Computer Assisted Methods in Engineering and Science, 20: 43-54, 2013.
Copyright (© 2013 by Institute of Fundamental Technological Research, Polish Academy of Sciences
TWENTY YEARS OF THE CAMES

Architecture of iterative solvers
for hp-adaptive finite element codes

Przemystaw Plaszewski!, Krzysztof Banag!?

I Department of Applied Computer Science and Modelling

AGH University of Science and Technology

Mickiewicza 30, 30-059 Krakéw, Poland

2 Institute of Computer Science, Cracow University of Technology
Warszawska 24, 31-155 Krakow, Poland

e-mail: pplaszew@agh.edu.pl, pobanas@cyf-kr.edu.pl

Maciej Paszynski

Department of Computer Science, AGH University of Science and Technology
Mickiewicza 30, 30-059 Krakéw, Poland

e-mail: paszynsk@agh. edu.pl

We present a layered architecture for iterative solvers of linear equations, designed to allow for easy
integration with existing hp-adaptive FEM codes. We discuss interfaces between a solver and an external
FEM code and requirements for the FEM code that must be met in order to work with the solver. Our
solution is suited to work effectively with stationary as well as time-dependent problems. In this article,
we provide an overview of the layered solver’s structure and modules of each layer. In subsequent articles,
we will present specific implementations of particular layers.

Keywords: solver, FEM, higher-order.

1. INTRODUCTION

One of the strengths of higher-order hp-adaptive FEM approximations is that for a required level
of accuracy much less degrees of freedom (DOFs) are necessary than for linear approximations.
Improving solution accuracy of standard h-adaptive FEM codes is done through increasing the
number of elements of a mesh, while for hp-adaptive methods one can work with coarser meshes
with fewer elements and locally increase the order of approximation. We assume that, contrary to
linear approximation where DOFs are associated with vertices only, in higher order approximation
basis functions are associated with other mesh entities, like edges, elements’ interiors and faces
in 3D.

On the downside, FEM codes that employ such a higher-order approximation require more
sophisticated mesh entities management to handle relations between elements and its vertices,
edges and faces. In order to assemble the global matrix of a system of linear equations (the global
stiffness matrix), the code needs to track for each element which vertices, edges and faces it contains,
what are their neighbourhood and the number of associated DOFs. Global matrices of higher-order
codes are less sparse than for linear FEM and comprise blocks associated with (shape functions
defined for) vertices, edges, faces and elements’ interiors. The higher the order of approximation
for a particular mesh entity the larger its block, containing entries resulting from integration of all
shape functions related to this entity.

44 P. Plaszewski, K. Banas, M. Paszynski

Because of the block structure of local and global stiffness matrices, it is advantageous to use
special storage schemes and special algorithms for solving systems of linear equations resulting
from higher-order approximations. Consequently, the interface between a finite element code and a
solver should enable the transfer of information describing block structure of matrices. The problem
of creating a flexible interface between FEM codes and linear equations solvers was the subject of
investigations described in [1, 2] and recently in [3, 4]. The implementation of direct solvers for
hp-adaptive codes is presented in [5, 6]

In the present paper, we describe an interface and an architecture for Krylov space iterative
solvers equipped with facilities needed to work with higher-order hp-adaptive FEM codes. The
interface, being a further refinement of the interface described in [7, 8], and an example of imple-
mentation that we present take into account the aforementioned mesh entities management and
support for block-structured matrices. The design of an interface makes it easy to plug the solvers
implementing it into existing FEM codes. As an example of such procedure we couple the developed
solver with the general purpose hp-FEM code described in and freely distributed with [9].

2. ARCHITECTURE

Our aim while designing the solver’s architecture was to make it possible for the solver to work
with a broad range of FEM codes assuming as little as possible about the computations workflow
and the way the data is organized inside the FEM code. As there is no single best iterative method,
preconditioning mechanism and their implementation that suits all FEM simulations and hardware
platforms, we propose modular architecture depicted in Fig. 1.

BLOCK STORAGE SOLVER ALGORITHMS

SOLVER MODULE

SOLVER INTERFACE

U

PROBLEM INTERFACE

PROBLEM MODULE

Fig. 1. Solver layers.

2.1. Block Storage and Solver Algorithms

Top layer consists of two modules, Block_Storage and Solver_Algorithms, responsible for data storage
and iterative algorithms that can be changed independently of each other and the layers below. Such
interchangeability requires well-defined and general enough interfaces between layers and modules
in order to accommodate a large variety of possible preconditioners, iterative methods and hardware
architectures.

Block_Storage and Solver_Algorithms cooperate closely with each other. Block_Storage implements
data structures that store assembled system matrix and preconditioner data. Solver_Algorithms layer
is responsible for an iterative method for solving the system of equations (GMRES, CG and their
variations). Interface exposed by Block_Storage is composed of functions that perform basic matrix
and vector computations required by iterative algorithms such as matrix-vector multiplication,
vector norm, and preconditioned residual calculation.

Architecture of iterative solvers for hp-adaptive finite element codes 45

When reimplementing a particular solver (e.g., for porting to some new computer architecture),
there are two possible approaches for implementing the two modules of the top layer:

e Re-use existing Block Storage or Solver_Algorithms module and implement the other one using
existing interfaces between the two modules and the layer below. This approach is recommended
when there is already Block_Storage optimized for a particular architecture and one needs, for
example, to switch from one iterative method to another (e.g., GMRES to CG). And the reverse
— for example, when one already has iterative algorithm loop implemented on CPU and want
to delegate matrix and vector kernels to GPU.

e Reimplement both modules, when interface between Block_Storage and Solver_Algorithms is lim-
iting — i.e., there is a need for fine-tuned and highly coupled implementation for particular
architecture; for example, when off-loading not just the computational kernels to GPU, but
whole iterative method logic. In such a case, two top layer modules can even be implemented
as one and only the interface with the layer below retained.

2.2. Solver Module

The task of the Solver_Module layer is the organization of solver’s work. This layer is independent
of the two layers above: Block Storage and Solver_Algorithms. It orchestrates solver’s actions by
delegating to the subsequent layers tasks such as assembling of a system matrix, creation of a
preconditioner, and solution of a linear equations system. Operations of the Solver_Module are
similar to those of the Template Method design pattern — it determines the order and type of tasks
while not knowing the implementation’s details of each activity.

2.3. Solver Interface

The bottom layer provides an interface exposed to external FEM code. In our architecture, we
assume that FEM code:

e Implements the ideas of integration and DOF entities (described in the next section).

e Can return local matrices and vectors that are further assembled into the global system matrix
(the stiffness matrix) and the right-hand side vector.

Communication with the FEM code (refered to as Problem_Module — see Fig. 1) is bidirectional.
The FEM code must call a function, from Solver_Interface layer, that starts the process of solving
the system of linear equations; during the process, solver calls back the FEM code and queries it for
information about its mesh entities and their matrices and vectors. Thus the FEM code must be
equipped with a thin code layer that implements the Problem_Interface which comprises functions
to enumerate entities and return matrices and right-hand side vectors.

Solver_Interface, i.e., functions called by an external FEM code, consists of two sets of functions
— basic and advanced interface. Basic interface consists of solve_lin_sys function, which initializes
the solver, creates a matrix and a preconditioner, then begins the process of solving the system
of equations and, at the end, frees resources reserved by the solver. In the case of time-dependent
problems, it is possible to use advanced interface (described in Subsec. 2.5), where the FEM code
controls the phases of the solver. Therefore, such steps as, for example, allocation of memory by
the solver and the creation of data structures can be made only once — before the first time step —
or just after each mesh adaptation.

We believe that the proposed architecture minimizes the effort needed to connect an external
FEM code to a solver of linear equations, while preserving the flexibility of choosing a right iterative
method and a preconditioner needed to obtain optimal performance. In the simplest scenario, one

46 P. Plaszewski, K. Banas, M. Paszynski

would only need to implement Problem_Interface layer on top of a FEM code. Since in most FEM
codes there already exist functions enumerating elements (and faces or edges) and calculating their
local matrices and vectors, functions of Problem_Interfaces will be simple adapters around them.
Depending on the problem solved and the hardware architecture employed, one could then use one
of the existing Block Storage and Solver_Algorithms modules or, in most advanced scenario, develop
a new one — without the need to change once implemented Problem_Interface.

2.4. Integration and DOF entities

External FEM code, in order to comply with the proposed architecture and solver interface, has to
support concepts of integration and DOF entities.

Both concepts are explained in a simple 2D mesh in Fig. 2. This artificial example consists of two
elements: a quadrilateral and a triangle. The higher-order FEM degrees of freedom are associated
not only with the vertices of elements, but also with the edges and the interiors of elements (for 3D
meshes elements’ faces play the role of edges). In FEM literature DOFs are often not associated
directly with the edges and the interior of an element, but additional nodes on the edges and
inside elements are introduced — from the standpoint of our solver architecture both concepts
are synonymous. In the interface it is only assumed that with a single mesh entity there may be
associated several DOFs (each DOF is associated with a single, scalar or vector basis function).

vi V2
.
° ¢
M (3 DOFs) E (2 DOFs)
[.
V3 va V5

Fig. 2. Integration and DOF entities (description in text).

The quadrilateral in Fig. 2, in addition to the degrees of freedom (shape functions) associated
with vertices V1, V2, V3, V4, has also two degrees of freedom associated with edge E and three
degrees of freedom (bubble shape functions) associated with the central node (element interior)
M. The triangle has three shape functions for vertices V2, V4, V5 and two higher-order shape
functions associated with edge E. Note that on the edges between the elements approximations
must be compatible!. The standard way of achieving this is to ensure that all shape functions,
except shape functions associated with vertices V2, V4, and edge E are zero along the edge. Two
shape functions, in the quadrilateral and the triangular elements, associated with each DOF of E
form a single continuous basis functions, i.e., they are identical along edge E.

Mesh entities with which degrees of freedom are associated are called, in the interface nomencla-
ture, DOF entities. These comprise the vertices and those edges and interiors that contain degrees
of freedom. Thus in our example, square element related DOF entities are the following: four ver-
tices, the edge E and the interior M. For the triangle: three vertices and edge E. The number of
degrees of freedom provided by the DOF entities in the example of mesh is as follows: all vertices
provide one degree of freedom, the interior of M three degrees, the edge E two?.

'n the case of discontinuous Galerkin codes with which our solver can also be combined [10], it is not required.
2In our example we assume that the problem solved is scalar — there is one unknown per grid node.

Architecture of iterative solvers for hp-adaptive finite element codes 47

Due to the nature of finite element approximation, each row of a local and global stiffness
matrix is related to one degree of freedom; similarly, each column of the matrices is associated
with one DOF. Hence, each entry corresponds to a pair of DOFs. Connectivity between DOFs
is understood as the fact that an entry related to the DOFs is non-zero (usually this happens
when basis functions associated with both DOFs have overlapping supports, hence local and global
stiffness matrices have symmetric structure). Connectivity information, for each non-zero entry in
a local or global stiffness matrix, consists of knowledge to which pair of DOF's it corresponds. T'wo
DOFs related to a non-zero stiffness matrix entry are called neighbouring DOFs, and their DOF
entities are also called neighbours (in the mesh, such DOF entities are usually also neighbours in
the topological sense; however, for irregular meshes with constrained approximation the nature of
the neighbourhood of DOF entities is more complex).

The solver interface (and our prototype implementation) support different finite element ap-
proximation methods and spaces: standard continuous, H_div, H_curl, and discontinuous Galerkin.
Each approximation is related to different choices of shape functions associated with mesh entities.
However, the solver is oblivious to these details, in order to work properly it needs only to know
contributions to entries in the global stiffness matrix coming from different mesh entities and the
connectivities in the global stiffness matrix. Both data have to be provided in the form of local
stiffness matrices by the FEM code in the procedure pdr_comp_stiff-mat (its interface is discussed
in details later).

Local stiffness matrices are provided by the FEM code for another type of entities. It is assumed
that local matrices are obtained mainly by numerical integration of FEM weak statements over
elements, faces (in 3D) and edges (in 2D). Hence, entities that provide local stiffness matrices are
called in the interface — integration entities. All entries to the global stiffness matrix are provided
by the procedure pdr_comp_stiff-mat called for subsequent mesh entities. In order to incorporate
an entry to the global stiffness matrix, the FEM code has to associate it with some integration
entity (the interface accepts any mesh entity as integration entity) and provide suitable values and
connectivity data.

Each integration entity provides in its stiffness matrix entries associated with its DOF entities.
In our example, the quadrilateral element has a total of nine degrees of freedom associated with
DOF entities V1, V2, V3, V4, M, E. Its stiffness matrix has dimension nine. Triangle provides the
stiffness matrix with dimension five.

The structure of the assembled global matrix for our example is shown in Fig. 3. This symmetric
matrix consists of stripes related to the individual DOF entities. In particular ordering presented,

E M
vi|vz v3 va vs E1 E2 M1 M2 M3
Vi
V2
V3 Aux | Aux Dia Aux Aux Aux
[o] | [1] [2] [3] [4]
va
V5
E El Aux | Aux| Aux| Aux | Aux Dia Aux
E2 [o] | [a] | [2] | [3] | [4] [5]
M1l Y J _Y_}
M M2 Five-vertex and one-element neighhours of edge E
M3

Fig. 3. Structurally symmetric global stiffness matrix structure.

48 P. Plaszewski, K. Banas, M. Paszynski

the first five stripes are associated with vertices — each vertex is associated with a single basis
function, hence the stripe width is one. Next stripe is associated with the edge E and two higher-
order basis functions. The last stripe is associated with the interior M of the rectangular element.

In each of the stripes there is one diagonal matrix block that contains entries related to pairs of
DOFs related to a single DOF entity (Dia block) and blocks with entries related to DOF's from a
pair of DOF entities. All entries corresponding to pairs of DOF's from a single pair of DOF entities
form an off-diagonal block (Aux block).

2.5. Interfaces

The solver interface consists of functions invoked by Problem_Module (i.e., external FEM code).
As described previously it is divided into basic interface and advanced interface suited mostly for
time-dependent problems. Basic interface consist of a single function:

o sir_solve_lin_sys,
which performs the whole solution procedure. Second interface consists of functions:

e sir_init, which reads information from solver configuration file and sets up appropriate parame-
ters for solver, preconditioner, etc.;

e sir_create, which builds structures needed during solution phase. Inside this function solver
communicates with external FEM code in order to get information about integration and DOF
entities and their relations;

e sir_solve, which assembles and then solves the system of linear equations. During assembling
process, local matrices of integration entities are read from external FEM code;

e sir_free to free matrix and other structures (preconditioner data, etc.);

e sir_destroy to totally erase solver from the data structures (it is assumed that the Solver_Module
can hold several instances of solvers in its memory — this feature can be used, e.g., for coupled
problems).

In time-dependent problems it is more effective to call sir_create only at the beginning and after
each mesh and/or order adaptation while for the rest of time steps to call only sir_solve.

Problem_Module in order to work with the presented solver must be equipped with an interface
through which the solver gets required data. Problem_Interface consists of functions:

e pdr_get_list_ent, which is used by solver to get list and information about integration and DOF
entities;

e pdr_comp_stiff-mat, which returns local matrix and right-hand side vector for an integration
entity;

e pdr_read_sol_dofs, to read current solution from Problem_Module and set it as initial guess (for
time dependent problems);

e pdr_write_sol_dofs, used by solver to pass the calculated solution back to the FEM code.

The functions described above present basic, minimal interface for single-level sequential algo-
rithms. In case of multigrid or parallel solutions a few more functions exist which will be covered
in subsequent articles.

Architecture of iterative solvers for hp-adaptive finite element codes 49

3. SOLUTION PROCESS

The detailed description of interfaces is done using a typical sequence of function calls performed
during a solution process. We use functions from the described interfaces and a possible implemen-
tation of the interface between Solver_Module and both Solver_Algorithms and Block Storage. The
names of functions called by Solver_Module are chosen to clearly define their meaning.

3.1. Setup phase

Solver’s setup phase is shown in the Diagram (Fig. 4).

Problem module Problem Solver interface Spedific solver Block storage

interface module

¥

,
solve_lin_sys()
:

' get_llst_ent{) -

for each element J

i get_list_dof_ent()
ot

u """""""" = | create_matrix0 | geate blocks() E
| — .

|

i , e

: ¥ J——— L i

reate J:»remg[): eate_blodm_d.ie(}i
=

—

[eEmmmmmmnees -

L

Fig. 4. Setup phase.

During the setup phase, carried out by the functions sir_init and sir_create of Solver_Interface,
memory for matrix blocks is allocated and solver data structures are created — in this phase there are
not yet any calculations. Function sir_init is used to set the parameters of a specific solver method
from Solver_Algorithms layer. These parameters vary depending on the solver and are read from the
configuration file. In the case of GMRES iterative solver parameters are, among others, number of
restarts and the convergence criteria. Preconditioner parameters and a matrix storage type are also
set. In this article, the sparse matrix storage scheme BASIC_BLOCKS is employed. The storage
consists in creating a list of DOF entities and storing, for each DOF entity, the corresponding Dia
and Aux blocks (shown in Fig. 3).

Function sir_create creates data structures that store information about the relationships be-
tween elements and related DOF entities, neighbouring DOF entities as well as memory allocations
for matrix and preconditioner. The structure of memory allocation for BASIC_BLOCKS is to re-
serve for each matrix strip (i.e., DOF entity) its Dia and Aux blocks.

As an example of preconditioner block Gauss-Seidel algorithm is used in our description. Block
Gauss-Seidel (BGS) preconditioner uses a structure similar to BASIC_.BLOCKS storage scheme,
with the exception that only Dia blocks are created, that in the case of this preconditioner hold
inverses (or factorisations) of Dia blocks from the global stiffness matrix. It is assumed that the

50 P. Plaszewski, K. Banas, M. Paszynski

structure is created by function create_blocks_dia of Block_Storage layer. In a more sophisticated
setting, BGS method can be configured to work with larger Dia blocks, associated with patches
of neighboring integration entities and created by assembling the corresponding Dia blocks from
BASIC_BLOCKS storage and performing a suitable decomposition. Other types of preconditioners
can use different representations, unrelated to actual matrix storage scheme. The important point
is that all information about system matrix structure is available when preconditioner setup starts.

In order to retrieve information about the structure of approximation, solver communicates
with the Problem_Module using Problem_Interface functions pdr_get_list_ent and pdr_comp_stiff-mat.
The latter is the same function that returns local stiffness matrices and load vectors, but called
with parameters indicating that no computations are performed. The first function returns a list
of integration entities and DOF entities for the whole mesh, the second returns DOF entities
associated with each integration entity — their types, numbers and the numbers of provided degrees
of freedom. Analysis of the relationship between the elements and DOF entities allows for the
building of a neighbourhood information structure used later when creating matrix storage structure
in Block_Storage layer.

3.2. Solution phase

After preparing data structures in function sir_create solver is ready for solution of the system.
Solution function operations are depicted in Fig. 5. It is assumed that the solver works in the
callback model in which it polls the FEM code element by element for their stiffness matrices.
For this purpose, pdr_comp_stiff-mat function (from Problem_Interface) needs to be implemented

Problem Solver interface Spedific solver Block storage
interface module
E solve() i i
clear_matrix() init_blocks()

for each element ,J

v comp_stff_mat{)
I:I -------------- B |assemble_local_smi{)

- assemble_bladch

: SARETERTEEEED i E i :
fill_precon() _Efacbc:ur_blnde:s_dia{]i % Eggﬂg
E Algorithms)

w
2
=
1]

]

"C{ """""" L 4 : :
delegates matrix and vector
operations to blocks

Fig. 5. Solution phase.

Architecture of iterative solvers for hp-adaptive finite element codes 51

in the external FEM code. Then, assemble_blocks function from Block_Storage layer assembles the
local matrix in the corresponding Aux and Dia blocks in the internal matrix storage structure —
information about the relationship between elements and DOF entities gathered in setup phase is
used.

When the matrix is assembled, solver is ready to fill preconditioner data structures allocated in
setup phase. In the case of simple block GS preconditioner, this step is accomplished by reversing
(or factorization) of the assembled preconditioner Dia blocks.

Start of solving the system of equations takes place in the function sir_solve of Solver_Algorithms.
Basic matrix and vector operations are delegated to the Block_Storage module, as this is the module
that knows the specifics of matrix storage structure.

3.3. Post-solve phase

The last stage is to rewrite the vector of solution into structures of external FEM code for later
post-processing, etc. For this purpose solver calls pdr_write_sol_dofs function of Problem_Interface.
In each call to pdr_write_sol_dofs solver passes a part of solution vector corresponding to a particular
DOF entity, along with entity’s number and type.

4. IMPLEMENTATION

As a first test for the proposed architecture, we implemented an example solver that uses GM-
RES method and basic preconditioners (block Jacobi, block Gauss-Seidel, ILU). The performance
of the solver for parallel execution on distributed memory systems is described in [11]. In subse-
quent articles, we will present different variants of the implementation of both Block_Storage and
Solver_Algorithms modules in the context of a layered structure of our solver.

4.1. Storage

Our solver provides a general method for storing the matrix in blocks. It can be adapted and
optimized for the architecture and problem solved by the FEM code.

Dia and Aux blocks for approximations of higher-orders and/or vector equations can reach large
sizes — BASIC_BLOCKS storage is suited for such cases. Block_Storage type BASIC_BLOCKS
(Fig. 3) is a simple and often inefficient way to store the matrix. Especially for scalar problems and
linear approximations where all blocks would have dimension one. For such problems, classical CRS
scheme applied for the whole global matrix would perform better. Critical for optimal performance
of the solver is to use storage schemes and matrix kernels (such as matrix-vector multiplication)
appropriate for a given architecture and problem solved. Efficient storage types must be developed
together with numerical kernels that operate on them and attention must be paid to particular
hardware specifications — like optimal memory access patterns.

5. INTEGRATION WITH hp-FEM CODE

In hp-FEM code [9] we implemented the Problem_Interface layer, whose task is to realize the interface
required by the solver.

In addition to adding a new layer of communication, no further changes were required in an
existing FEM code, although hp-FEM was originally designed to work with frontal solver.

This layer receives the incoming requests from the solver, utilizes the appropriate existing fea-
tures of the hAp-FEM code, such as functions that return the stiffness matrix, gather relevant
information about the relationship between elements and DOF entities, and then returns the data

52 P. Plaszewski, K. Banas, M. Paszynski

to the solver. Before calling Solver_Interface function sir_solve_lin_sys it is necessary to perform any
required setup specific to the external FEM code.

5.1. Results

In Figs. 6 and 7 we present some results for Ap-FEM 2D code with our solver configured to use
BASIC_BLOCKS and simple BGS preconditioner. As solution algorithm, we used GMRES with
20, 50, 100 and 200 Krylov vectors. All code is sequential. Tests were performed for a simple
test problem of adaptivity: Laplace equation on L-shaped domain. Increase of number of degrees
of freedom was obtained with automatic hp-adaptation available in the hp-FEM code [9], with
maximal degree of approximation p equal to nine. Subsequent steps of the algorithm lead to very
small elements (with a linear size approx. million times smaller than in the initial mesh) near
the corner singularity and large elements with high p far from the singularity. The final mesh is
depicted, using subsequent magnifications, in Fig. 8.

[s]

6
—4—time- Krylbas 20
5
——time- Krylbas 50
a
time - Krylbas 100)
3 . -
——time - Krylbas 200
- g
2
0.35
0.22
1 018
G T T T T T T T T T T 1
o o= T ¥ T o B ¥ o o o un o o o O o o D o o o o o o o o o O
o 95 O 3 O O ¢ O 0 O o o 3 O 0 0o o 0o 0o o o o o o
S o & W & & & &S S o g o S S oSS DS D S S o NRDOFS
B = T S Y SRS o T~ S S Vo TR SO S SO W - » WA =~ T NN o N o' N S T NN T~ N S N+ B o= T o
— — — — — — — — — — ~ ~

Fig. 6. Solution time for different numbers of iterations in a single restart (the numbers of basis vectors in
the Krylov space) and different numbers of degrees of freedom in subsequent steps of adaptive solution of the
L-shape domain 2D problem.

iterations
500
—#—iterations - Krylbas 20
450
4 440
——iterations - Krylbas 50 - o
400 s
iterations - Krylbas 100
350 i
200 ~<— jterations - Krylbas 200 -
250 i ——— e VY
X_ZIS—— —F. 227 . -
200 155,
150 4157 *-
117 A 130 134 147
100 73 e 0 - 109
'_n————.‘SI
50
0 T |
w0 (=] [+]) [+ (=] (=] [+] [+ [+ (=] [+] [+ (=] (=] [+] (=] [+ (=] (=] [+] [Is]
=t (=] [+] [*2] [+ (=] (=] [+] [+ =t (=] [+] [+ (=] (=] [+] [+] [+ (=] (=] [+] [
N O N 0 o O o 0 9% o o o o o o o o o o o @ NRDOFS
(o} [a2] =+ =+) w r~ [++] [+)] [+2] (=] — ™~ [a2] =+ [Is] (=] ~ [++] [+3] (=] (=]
— — — — — — — — — — ~ ~

Fig. 7. Number of GMRES iterations for different numbers of iterations in a single restart and for different
numbers of degrees of freedom in subsequent steps of adaptive solution of the L-shape domain 2D problem.

Architecture of iterative solvers for hp-adaptive finite element codes 53

L-shape domain — mesh — original size mesh and solution — original size

mesh and solution — magnification x 100

L-shape domain — mesh — magnification x 10000 mesh and solution — magnification x 10000

L-shape domain — mesh — magnification x 1000000 mesh and solution — magnification x 1000000

Fig. 8. Subsequent magnifications of the mesh obtained by automatic hp-adaptations for the L-shaped domain
problem, leading to the solution with error in energy norm less than 0.001%. Mesh colours denote degree of
approximation (from 1 to 8), solution colours — values of solution (color range changes for each image).

54 P. Plaszewski, K. Banas, M. Paszynski

The solver works well with a highly unstructured mesh and non-uniform approximation. Despite
very simple preconditioning, it converges to the solution. It can be seen that for the small number
of Krylov vectors in a single restart the convergence may be difficult to obtain. However, also for
too big numbers of base vectors in the Krylov space the convergence deteriorates, the fact that can
be attributed to round-off errors that spoil the orthogonality property required for bases of linear
spaces.

6. CONCLUSIONS

In this article, we presented a layered solver architecture adapted to cooperate with external FEM
codes, including those applying higher-order approximation and hp-adaptivity.

With clearly defined interfaces in C language and concepts of integration and DOF entities
“gluing” our solver with external FEM codes, such as hp-FEM code written in Fortran, turned out
to be relatively easy. Layered architecture allows the interchangeability of algorithms for solving
systems of linear equations, preconditioning methods and storage schemes without the need for
changes in both solver and problem interfaces.

Such an architecture should also allow for easy adaptation of solvers to changing computer
and processor architectures and programming environments. In subsequent articles, we will present
such adaptations, e.g., for GPU architecture and OpenCL environments as well as advanced storage
schemes and solver algorithms, such as multigrid preconditioning.

ACKNOWLEDGEMENT

The work has been supported by Polish National Science Center grant no. NN 519 447739.

REFERENCES

[1] R. Clay, K. Mish, I. Otero, L. Taylor, A. Williams. An Annotated Reference Guide to the Finite Element Interface
(FEI) Specification. Sandia Report SAND99-8229, Sandia National Laboratories (1999).

[2] D.E. Bernholdt, B.A. Allan, R. Armstrong, F. Bertrand, K. Chiu, T.L. Dahlgren, K. Damevski, W.R. Elwasif,
T.G.W. Epperly, M. Govindaraju, D.S. Katz, J.A. Kohl, M. Krishnan, G. Kumfert, J.W. Larson, S. Lefantzi,
M.J. Lewis, A.D. Malony, L.C. Mclnnes, J. Nieplocha, B. Norris, S.G. Parker, J. Ray, S. Shende, T.L. Windus,
S. Zhou. A component architecture for high-performance scientific computing. International Journal of High
Performance Computing Applications, 20: 163-202, 2006.

[3] M. Blatt, P. Bastian. On the generic parallelisation of iterative solvers for the finite element method. Int. J.
Comput. Sci. Engrg., 4(1): 5669, 2008.

[4] A. Dedner, R. Klotkorn, M. Nolte, M. Ohlberger. A Generic Interface for Parallel and Adaptive Scientific
Computing: Abstraction Principles and the DUNE-FEM Module. Computing, 90(3—4): 165-196, 2010.

[5] M. Paszynski, D. Pardo, C. Torres-Verdin, L.F. Demkowicz, V.M. Calo. A parallel direct solver for the self-
adaptive hp finite element method. J. Parallel Distrib. Comput., 70(3): 270-281 (2010).

[6] M. Paszynski, D. Pardo, A. Paszynska, L.F. Demkowicz. Out-of-core multi-frontal solver for multi-physics hp
adaptive problems. Procedia CS, 4: 1788-1797, 2011.

[7] K. Banas. On a modular architecture for finite element systems. I. Sequential codes. Computing and Visualization
in Science, 8: 35-47, 2005.

[8] K. Banas. A modular design for parallel adaptive finite element computational kernels, in: M. Bubak, G. van
Albada, P. Sloot, J. Dongarra [Eds.], Computational Science — ICCS 2004, 4th International Conference, Krakdw,
Poland, June 2004, Proceedings, Part II, Vol. 3037 of Lecture Notes in Computer Science, 155—-162 Springer,
2004.

[9] L. Demkowicz. Computing with hp-Adaptive Finite Elements, Vol. 1: One and Two Dimensional Elliptic and
Mazwell Problems. Chapman and Hall/CRC, 2006.

[10] K. Bana$, M.F. Wheeler. Preconditioning GMRES for discontinuous Galerkin approximations. Computer As-
sisted Mechanics and Engineering Sciences, 11: 47-62, 2004.

[11] K. Banas$. Scalability analysis for a multigrid linear equations solver, [in:] R. Wyrzykowski, J. Dongarra, K. Kar-
czewski, J. Wasniewski [Eds.], Parallel Processing and Applied Mathematics, Proceedings of VIIth International
Conference, PPAM 2007, Gdansk, Poland, 2007, Vol. 4967 of Lecture Notes in Computer Science, 1265-1274
Springer, 2008.

