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Rotating machinery diagnostics based on NARX models
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Rotating machines are often described using linear methods with acceptable accuracy. Some malfunctions,
however, are of non-linear nature. Accurate detection and identification of such malfunctions requires
more accurate methods. One of such methods can be NARX — Non-linear AutoRegressive model with
eXogenous input. The paper presents how NARX models can be applied for modeling rotating machinery
malfunctions. Idea of the diagnostic algorithm based on such modeling is presented. Proposed algorithm
was verified during research on a specialized test rig, which can generate vibration signals. The paper
presents results of application of NARX models for detection of typical rotating machinery failures and
the variations of NARX model parameters due to propagation of damage. In the paper authors present also
a blade crack detection using the NARX models. The last chapter of the paper discusses the applicability
of this method for damage detection in real machines.
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1. INTRODUCTION

Rotating machines play a vital role in modern economics. Most industrial processes where energy
is processed are based on rotating machinery. Thus, it is increasingly important to maintain those
machines in the good technical state. Main drivers for final users are:

e avoidance of catastrophically failures
e decrease of maintenance costs
e increase of availability

This needs, in turn, create strong demand for diagnostic techniques. Theoretical works are per-
formed since decades, starting from simplified, linear rotor models. With advances in rotordynamics
research new processes were identified and described. Extensive review of theoretical description
of rotordynamics phenomena can be found e.g. in [11]. In many cases those phenomena are of
non-linear nature. Conclusion stating that a rotor and its support consisting of hydrodynamic
bearings, formulate a highly nonlinear closed-loop system is also known [9]. Additionally, several
malfunctions have inherently nonlinear nature. Good examples are mechanical looseness or rotor
rub. Such problems were also investigated and solved in the industrial practice. Interesting survey
of rotating machinery malfunctions can be found e.g. in [4].In the general case, to model a rotat-
ing object (with or without malfunctions), the system input may be stated as the forces relating
to rotor imperfections such as unbalance or overloads connected to external forces acting upon
the shaft [2]. The state vector includes velocities and displacements of nodes, where lumped phys-
ical parameters are focused. The equations strongly depend on parameters, especially rotational
speed (2.
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Fig. 1. A block scheme of rotor and support equations affected by faults in the form of state-space equations

Parameters of a diagnostic model to be identified from measured data should be very sensitive
to the symptoms of malfunctions of rotating machinery. The problem of faults description (Fig. 1)
of supported rotors can be formulated based on nonlinear state-space equations as follows,

i)(t) = f(t’v(t)7u(t)’w(t)afk,u(t)ve) s
z(t) = g(t’v(t)’u‘(t),w(t)’fv(t)’o) 3

The parameters of the vector 6 are physically significant and their changes correspond to faults
(malfunctions) to be detected and isolated. A major problem with rotordynamics modeling is that
equations strongly depend on parameters, especially rotational speed. In practice, a large group of
machinery is operating at a constant speed for very long periods. On the one hand, it simplifies
the problem by reducing the number of degrees of freedom. On the other hand, one needs to deal
with nonlinear equations with less input data available. The general problem presented above is
often approached using linear system identification methods. In many cases such an approach yields
good results, allowing detection and identification of machinery faults. In some cases, linearization
of a nonlinear model can also bring useful results [1]. In other cases, as mentioned previously, non-
linearities are inherent and linear models can be only used in a limited scope. Mechanical looseness
is the inherently nonlinear phenomenon. It is encountered when a stationary machine part (e.g.
bearing pedestal) becomes loose. In such a case, the effective rotor stiffness is reduced. This often
results in rotor resonance shift into a frequency which is an even multiple (or fixed fraction) of
rotating speed. Additionally, due to mechanical looseness synchronous motion of a part may be-
come truncated, e.g. due to hammering of parts. Truncated sine waves exhibit a series of running
speed harmonics. Those harmonics, in turn may induce resonances of other parts of the machine.
Examples of practical cases of looseness can be found in [4]. Proposal of analytical model of this
malfunction was given in [11]. The model of the rotor lateral mode with additional terms, due to
coupling with the stationary part can be presented as follows:
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The main assumption of the model is discontinuous (and thus nonlinear) change of the stiffness.
The same model can be applied for looseness and for rubbing. In the first case, change of stiffness
is caused by pedestal/surface contact. In the latter one — by rotor/stator contact. In some systems,
when stiffness (and sometimes damping) varies between extreme discrete values, the system given
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in Egs. (2)-(3) may become chaotic. Basics of chaotic motion were described in [10]. The suspended
rotor with looseness or rub is one of examples, where such a chaotic motion can take place. As shown
in [5], the condition for such behavior is the discontinuous nonlinearity of the system, and its high
sensitivity to deterministic external excitation. To model such nonlinear objects, neural networks
can be applied.

2. FUNDAMENTALS OF NARX

The most general structure of nonlinear ‘black-box’ model is a neural input-output model. It is
recommended for modeling cases without a priori knowledge of structure and its nonlinearities. The
neural network is a set of parameters called weights and biases. Various architectures of neural
networks are described [7]. The most often applied network structure is the multi-layer perceptron
(MLP). Example of structure of two layers MPL is presented in Fig. 2.

Fig. 2. The structure of 2 layer Multi Layer Perceptron

The general case of this architecture of the neural network can be given by the expression
nH nl’
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The predictor §(t) = g[p, 0] consists of the past outputs and/or the past inputs and predicted
output §(t) where 6 denotes the parameter vector, which contains all the adjustable parameters
of a network. Here, biases were presented as weights with second index 0. Usually sigmoid/tansig
activation functions are applied in the hidden layer neurons, whereas linear — in the output layer.
The structure given in Eq. (4) was considered. The weights, referred to as q, or w and W, are
adjusted during the training process based on a training set of inputs and outputs. The learning
criterion is the least mean square error between the given output and the predicted output. The
formula for prediction error is given by equation

N
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The weights are found according to the learning algorithm. The basic one is based on the back-
propagation. Detailed description this algorithm and other ones are given in e.g. [6]. The multi-
layer perceptron can be applied to identify or model a nonlinear dynamic system [7]. The structure,
which will be investigated here, is referred to as NARX — Nonlinear Auto Regressive model with



560 J. Bednarz, T. Barszcz, T. Uhl

eXogenous input (6, 7). The NARX model [6] represents a wide class of non-linear systems, and
many well-known non-linear input-output models are specific cases of this model.

M
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For such a structure, we define regression vector (8) and predictor (9) as

ot) =[yt—1) ...yt —n)u(t —ng) ... u(t —np —ng +1)]7, (8)
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The regression vector is used as the input to the neural network. After successful learning process,
the network is capable of modeling the investigated system.

3. APPLICATION OF NARX IN MODELLING AND DIAGNOSTICS

There are numerous researches in the field of application of neural networks for modeling and
diagnostics of rotating machinery [3, 8, 12, 13, 16, 17]. Popular approach is the application of the
neural network in the process of classification. The idea of this approach is presented in Fig. 3.

In such a configuration, the output layer is composed of neurons having unipolar step activation
functions. Activation of an output occurs when the network classifies the state as certain (correct
or one of the failure types). There are many possibilities when inputs are concerned. The most
successful approaches apply spectral lines or selected parameters of vibration signals. Usage of
perceptrons in presented approach has some disadvantages:

e low immunity to noise,

e high number of inputs (especially in case of feeding spectral lines as inputs),
e inability to detect combined failures,

e learning set is necessary for good results.

The necessity of having the learning set containing all failures one wants to detect is especially
problematic. In practice, behavior of the machine is extremely rich and depends on a multitude of
factors. In consequence, collection of a reasonable learning set is rarely possible. On the other hand,
NARX networks were applied for modeling and identification of dynamic systems [13], yielding good
results. Typical architecture of such application is presented in Fig. 4.

Application of such a network for diagnostics of rotating machinery needs to solve two problems:

e unavailability of input signal

e interpretation of results
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Fig. 4. The NARX network used for system identification.

The input signals in rotating machinery are the forces acting on the structure. The majority
of this force, according to Eq. (2), is the rotor unbalance force. After being transmitted through
the object it produces vibrations, which are observed as system outputs. The rotor unbalance force
is immeasurable and - even worse — it is nonstationary, for it depends on rotational speed, rotor
temperature etc... In such a case either no input signal will be used, resulting in degradation of
quality of the model, or another signal can be used as the input. In this approach, we propose
to use one of vibration signals as the input signal. In such an approach the NARX network will
approximate a nonlinear filter, transforming vibration signal from one channel to the other one.
Interpretation of results causes problems, because neural network parameters (i.e. weights) do not
have any physical interpretation. In the presented approach the output from the network is the
predicted vibration signal (or signals, in more general case, but we will deal with only one output
at the moment), so there is no direct information about any malfunction. We propose to train the
network and next calculate only “distance” between current set of input/ output data and the set
used to train the network. In this case by “distance” authors mean the quality of neural network
validation with new set of data. Good scalar estimate of this value is normalized sum of squares of
prediction errors (NSSE — expressed by Eq. (10)), when new data is used to validate the NARX
network trained with reference data.

N
PE = % ; [y(t) — 9(t168)]" [y(t) - 9(¢168)] + %HTD"- _ LA

Thus, the output will be the set of numbers, showing how much the current state of the ma-
chine differs from selected reference states known previously. The proposed approach is presented
below:
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e acquire vibration data from channels X and Y

e check, whether the operating conditions are stable; if not, return to the beginning

use channel X as the input and channel Y as the output; prepare test set

calculate NSSE for all reference networks (weights)
e find set Nth of reference weights, where NSSE reaches minimum
e if min(NSSE) < limit, classify machine to state Nth

The architecture of proposed algorithm is shown in Fig. 5.

X
Object NARX NSSE Classification }—
structure
B ==
Reference
weights

Fig. 5. The NARX network used for rotating machinery diagnostics

Note, that before this algorithm is run, one has to determine the architecture of the network, i.e.
order of the NARX network (number of past inputs and outputs) and number and type of neurons
in the hidden layer. Also, at least one state must be known to the network (one reference weights
vector must be known). Presentation of results can be given in various formats. We propose tabular
view with the NSSE to known reference sets. If the distance for an Nth is smaller than a predefined
limit, the machine is assumed to work in this closest Nth state. If the distance is greater than the
limit from all known reference vectors, the unknown state should be displayed, notifying the expert
to investigate the machine and probably create a new reference set.

The algorithm was prepared for rotating machinery, operating for long periods with constant
rotational speed. This is common case for e.g. power generation machinery, when lack of transient
states makes diagnostics difficult. On the other hand, we ignore inputs, when the rotational speed is
other than nominal. The algorithm was prototyped based on the data from a real test rig. Following
chapters present this experiment.

4. ROTATING SHAFT - EXPERIMENTAL RIG INSTALLED AT AGH

The rotordynamics test rig (Fig. 6) was designed and installed in Department of Robotics and
Mechatronics in University of Science and Technology. Its main goal is research of diagnostic tech-
niques for rotating machinery. Additionally it is used for other research work (e.g. Operational
Modal Analysis).

The rotor — bearing system is mounted on the heavy steel plate. The rotor is driven by the 1.2 kW
AC motor, controlled by the converter. The converter controls the rotational speed set manually or
from a PC through a serial link. Various transient states can be easily tested.

The driven system can consist of one 1200 mm or two 600 mm rotors, mounted on bearings.
The rig has exchangeable bearings, rolling and sliding ones. One of bearing supports can introduce
controlled misalignment. Up to four disks can be mounted on rotors, to introduce static or dynamic
unbalance. It is possible to introduce looseness and rotor rub.
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Fig. 6. AGH laboratory test rig

The rig is equipped with rotational speed controller and vibration measurement system, which
consists of:

e phase marker sensor,

8 vibration displacement eddy-current probes,

2 three-axial accelerometers,

signal conditioning,

analog input measurement card,

acquisition computer,

software.

Vibration displacement sensors are mounted on pedestals, two sensors per one. This allows to
measure shaft vibration in any position, not only at the bearings. Acceleration sensors are mounted
on bearing pedestals.

The sampling frequency can be configured with the default value of 2 kHz. Apart of storage of raw
vibration data, the measurement systems calculate following parameters of the vibration signals:

e root mean square,

e peak-peak amplitude,

amplitude and phase of the fist harmonic,

amplitude and phase of the second harmonic,

DC value (for eddy-current probes).

Stored data can be exported for future processing (e.g. in Matlab environment). It can be also
presented in one of following plots: time trend, waveform, spectrum, cascade, orbit, Bode, polar.

The measurement system is very flexible and can be easily adapted to the particular experiment.
It is for example possible to increase the sampling frequency (up to 20 kHz per channel) or to add
new signal parameters, like other harmonics, or sub synchronous component.
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5. FAILURES DETECTION USING NARX MODEL

Data processing was performed with Matlab and toolboxes: System Identification, Neural Network
and Neural Network Based System Identification v. 2.0 [15]. Keyphasor was chosen as the input to
the system. As a test signal a signal from eddy current sensor (vertical directions) at driven end was
chosen (DEZ). Existing data were divided into separate sets, each having 2500 samples. Such sets
were prepared for all measured states: correct, unbalance, misalignment and two cases of loose bear-
ing. Several attempts to determine the optimum network structure were performed. The analysis
was started from the order of 10 inputs and 10 outputs. The initial network had 10 neurons in the
hidden layer. All neurons in the hidden layer had hyperbolic tangent activation function. The single
neuron in the output layer had linear activation function. After optimization, the best results were
obtained for network having order of 3 inputs, 3 outputs and 5 neurons in the hidden layer. After
network optimization phase, three networks were trained, each one modeling dynamics in a different
technical state (correct and loose bearing at driven end (DE) and non-driven end (NDE)). Those
trained networks were later used as reference networks. The goal of the algorithm is to detect, if the
set of currently acquired data can be classified to one of known states. To verify this idea, 3 sets of
validation data (each one consists of 5000 input and 5000 output samples), each taken from measure-
ment with different malfunction present, were presented to each network. The measure of distance
between real data and predicted output was normalized sum of squared prediction error (NSSE).
Thus, 9 estimates were obtained for every channel. Table 1 presents results for the channel DEZ.

The table shows clear difference between data from the same state, for which the network was
trained and other data. However, the network trained from data with loose bearing at NDE shows
worse ability to distinguish between the data. There is some difference between data from the correct
state and data with malfunction, but both malfunctions are practically impossible to distinguish.
After these tests we decided to use the reference network for object undamaged for detecting another
malfunctions — unbalance and misalignment. The results of this analysis are shown in Table 2.

The next step of our researches was focused on checking the influence of damage propagation
for NSEE value. We made this experiment for unbalance and misalignment. We introduce three
degrees of these failures: small, medium and large. We trained a new neural network for analysis
of this experiment results. The results of these experiments are presented in Tables 3 and 4 for
accelerometers and in Tables 5 and 6 for eddy-current sensor.

Experiments results clearly show that NARX models can be successfully implemented in rotating
machinery diagnostics. Value of prediction error for NARX approach increases for increasing dam-
age. This mean that we can calculate estimated time for normal operating of machine. Presented
results proved applicability and advantages of NARX models in model based structural health mon-
itoring of rotating machinery. Next works will be consider on build a algorithm which allows to build
a most fitted neural network for every kind of machines.

Table 1. Prediction errors produced by three reference networks for three validation data sets

Reference network | Data OK | Data from loose DE | Data from loose NDE
No malfunction 1.52 3.52 1:74
Loose bearing DE 5.12 2.29 2.87
Loose bearing NDE 1.75 3.05 1.50

Table 2. Prediction errors produced by reference network (for undamaged structure) for three validation

data sets
Data type Prediction error
No malfunction 1.52
Data from misalignment 7.86
Data from unbalance 9.20
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Table 3. Prediction errors produced by reference network (for undamaged structure) for three validation

data sets
Data type Prediction error
No malfunction 1.41
Data from small unbalance 1.66
Data from medium unbalance 1.91
Data from large unbalance 2.49

Table 4. Prediction errors produced by reference network (for undamaged structure) for three validation

data sets
Data type Prediction error
No malfunction 1.41
Data from small loose at NDE bearing 1.49
Data from medium loose at NDE bearing 1.70
Data from large loose at NDE bearing 1.75

Table 5. Prediction errors produced by reference network (for undamaged structure) for three validation

data sets
Data type Prediction error
No malfunction 2.09
Data from small unbalance 2.37
Data from medium unbalance 2.64
Data from large unbalance 3.03

Table 6. Prediction errors produced by reference network (for undamaged structure) for three validation

data sets
Data type Prediction error
No malfunction 2.09
Data from small misalignment 5.05
Data from medium misalignment 5.43
Data from large misalignment 8.71

6. BLADE CRACK DETECTION USING NARX MODEL

Recently Application of the NARX approach to blade crack detection was investigated. The test rig
was modified by mounting the blades at the end of the shaft. Then a crack of a blade was introduced
(Fig. 7).

In the NARX approach data processing was performed in Matlab and dedicated toolboxes: Sys-
tem Identification, Neural Network and Neural Network Based System Identification v. 2.0 [15].
As the input to the system the Keyphasor was chosen. Two signals: a signal from eddy current
sensor (vertical directions) at the driven end and a signal from accelerometer (vertical directions)
at the driven end were chosen as test signals. Existing data was divided into separate sets, each
having 10000 samples. Such sets were prepared for all the measured states: correct as well as with
a cracked blade, separately for accelerometers and eddy-current sensors. Several attempts to deter-
mine the optimum network structure were performed. The analysis started from order of 10 inputs
and 10 outputs. The initial network had 10 neurons in the hidden layer. All neurons in the hidden
layer had hyperbolic tangent activation function. The single neuron in the output layer had linear
activation function. After optimization, the best results were obtained for network having order
of 3 inputs, 3 outputs and 5 neurons in the hidden layer. After network optimization phase, four
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Fig. 7. Simulation of crack at blade

networks were trained (two for accelerometers and two for eddy-current sensors) — each one mod-
eling dynamics in a different technical state. Those trained networks were later used as reference
networks. The goal of the investigation was to detect whether the set of currently acquired data
could be classified to one of the known states. To verify this idea, 4 sets of validation data (each set
consisted of 35000 input and 35000 output samples), resulting from measurements in the presence of
different malfunctions, were used as inputs to the considered networks. As the measure of instance
between real data and predicted output the normalized sum of squared prediction error (NSSE) was
assumed. Thus, 4 estimates were obtained for every channel. In Table 7 there are presented results
for the accelerometer while in Table 8 for the eddy-current sensor.

Table 7. NARX results— Accelerometers

Table 8. NARX results — Eddy-Current Sensors

(NSSE) (NSSE)
Data Data
Neural Undamaged | Blade crack Neural Undamaged | Blade crack
network network
Undamaged 11.00 12.60 Undamaged 1.9555 2.0337
Blade crack 12.42 11.00 Blade crack 85.0570 4.6917

7. CONCLUSION

The paper presents application of NARX neural network to diagnostics of rotating machinery. The
proposed method was verified at the test rig, where correct state and two cases of mechanical
looseness failures were introduced. Performed research showed ability of proposed algorithm to
detect introduced malfunctions. The algorithm was designed to work in the steady state only, for it
should be applicable for machines working on a constant rotational speed for long periods of time.
Proposed algorithm is very processing power demanding, but does not exceed capabilities of modern
computers.
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