimal way is to associate the leaves of the elimination tree with particular finite elements,
and then the subdomain systems will represent element frontal matrices.

Appendix C

The Appendix contains the details of the implementation of the Schur complement computations
with calls to BLAS routinesAd. 1) A(1,1)=L*U
SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )

INTEGER

INFO, LDA, M, N

INTEGER

IPIV( * )

DOUBLE

PRECISION A( LDA, * )

M (input) INTEGER The number of rows of the matrix A. M >= 0.
N (input) INTEGER The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N

matrix to be factored.

On exit, the factors L and U from the factorization A = P*L*U; the unit

diagonal elements of L are not stored.

LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M).
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IPIV (output) INTEGER array, dimension (min(M,N)) The pivot indices; for 1 <=
i <= min(M,N), row i of the matrix was interchanged with row IPIV(i).
INFO (output) INTEGER = 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization has been
completed, but the factor U is exactly singular, and division by zero will

occur if it is used to solve a system of equations.Ad. 2) A(1,2)=(L*U)^-1*A(1,2)
in other words (where A=A(1,2))

R = U^-1*L^-1*A

L^-1*A = B

U^-1*B=R

Algorithm:

a) Given A and L, solve A=L*B

b) Given B and U, solve B=L*R for R

DTRSM -- ZDTRM( SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A, LDA, B, LDB )B<=L^-1*AA is of size mxnL is of size mxm
SIDE = ’L’

UPLO = ’L’ lower triangular matrix

TRANS = ’N’ no transpoze of L

DIAG = indicates if the diagonal of L is to be taken to equal the identity
matrix (DIAG = "Unit" ) or the values in the matrix (DIAG = "Non unit" ).

M=m, N=n

ALPHA=1

A <- L
B <- A
The leading dimensions of the matrices are given in LDA(for L) and LDB (for A).R<=U^-1*BB is of size nxnU is of size nxn
SIDE = ’L’

UPLO = ’U’ upper triangular matrix

TRANS = ’N’ no transpoze of U

DIAG = indicates if the diagonal of U is to be taken to equal the identity
matrix (DIAG = "Unit" ) or the values in the matrix (DIAG = "Non unit" ).

M=n, N=n

ALPHA=1

A <- U
B <- B
The leading dimensions of the matrices are given in LDA(for U) and LDB (for B).Ad. 3) b(1)=(L*U)^-1*b(1)
in other words (where b=b(1))

d = U^-1*L^-1*b

L^-1*b = e

b=L*e

d=U^-1*e
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e=U*d

Algorithm:

a) Given b and L, solve b=L*e for e

a) Given e and U, solve e=U*d for d

DTRSM - ZDTRM( SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A, LDA, B, LDB )b is of size mx1L is of size mxm
SIDE = ’L’

UPLO = ’L’ lower triangular matrix

TRANS = ’N’ no transpoze of L

DIAG = indicates if the diagonal of L is to be taken to equal the identity
matrix (DIAG = "Unit" ) or the values in the matrix (DIAG = "Non unit" ).

M=m, N=1

ALPHA=1

A <- L
B <- b
The leading dimensions of the matrices are given in LDA(for L) and LDB (for b)d<-U^-1*ee is of size mx1U is of size mxm
SIDE = ’L’

UPLO = ’U’ upper triangular matrix

TRANS = ’N’ no transpoze of U

DIAG = indicates if the diagonal of U is to be taken to equal the identity
matrix (DIAG = "Unit") or the values in the matrix (DIAG = "Non unit" ).

M=m, N=1

ALPHA=1

A <- U
B <- e
The leading dimensions of the matrices are given in LDA(for U) and LDB (for e)Ad. 4) A(2,2)=A(2,2)-A(2,1)*A(1,2)
DGEMM/ZGEMM (double / complex)

ZGEMM (transa, transb, l, n, m, alpha, a, lda, b, ldb, beta, c, ldc)

C = alpha A *B + beta* C

here alpha = -1, beta = 1, A(2,1)=mult, B=A(1,2), C=A(2,2)

transa = ’N’ A is used in the computation.

transb = ’N’, B is used in the computation.

l is the number of rows in matrix C .

n is the number of columns in matrix C .

m is the number of columns in matrix A .

alpha is the scalar alpha.

a is the matrix A , where: A has l rows and m columns.

If transa equal to ’N’, its size must be lda by (at least) m.

lda is the leading dimension of the array specified for a.

b is the matrix B , where: B has m rows and n columns.

ldb is the leading dimension of the array specified for b.

beta is the scalar beta.

c is the l by n matrix C .

ldc is the leading dimension of the array specified for c.

On Return c is the l by n matrix C , containing the results of the computation.
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ZGEMV

( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY )

TRANS = ’N’ for y := alpha*A*x + beta*y,

M = number of rows in A

N = number of columns in A

ALPHA=-1

A <= A(2,1)
LDA On entry, LDA specifies the first dimension of A as declared in the

calling (sub) program

X<=b(1)
INCX=1

BETA=1

Y<=b(1)
INCY=1
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