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The aim of the paper is to prepare an efficient method of the optimization of the hybrid fibre-reinforced
laminates. Since the several optimization criteria which cannot be satisfied simultaneously are proposed,
the multi-objective optimization methods have been employed. Different optimization criteria connected
with the laminates’ cost, the modal properties and the stiffness are considered. The multi-objective evolu-
tionary algorithm which uses the Pareto approach has been used as the optimization method. To solve the
boundary-value problem the finite element method commercial software has been employed. Numerical
examples presenting the effectiveness of the proposed method are attached.
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1. INTRODUCTION

Composite is a material made of two or more permanently joined materials on the macroscopic
level [16]. They usually consists of two phases: i) the matrix, being the binder, and ii) the rein-
forcement playing the role of main bearing elements. Polymer matrices with carbon, graphite, glass,
boron or aramid fibers are the most typical ones.

The fibre-reinforced composites — laminates — have especially great strength/weight and elas-
ticity /weight ratio with comparison to conventional, usually isotropic structural materials, like steel
or aluminium alloys [15]. Laminates are usually made up of many plies (laminas) with different
fibres orientation, while the fibres in particular laminas are placed unidirectionally.

It is possible to “construct” laminate properties by manipulating a few parameters, like: com-
ponents material, fibres orientation, stacking sequence or layers thicknesses. As a consequence,
laminates become more and more frequently used in modern industry as high-efficient materials.

As the cost of laminates increases expeditiously with their strength, laminates can be composed
of different materials to reduce the cost ensuring the high efficiency of the laminate [1]. Laminates
which plies are made of different materials are called the hybrid ones. There are a few types of
hybrid laminates [14]: i) interply hybrids with (at least) two homogeneous reinforcements stacked;
ii) intraply hybrids in which tows or constituent fibres are mixed in the same layer; iii) intermin-
gled hybrids with highly randomly mixed fibers of different kinds; iv) selective placement in which
additional reinforcement is located in “critical” places; v) superhybrids stacked up of metal foils
or metal composite plies in a given sequence and orientation. The first group of hybrid laminates
is considered in the present paper. Typically, the internal layers of interply laminates are built of
a cheaper material having worse properties while the external layers are composed of a ‘better’, but
more expensive material.
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In a classical optimization optimizing a single function leads to one optimum which may be
a global one (or not). The single-objective optimization problems for hybrid laminates were success-
fully solved in previous papers, e.g. [5, 6].

In many practical engineering problems several goals with opposing characteristics must be sat-
isfied simultaneously. It means that decreasing the value of one of the functions may increase the
value of another [12]. The common approach in this case is to arbitrarily choose one objective and
incorporate the other objectives as constrains. In the present paper the considered problem is solved
by means of the Pareto approach. The multi-objective evolutionary algorithm is coupled with finite
element method (FEM) commercial software to solve the multi-objective optimization problem for
laminates.

2. LAMINATES’ MECHANICS

Generally, composites are anisotropic materials. Treating fibre-reinforced laminates made of many
laminas with uniaxially oriented fibres as orthotropic materials, the number of the independent
elastic constants in laminate decreases from 21 to 9 (fully anisotropic material). Taking into account
the fact, that the thickness of the laminate is usually small comparing with remaining dimensions,
laminate can be treated as 2-dimensional. As a result the Kirchhoff-Love thin plate hypothesis could
be applied and the number of independent elastic constants reduces to 4 [11]: axial and transverse
Young’s module Ej, Es, axial-transverse shear modulus G152 and axial-transverse Poisson ratio v1s.

For the plane-stress state the constitutive equation for a single layer of the laminate (in the
in-axis orientation) has the form

E; B
11 1—-viove1 1-viovo1 €11
v12E; Ey
022 1-viove1 1-viovn 0 €22 (1)
012 0 0 G2 €12

where o;; — stress vector; €;; — strain vector; Eq, Ey — axial and transverse Young’s moduli, re-
spectively; G12 — axial-transverse shear modulus; v19, 191 — axial-transverse and transverse-axial
Poisson ratios, respectively.

The Poisson ratio v9; depends on other elastic constants in the following way,

E,
Vol = V19— . 2
21 12 B (2

The resultant laminate forces N and moments M referred to the unit cross-section width of the

laminate satisfy the matrix equation,

ml=[5 ][] ®

where A = [A;;], B = [B;;], D = [D;;] - in-plane, coupling and out-of-plane stiffness matrices; €° —
strains at the mid-plane; k° — curvatures at the mid-plane.

If the layers are arranged symmetrically to the mid-plane, the laminate is called symmetrical.
In such laminates B is a null matrix (B;; = 0) and shield and bending states are uncoupled. The
A matrix fully describes the shield state while the matrix D fully describes the bending state. The
symmetrical laminates are considered in present paper.

The dynamical properties of structures can be determined by means of modal analysis. The
modal analysis can be performed theoretically or experimentally. The theoretical modal analysis is
usually based on the numerical methods and should be experimentally verified on real structures.
Two main goals can be achieved by means of modal analysis: i) the diagnostics of the structures;
ii) the optimization of the structures [17].
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The eigenfrequency problem for a rectangular hybrid laminate plate of length a, width b and
thickness h in directions z, y and z, respectively, can be presented as [2]

phw®w = D11W goas + 4D16W gazy + 2(D12 + 2D66)W,zayy + 4D26W zyyy + Doow yyyy (4)

where w — eigenvalue vector; w — deflection in the z direction, D;; — bending stiffness, p — mass
density.

3. THE FORMULATION OF THE OPTIMIZATION TASK
3.1. The multi-objective optimization

The objective of the optimization task is to find the optimal set of ply angles and the number of
external plies for given criteria related to the eigenfrequencies, cost of the laminate and its stiffness.
It is assumed, that the criteria are (or can be) contradictory, so the multi-objective optimization
(MOO) methods are used. In the multi-objective optimization solution of the problem is represented
by more than one objective function. As all of the objective functions cannot be simultaneously
improved, the optimization looks for the solution with acceptable to the designer values of all
objective functions. This attitude leads to a set of optimal solutions instead of one.

A MOO problem can be expressed as searching for the vector x € D, where D is a set of
admissible solutions being a subset of design space X,

x = [z1, Z2, ... za]T, (5)

which minimizes the vector of k objective functions

fx) = [A(), f2(%), ..., f)]T- (6)
It is required for the vector x to satisfy the m inequality constraints
gi(x) >0, =121 . on (7)

and the p equality constraints
hi{x) =0, R B sy (8)

The multi-objective optimization is performed by using the Pareto optimality concept [3]. Ac-
cording to that concept a point x* € X, is Pareto-optimal in the minimization problems if and only if
there does not exist another point, x € X such that F(x) < F(x)*, with at least one Fj(x) < Fj(x*).

In other words the point is Pareto-optimal if there does not exist another point that improves at
least one objective function without deteriorating any other function. A solid line in Fig. 1 represents
the set of Pareto optimal solutions, which is called the Pareto front, for MOO problem with two
objective functions. The Pareto front is a set of so called non-dominated (or efficient) solutions.

solution space

f1®

Fig. 1. The Pareto front for the exemplary bi-objective problem
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3.2. Optimization criteria

The symmetric, fibre-reinforced hybrid laminates made of two materials are examined. The laminas’
number and ply thicknesses of the hybrid laminate are assumed constant. The plies orientations
(angles) and the number of external plies of the hybrid laminate are the design variables. As the
symmetrical laminates are considered, the number of design variables is a half of the plies number
plus one (representing the number of external plies).

One of the reasons of using hybrid instead of simple laminates is the cost reduction of the whole
laminate and the balance between the cost and other properties, like strength, modal properties or
stiffness.

The set of objective functionals for multi-objective optimization of laminates can be defined as:

e The minimization the cost of the structure.

As it is assumed that the thicknesses of laminas h;, the number of plies N and areas of the plate
A; are fixed, the cost of optimized laminate depends only on the number of external, “better”
plies and due to this fact it is discrete.

The cost C of a laminate in the considered case can be calculated as
C = [nece + (N — ne)ci) hiA; 9)

where n — the number of external plies; c. — the unit cost of the external plies material; ¢; — the
unit cost of the internal plies material.
e The criterion connected with the modal properties of laminate.

Three optimization criteria connected with the free vibrations of structures are considered:

1. The maximization of the first eigenfrequency

arg max{w;(x); x € D}. (10)
2. The maximization of the distance between two consecutive eigenfrequencies

arg max{w;(x) — w;_1(x); x € D}. (11)

3. The maximization of the minimum distance between the external excitation frequency wes
and the eigenfrequency w;

arg max{min(|w;(x) — wez(x)|); x € D}. (12)

e The maximization of the total stiffness of the laminate structure.

The total potential energy II, of a structure can be treated as a measure of the mean stiffness
of it. The total potential energy can be expressed as [8]

I, = Z Ule)dnR — / pludrly, (13)

I

where U(g) — strain potential referred to the unit volume; {2 — a domain occupied by the body;
I'y — a part of the boundary on which the function p®u is defined; p® — tractions on the I';
u — displacements on the I’ .

The ply orientations of laminates are usually limited to a small set of discrete angles due to
the manufacturing process. There exist tow placements machines able to produce laminate with
arbitrary ply angles, but they are rather expensive and not very popular. In the present paper
discrete as well as continuous variants of the optimization tasks are examined.
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4. THE MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM

In order to solve the multi-objective optimization problem the evolutionary algorithm (EA) with
the real-value representation has been proposed [4]. EA is especially useful optimization method in
two cases: i) if gradient methods fail since the information about the objective function gradient
is hard or impossible to obtain; ii) if objective function is multi-modal, which usually leads the
gradient methods to the local optima. The only necessary information for the EA to work is the
objective (fitness) function value.

Each possible solution is represented by a vector (chromosome) of design variables (genes). The
block diagram of the multi-objective evolutionary algorithm (MEA) is shown in Fig. 2.

I Initial population ]

-—br Evolutionary operators ]
v 1

Objective functions' [~ | Direct problem solving
values computation (MSC.Nastran)

. it of the |

[ Pareto set determination

v

Evaluation of the distance
between chromosomes

v
l Selection ]
2
L New population

NO % dit YES Generate file with Pareto|
P SO0 set of optimal solution

Fig. 2. The block diagram of the multi-objective EA

-
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The proposed multi-objective evolutionary algorithm starts with a population of randomly gener-
ated chromosomes. Then, the initial population is modified by evolutionary operators: mutation and
crossover. Two kinds of the mutation operators are applied: an uniform mutation and a Gaussian
mutation. The operator of the uniform mutation replaces a randomly chosen gene of the chromosome
by the new value, which is the random value with uniform distribution from the variable range. The
Gaussian mutation works similarly, but the normal distribution is used instead of the uniform one.
The simple crossover operator creates two new chromosomes from the two randomly selected ones
by cutting them in a random position and interchanging parts between them.

The selection is performed on the base of a ranking method, information about Pareto optimal
solutions and the similarity of solutions. The similarity is computed by means of information about
(scaled) Euclidean distance between chromosomes. The similar chromosomes have less probability of
surviving. The rank of each chromosome depends on the number of dominating chromosomes. This
kind of selection scheme is a variant of the selection method proposed by Fonseca and Fleming [10].
The information about similarity is also taken into account in the rank of each chromosome. The
procedure is repeated until the stop condition is not fulfilled. The Pareto set is stored in each
generation and the collective Pareto set of optimal solutions is eventually generated.
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In order to calculate the values of the objective functions the boundary-value problem (direct
problem) must be solved. The professional finite element method software MSC.Nastran [13] has
been used to solve the boundary-value problem for hybrid laminates.

5. NUMERICAL EXAMPLES

A symmetric rectangular hybrid laminate plate made up of 18 plies having dimensions presented in
Fig. 3a is considered. Each ply has the same thickness equal to h = 0.0002 m. The initial stacking
sequence of the laminate is: (90/15/—45/45/—15/—90/—45/90/45)s. The plate FEM model consists
of 200 4-node plane finite elements. The first 5 eigenfrequencies of the plate are considered. They
are collected in Table 1.

Each ply angle could vary in the range of (—90°;90°) continuously or in a discrete way, depending
on the considered variant.

The external plies of the laminate are made of material M;, the core plies are made of the
material My (Fig. 3b). In the initial plate only 3 laminas on each side are made of material M; , so
the the initial cost of the laminate is equal to 24 units.

The number of the external plies is one of the design variables and can vary from 0 (simple
laminate made of weaker material) to half times the number of the plies (simple laminate made of
stronger material) due to symmetry. The material properties and unit costs are collected in Table 2

»
~
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Fig. 3. The laminate plate: a) shape and dimensions; b) materials location for initial plate.

Table 1. The initial laminate plate — the values of the first 5 eigenfrequencies

wy [Hz] | wy [Hz] | w3 [Hz] | we [Hz] | ws [Hz]
13.04 61.27 81.56 196.53 | 226.80

Table 2. The hybrid laminate — material parameters

Material E; E, V12 G12 p unit cost
[GPa] | [GPa] [GPa] | [kg/m®] | [1/(m®) ]
M, 181 103 0287 T.17 1600 6.0
M, 38.6 8.27 | 0.26 | 4.14 1800 1.0

The parameters of the multi-objective EA are:
— the population size: p; = 50;

— the number of genes in each chromosome: ny = 10;
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the uniform mutation probability: pym, = 0.2;

the Gaussian mutation probability: pgm = 0.1;

the simple crossover probability: ps. = 0.5;

stop condition: number of generations.

5.1. Numerical example 1

The aim is to find the optimal number of external plies as well as ply angles in all laminas to satisfy
two contradictory criteria:

a) minimize the cost of the structure — Eq. (9);
b) maximize first eigenfrequency — Eq. (10).

The results of the optimization are shown in the form of Pareto solutions in Fig. 4. The point
representing the values of both objective functions for the initial laminate is also presented. The
scale for the 1st eigenfrequency (f1) is reversed as the 1st eigenfrequency has been maximized. The
values of design variables (ply angles and the number of external plies) for the optimal results are
collected in Table 3. All results are referred to one half of the laminate plate due to its symmetry.

60 cost[]
® A
50
x + 40 Xcont.
H XA ¢ M5 deg.
| 30 A 15 deg.
Ae -+ €45 deg.
X& 20| 4initial
X A
X 10
T T T 0
-25 -20 -15 -10 -5
«f1) [Hz]

Fig. 4. Numerical example 1 — optimization results

5.2. Numerical example 2

The aim is to find optimal number of external plies and optimum values of ply angles in all laminas
to satisfy two contradictory criteria:

a) minimize the cost of the structure — Eq. (9);
b) maximize the gap between 1st and 2nd eigenfrequencies — Eq. (11).

The results of the optimization are shown in the form of Pareto solutions in Fig. 5. The point
representing the values of both objective functions for the initial laminate is also presented. The
values of design variables (ply angles and the number of external plies) for the optimal results are
collected in Table 4. All results are referred to one half of the laminate plate due to its symmetry.
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Table 3. Numerical example 1 — design variables values for optimal solutions

(0/0/—45/90/90/90/45/0/90)s
(90/—45/45/—45/0/90/90/90/45)s
(—45/0/45/90/45/0/45/90/0)s
(0/45/45/—90/—45/—45/0/90/0)s
(—45/0/—45/—45/—45/90/90/45/90)s

20.1023 39
15.8506 34
15.4900 24
13.8400 14
9.7238 9

case solution stacking no of fi  cost|[]
no. sequence ext. plies [Hz]
initial (90/15/—-45/45/—15/—90/—45/90/45)s 3 13.04 24
cont. 1 (—4.4/10.8/3.2/-0.2/25.9/-72.0/83.1/-56.2/29.2)s 7 22.5327 44 ]
2 (—35.9/5.8/—0.2/27.1/—88.5/24.4/—60.2/68.1/67.8)s 5 18.9695 34
3 (11.0/-17.2/9.9/-67.7/0.7/—-90.0/ —89.9/44.2/—66.7)s 2 17.2344 19 ‘
4 (13.4/-12.6/—84.4/-31.5/33.2/—2.0/62.7/52.1/—80.5)s 1 13.5842 14 ;
5 (27.78/—48.6/68.3/—79.1/—61.3/—-25.3/—29.1/-15.4/72.1)s 0 9.48934 9 |
5° 1 (0/-15/-25/35/0/90/—65/—65/—20)s 5 20.9221 34 1
2 (10/-50/-35/10/—175/75/5/—45/—T5)s 4 17.4203 29 |
3 (5/-55/—25/45/0/40/—35/60/—85)s 1 14.0206 14
4 (40/35/—-60/—75/—85/50/—80/85/—85)s 0 13.0397 9
15° 1 (-15/90/-30/30/15/—15/90/—60/75)s 9 19.3876 54
2 (0/90/15/15/—-30/—15/45/—15/75)s 5 18.1565 34
3 (—15/75/—15/30/60/—45/—75/0/45)s 3 16.8979 24
4 (0/0/90/90/—-60/—-15/-75/—75/—-30)s 2 16.0800 19
5 (—30/90/0/—45/—-30/75/—45/45/60)s i1 11.8603 14
6 (—30/0/-15/15/45/—-60/60/90/—30)s 0 9.57815 9
45° 1 (—45/0/—45/0/90/0/90/45/0)s 9 20.9234 54
2 6
3 5
4 3
5 1
6 0

60 cost[]
[ ]
A L 50
A
i 40 X cont.
* W 5 deg.
) L3 30 A 15 deg.
XA + 4 45 deg.
X W 20 + initial
X oH A
- 10
T T 4 T 0
-80 -70 -60 -50 -40 -30
-(f2-f1) [Hz]

Fig. 5. Numerical example 2 — optimization results.
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Table 4. Numerical example 2 — design variables values for optimal solutions

case solution stacking noof fo—fi cost|]
no. sequence ext. plies  [Hz|
initial (90/15/—-45/45/—15/—90/—45/90/45)s 3 48.23 24
cont. 1 (—21.2/52.4/—55.5/~24.0/20.3/—65.9/52.8/76.7/—25.8)s 6 681533 39
2 (—26.4/35.4/—53.4/—89.7/—-52.6/—62.3/28.4/89.2/—81.3)s 3 64.0138 24
3 (48.1/-11.9/—31.3/78.8/61.7/15.6/—10.2/39.4/3.5)s 2 46.163 19
4 (48.1/—11.9/—4.8/—69.1/20.5/—62.3/—80.3/50.9/—72.2) 1 432417 14
5 (28.2/—39.9/—44.3/42.3/37.2/36.3/—89.9/72.6/83.3)s N 78 (1 N
5° 1 (—40/45/-10/55/—5/40/70/—85/—50)s 9 71.2261 54
2 (—40/45/-10/55/—-5/45/75/5/5)s 8 70.2639 49
3 (—50/10/30/55/10/40/—50/—10/—20)s 4 66.1395 29
4 (5/-50/—70/60/80/—45/—35/-75/10)s 2 43.5972 19
5 (—35/-10/-45/-15/30/80/—70/—45/60)s 1 39.3754 14
6 (30/-50/—-30/—-80/—45/50/—5/60/—60)s 0 36.4178 9
15° 1 (—45/30/15/—45/—45/75/90/90/75)s 8 77.8624 49
2 (—60/—45/30/75/0/—15/60/—45/75)s B ot i
3 (45/30/—30/—75/45/—45/30/—60/90)s 6 68.757 39
4 (30/—45/0/—75/15/—15/45/—30/45)s 3. 632243 24
5 (—60/—15/—30/90/—30/—45/0/90/45)s j: 2Rty 4
6 (30/—45/—60/30/60/90/75/75/15)s 0 364361 9
45° 1 (—45/45/0/0/—45/45/90/90/90)s 5 71.5362 34
2 (—45/0/0/—45/90/0/—45/90/45)s 4 60.78 29
3 (—45/0/0/90/90/90/90/45/—45)s 1 40.3537 14
4 (—45/0/0/—-45/45/90/90/0/—45)s 0 37.172 9

6. FINAL CONCLUSIONS

Hybrid laminates are not as popular as the simple laminates, but they ensure high efficiency with
lower total cost of the laminate. The stacking sequence optimization gives the possibility to obtain
the required properties of the laminate for given criteria. To avoid problems with calculation of the
fitness function gradient the evolutionary algorithm has been employed.

To satisfy different and contradictory criteria the multi-objective attitude has been used. The
coupling of multi-objective evolutionary algorithm with finite element method seems to be an effec-
tive and efficient method of the multi-optimization of laminates.

Due to the fact, that the number of laminas was discrete, the cost of the hybrid laminate was also
a discrete variable. The plies orientation angles were considered as continuous as well as discrete
variables. Positive optimization results were obtained for all presented tasks.

For the real problems the computation of the fitness function by means of the finite element
method is the most time-consuming part of calculations. It can be significantly reduced by means
of the distributed EA, which was presented in previous papers, e.g. [7, 9].
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