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This paper presents a new dual model combining binary and real-valued representations of samples for
negative selection algorithms. Recent research show that the two types of encoding can produce quite good
results for some types of datasets when they are applied separately in such algorithms. Besides a number
of efficient algorithms, various affinity (or similarity) functions fitted to particular implementation was
investigated. Basing on a series of experiments, we propose a dual representation enabling overcome some
of the existing drawbacks of these algorithms, and allowing significant speed up the classification process.
This new model was designed mainly for detecting anomalies in real-time applications, were the time of
classification is crucial, e.g. intrusion detection systems.

Keywords: anomaly detection, negative selection, binary receptors, real-valued receptors, intrusion de-
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1. INTRODUCTION

One of the crucial problems in developing automated classification systems is the choice of appropri-
ate representation for samples gathered in the datasets. Typically, most of the samples are encoded
as vectors of real-valued numbers. Unfortunately, this type of representation can involve the use of
many time consuming operations (like multiplication and division), e.g. when classification process
have to compute a distance between two samples to measure the similarity between them. Therefore,
in the case of huge dataset containing tens of attributes, the choice of this type of representation
seems to be far from optimal, especially when the time of classification is crucial.

As an example imagine a network-based Intrusion Detection Systems (IDS) which must be ca-
pable to perform real-time traffic analysis to detect unacceptable system and network activity.

A classical IDSs uses the set of signatures (described even by more than 30 attributes) that
define what suspicious traffic is. Thus, to detect intruders, every network connection is compared
(attribute by attribute) against signatures gathered in the database. For example, Snort [21], the
most popular free software IDS, uses the following rules:

alert icmp $HOME_NET any -> $EXTERNAL_NET any (msg:"DDOS Stacheldraht
gag server response'"; icmp_id:669; itype:0; content:"sicken";
reference:arachnids,195; classtype:attempted-dos; sid:225; rev:6;)

Since the time complexity of comparing attribute’s values, regardless of used representation (string,
integer or real value), is very low (as opposed to multiplications and divisions), the type of rep-
resentation is not crucial. However, this approach losses its effectiveness when the signatures (or
rules) are written to identify precisely each currently known issue. As a result, the database with
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signatures grows and grows as well as new (unseen) and variations of known attacks are not fully
detected.

A possible solution to this problem relies upon generalization of too stringent rules. Through the
relaxing and varying the conditions and parameters, it is possible to decrease the number of rules
(faster classification) as well as to identify novel attacks. On the other hand, too relaxed constraints
can lead to raising the alarms for legitimate network connections. This problem, for Snort’s rules,
is widely discussed in [3]. -

An interesting alternative for classical approaches to intrusion detection problem is offered by
Artificial Immune Systems (AIS). This approach is inspired by the Natural Immune System (NIS)
recognized as one of the most complex system in Nature. It is responsible for protecting an organism
against damage from extremely large number of harmful bacteria, viruses, parasites and fungi,
termed pathogens. To detect and eliminate pathogens, which constantly attack the organism, the
NIS continually generates different receptors which tolerate own cells and react only when they meet
any pathogen. The process of tuning receptors towards the attackers is called affinity maturation.
This is the very important process as in its result we obtain a set of receptors which do not recognize
any own cell, and almost perfectly react against intruders. It is worth to notice, that only own
cells are used during the maturation and, what is characteristic for the NIS, no negative examples
(descriptions of pathogens) are necessary. Therefore, mature receptors are able to recognize even
previously not met foreign bodies, which total number is far greater than 106 whereas the total
number of own cells has been estimated to be about 10%. This great efficiency, achieved by huge
diversity of receptors, is the important reason of interest in developing AIS observed in recent years.

A reader interested in detailed description of the immune mechanisms is referred to e.g. [20, 30].

Since there, many immune-inspired IDS were presented (see [2] for review). They are imple-
mented through the use of a self-nonself model, where self denotes own cells and nonself denotes
pathogens. Most of these systems use negative selection principle (see Section 2) to generate re-
ceptors which can be compared to generalized rules of classical IDSs. Each receptor is capable to
recognize many types of nonself samples (e.g. not legitimate network connections) by calculating
its similarity to a given (i.e. censored) sample. Depending on used representation (binary or real-
valued) different affinity functions (typically measuring a distance between compared objects) can
be regarded. The advantages and disadvantages of both representation with examples of different
algorithms of generating detectors, we discuss in Section 4. In Section 4.3, we present new dual
model of representing the samples which combine both the encodings to achieve higher efficiency
and to speed up the classification time.

2. NEGATIVE SELECTION

One of the major algorithms developed within emerging field of AIS is Negative Selection Algorithm,
proposed by Forrest et al. [12]. It is inspired by the process of thymocytes (i.e. young T-lymphocytes)
maturation. To be more formal, denote U the problem space, or Universe of discourse, (e.g. U
is a set of all possible strings of fixed length, see Section 4.1), and let S C U be a subset of
strings representing typical behavior of a system under considerations. Then the set of elements
characterizing anomalous behavior, N can be viewed as the set-theoretical complement of S,

N =U\S. (1)

The elements of S are called self, and those of N are termed as nonself.

The negative selection algorithm relies upon generation of so-called detectors in such a way,
that a freshly generated detector d is added to the set D of valid detectors only if it recognizes at
least one element in N, and does not recognize any self element. In simplest case the detectors are
generated randomly, but smart techniques are requested in general [12]. To mimic the process of
self /nonself recognition we must designate a rule, match(d, u), specifying when a detector d activates
given an element u, see e.g. [29] for details. Usually, match(d, u) is modeled by a distance metric or
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a similarity measure [13]. Majority of detection rules induce so-called holes, i.e. regions of N which
are not covered by any detector and therefore samples from this region will be classified as self.

In real-life applications, usually, it is not possible to gather all elements of S, because typically
only small its subset is observed. Therefore, it is assumed, that S is composed of Sseen, and Synseen ,

S= Sseen U Sunseen ) (2)

but only Syeen is taken into the training phase (i.e. the phase of detectors generation). As a result,
the detectors from the set D can recognize not only nonselfs from N’ C N, but also some elements

from Synseen - The existence of holes in Synseen is necessary to generalize beyond the training set
(see [24] for details).

3. TESTING DATASET

To design efficient immune-based IDS we need to develop algorithms which are able to recognize the
intruders described by tens of attributes. Therefore we choose the KDD Cup 1999 [14] as a test set;
it is very popular dataset used to evaluate ID algorithms as well as other classification algorithms.
It contains almost 5 millions records. Each record describes a network connection as a vector of
41 attributes (38 numerical and 3 symbolic) with additional end-label (normal value means self
connection).

Examples of self and nonself connections are given below:

91, udp, domain_u, SF, 87, 45,0, 0, 0, 0, 0, 0, 0
0 18

0 ,0,0,0,0,0,0,0,0,0,0,0, 1,1, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 147, 140, 0.95, 0.01, 0.18, 0.0 0, 0.

0, 0.00, 0.00, 0.00, 0 00, normal.

0, icmp, eco_ i, SF, 18, 0, 0, 0, 0, 0, 0, 0, O, O, O, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 1, 153, 1.00, 0.00, 1.00, 1.00, 0.00, 0.00, 0.00, 0.00, ipsweep.

In our experiments all redundant connections were eliminated first. As a result we obtained
reduced set Synique containing 1074994 (almost fivefold reduction) unique connections (812813
normal and 262 181 anomalous).

4. SAMPLES REPRESENTATIONS

As already mentioned, to model the interactions (matching) between self and/or nonself elements we
need three elements: (a) proper samples encoding, (b) appropriate affinity function, and (c) appro-
priate algorithm enabling generation of the receptors. In this paper, we consider two basic encodings
(representations) recently used for negative selection algorithm purposes: binary and real-valued.
For both of them many algorithms generating detectors were designed to achieve possibly highest
detection rates with various similarity measurements functions. Short review of current state in this
domain is presented below (see also [2]).

4.1. Binary representation

In case of binary encoding, we identify the Universe with [-dimensional Hamming space, H build
out of all binary strings of fixed length [,

H' = {000...000,000...001,...,111. . 111}.
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4.1.1. Binary matching functions

Percus et al. [19] proposed the r-contiguous matching rule for abstracting the similarity between
two strings in H'. According to this rule, two samples hi,h; € H!, match if at least r contiguous
bits in both strings are identical. Below an example of matching a sample by a detector for affinity
threshold r = 3 is given

1
g e e g
10001110 sample,

01001001 detector.
N

”

The number of possible elements recognized by a detector d € H' with given threshold value r
is(l—r+1)-2"" ie. (8—3+41)-283 =6-32 in our case. With a given detector d can associate
the set of [ — r 4+ 1 templates; for instance, if d = {1100 10 0 1}, it recognizes all samples of
theform{l10*****},{*100****},{**001***},{***010**},{****100*},
{*****00 1}, where the asterisk * is the wild-card symbol representing either 0 or 1. The
threshold r is chosen in advance. When choosing this value, one should remember that the greater
r is, the most specific the detectors become.

A variant of the r-contiguous bits rule is the r-chunk matching rule proposed by Balthrop et al. [4].
In this case, sample s and detector d match if a position p exist, where all characters of s and d
are identical over the sequence of length 7. For s = {10001 110} and r = 4 the set D, of all
receptors which are able to recognize sample s is

D, = {0[1000,1]0001,2|0011,3|0111,4|1110},
|Ds| =1 —7r+1.

Here e.g. the symbol 0|1000 informs that when comparing a string h € H' with such an r-chunk,
we should start from 0-th position in h and we must check if 4 contiguous bits of h agree with the
template 1000.

4.1.2. Short review of algorithms generating binary receptors and its application

Forrest et al. [12] proposed an algorithm generating binary receptors, where candidate detectors
were randomly generated; those candidates which recognized any self sample were discarded. This
process was repeated until required number of detectors was generated. The algorithm, although
highly inefficient, can supplement the performance, for example, of non-random algorithms for
a high-dimensional dataset (see below for complexity details).

D’haeseleer et al. [11] presented two algorithms, termed linear time detector generating algorithm
and greedy detector generating algorithm, respectively. Both of them try to generate receptors in
a more sophisticated way; particularly the greedy algorithm chooses detectors that are far apart,
in order to avoid possible overlapping of detectors and to provide enough coverage in the nonself
space.

Wierzchori in [28] used the notion of binary template (introduced in previous subsection) to
generate “optimal”’ repertoire by choosing the detectors recognizing as much as possible nonself
strings. Using this algorithm, it is possible to find in advance the number of detectors needed to
cover the set N and to determine the number of holes.

These algorithms use the r-contiguous matching rule. For the r-chunk matching rule, Stibor [23]
proposed an algorithm called Build-Rchunk-Detectors generating all possible r-chunk detectors,
which will not cover any element in S. This algorithm is also appropriate for higher alphabets.

All algorithms mentioned above, except random one, has runtime and space complexity exponen-
tial in 7, i.e. O(|Z|"), where |X| stands for the cardinality of the alphabet used to construct strings
of interest. Therefore, they are only applicable to small values of r. Even for the binary alphabet
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|Z| = 2 and larger values of 7 the space and time complexity are infeasible high [22]. On other hand,
for too small values of r it is not possible to generate any detectors.

Furthermore, Stibor in [23] showed that there is a coherence between the number of generable
detectors and the number of resulting holes T,

=3 mgm) -2 5) - (o))

This means that to minimize the number of holes 7 must be close to I, but it involves the increase
in the complexity of algorithms generating receptors.

Hofmeyr in [15] developed immune-based IDS using binary representation and r-contiguous rule
as a matching function. Detectors, were randomly generated and each network TCP SYN packet
was encoded as a binary string of length 49:

T =

e 32 bits for IP address of external host,

e 8 bits for IP address of local host (it was assumed, that all internal host have the same class C
IP address; in other case, samples were extended to strings of length 76),

e 8 bits representing the type of service,
e 1 bit for indicating the whether or not the first host is the server.

Unfortunately, those attributes are not sufficient to detect intruders in real-world. Therefore, the
list of attributes describing the connections should be extended (compare rules used by Snort and
number of attributes in KDD Cup dataset) and this involve the use of much longer binary strings.

4.2. Real-Valued representation
4.2.1. V-Detector algorithm

To overcome scaling problems inherent in Hamming space, Ji and Dasgupta [16] proposed real-valued
negative selection algorithm, termed as V-Detector.

It operates on (normalized) vectors of real-valued attributes; each vector can be viewed as a point
in the d-dimensional unit hypercube, U = [0,1]¢. Each self sample, s; € S, is represented as
a hypersphere centered at c; € U and constant radius ry, i.e. s; = (¢, rs), 2 = 1,...,l, where
| is the number of self samples. Every point w € U which lies within any self hypersphere s; is
considered as a self element. Also, detectors d; are represented as hyperspheres: d; = (c;, ri)s
J =1,...,p where p is the number of detectors. In contrast to self elements, the radius r; is not
fixed but is computed as the Euclidean distance from a randomly chosen center c; to the nearest
self element (this distance must be greater than r, , otherwise detector is not created). Formally, we
define r; as

T = Iéliil<ll dist(cj, ci) —1s. (4)

The algorithm terminates if predefined number pp,q, of detectors is generated or the space U\S is
sufficiently well covered by these detectors; the degree of coverage is described by the parameter co
— see [16] for the algorithm and its parameters description.
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4.2.2. Selected improvements of V-Detector algorithm

The results presented in [26] show that the original V-Detector algorithm is able to detect only
about 2-3% of anomalies in some parts of testing KDD Cup 1999 dataset while statistical anomaly
detection techniques recognized more than 80%. It means that V-Detector needs radical improve-
ments.

Below selected improvements of the original algorithm are described (see [10] for details).

1. Hierarchical decomposition of testing datasets. It relies upon splitting the dataset ac-
cording to a prior: selected (symbolic) attributes, for example: protocol, service, flag, etc. Hence,
each subset contains less samples what results in reduction of learning process duration. Besides,
if some subsets have attributes, with values identical for all samples, then the problem space is
reduced. For example, dimensionality of KDD Cup 1999 dataset can be reduced to 20-30. More
details and advantages of such a decomposition is described in [8].

2. Spanning the problem space over self samples only. Probably the main reason why poor
results were obtained for multidimensional datasets is that the problem space (hypercube) was
determined by both the self and nonself samples. Alternatively [6], detectors can be generated
only inside the space spanned over self samples. As a consequence, all samples lying outside this
space will be classified as nonself, see Fig. 1(b). This allows significantly improve the efficiency
of the algorithm; it was possible to classify correctly over 95% (and for many subsets even 100%)
samples. This result was much better than that one obtained by using Support Vector Machine
— very strong classification tool (see [7] for details).

3. Use of non-Euclidean metrics. In its original version, the V-Detector algorithm employs
Euclidean distance to measure proximity between two samples. Therefore, self samples and
the detectors are hyperspheres (see Figure 1). Formally, Euclidean distance is a special case
of Minkowski norm L,,, where m > 1, which is defined as

m

d
Lm(x,y) = (Z |zi — yilm) (5)
i=1

where x = (z1,%2,...,24) and y = (y1,¥2,-..,Yd) are points in R4. Particularly, Lo-norm is
Euclidean distance, Li-norm is Manhattan distance, etc.

As observed and proved, for example in [1, 5], Ly,-norm loose its meaningfulness of proximity
distance for high values of m in highly dimensional spaces. In the case of Euclidean distance,
this effect is observed for d > 15 and this can explain poor results obtained by Stibor [26] for
KDD Cup 1999 dataset.

Using Minkowski norm, Aggarwal et al. [1] introduced fractional distance metric with0 < m < 1,
arguing that such a choice is more appropriate in highly dimensional spaces. Experiments, re-
ported in [9], confirm partial efficiency of this proposition. For the Lg s-norm we detected almost
80% nonself samples, when only norm was changed in original algorithm. Obtained results were
even about 30% better, than for the Ls-norm.

Theoretically, according to proofs mentioned by Aggarwal, when value m decreases, norm should
be more appropriate for higher dimensions. Unfortunately, the experiments performed with KDD
Cup 1999 dataset in [9], showed that for low values of m (m < 0.5) the efficiency of the algorithm
decreases to value 0 when m < 0.2. It implies, that the optimal value of m locates somewhere in
the interval [0.5,1.0]; hence, for all the datasets, this value should be properly tuned. Figure 2
presents the unit spheres (shapes of self samples and detectors) for selected fractional Ly,-norms
in 2D.
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Fig. 1. Example of performance V-Detector algorithm for 2-dimensional problem. Grey circles denotes self

samples, dashed circles denotes V-detectors, dashed area denotes detector which recognize all samples lay-

ing outside the space spanned over all self samples and white areas denotes holes; (a) original algorithm,
(b) modified

m=2
—-= m=l
‘= m=0.7
— m=0.5
—=M=0.3

-1 -08 06 -04 02 0 02 04 06 08 1

Fig. 2. Unit spheres for selected L,, norms in 2D

The same results showed also a trade-off between efficiency and time complexity for L,,<;. For
fractional norms, the algorithm runs slower for lower m; duration of learning process for Ly s
is even 2-3 times higher than for Ly . Similar experiments also were performed by Ji et al. [17]
for m > 1. This time, it was observed, that algorithms runs faster and with higher efficiency
for lower m with one exception. Namely, algorithms runs faster for L, norm, but unfortunately
with the lowest efficiency. Therefore, for applications where the learning or/and classification
time is crucial, the norms L;, Ly and L, are more appropriate and fractional norms can be
used to ensure the higher efficiency, especially for high-dimensional datasets.
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4.2.3. Summary

In last decade, binary and floating point representation were extensively investigated with various
datasets (KDD Cup 1999, Iris flowers, TCP SYN packets and many others). Many experiments
were performed to develop the possibly best algorithms generating optimal repository of receptors.
Moreover, many functions to calculate the similarity between samples were evaluated.

Unfortunately, both the representations are of limited usability, mainly with respect of the di-
mensionality of a given problem. Binary receptors can not be too small (r < 1), as no detectors at
all can be generated and simultaneously, they can not be too long, as duration of learning process
is too long. As the the best coverage of N space can be achieved when r is close [, there is no
possibility to generate binary receptors, in reasonable amount of time, covering high-dimensional
domain spaces with sufficient degree.

Similarly, filling hypercubes with randomly generated hyperspheres is also limited for high-
dimensional datasets. Results for fractional distance metrics (for 20-30 dimensional datasets) are
very optimistic and much better than for Euclidean distance, but as showed the experiments, m
can not be infinitely decreased (to value 0). Thus, applying the V-Detector for higher dimensions
(e.g. more than 30) can be questionable.

Thus, it is obvious that negative selection algorithms are not applicable, for example, to solving
the problem of handwritten digit recognition and many others, where dimensionality is really huge.
Since MNIST database [18] contains samples of dimensionality 784 (28 x 28 fixed-size images), it is
clear, that it was not feasible to obtain any classification results in reasonable time [27]. However, in
real-world, there are many domains, where presented negative selection algorithms can be efficient
alternative for statistical approaches. Among them, the intrusion detection systems, which are the
most interesting from our point of view.

4.3. Dual representation

Intrusion detection systems should be able to analyze all network connections, regardless of intensity
network traffic. Thus, they are a special type of classification systems, where time of classification
is crucial, even at the cost of accuracy. The low time of learning is not essential, as detectors can
be generated, for example, at the idle time of processor. And this constraints are taken into the
consideration in our model, where two types of detectors are generated.

Although, accuracy of V-Detector algorithm with fractional distance metric is acceptable for
selected subsets of KDD Cup 1999 dataset, we observed that the time of classification for Lys is
about 3 times longer than for Ly [9]. It is a result of generating greater number of detectors to
cover subspace N and than much more time consuming operations (e.g. multiplications) have to be
performed during classifications.

Hence, we propose to generate additional set of binary detectors which should classify samples
in shorter time than real-valued ones. First, at the training phase, after normalization to unitary
hypercube, self samples are turned into binary representation. For z € [0,1], the quantization
function @ can be expressed as

Q(z) = |M x|, (6)

where |-| is floor function and M is the number of ranges (clusters). In our case, the optimal number
of clusters is M = 2* for k = {1,2,...}. Assuming that all 41 attributes were quantized to 8 clusters
(k = 3, 3 bits per each attribute), we will have strings of length equal [ = 41 % k = 123.

Next, using one of the known algorithm (r-chunk or r-contiguous matching rule), detectors
should be generated. Value r is a priori selected and it should be possible low to minimize the
time of learning. Simultaneously, 7 should be sufficiently high to produce possible high amount
of detectors as the efficiency of our model increase with the number of detectors. The process of
generation binary receptors is terminated when all possible candidates were checked, predefined
number of detectors is created or time limit is exceeded.




Dual representation of samples for negative selection issues 587

In our model, obtained set of binary receptors, is used at classification phase before real-valued
detectors. If any binary receptor recognize the censored sample, then this sample is classified as
a nonself. In other case, sample is censored by real-valued receptors.

5. EXPERIMENTS AND RESULTS

To evaluate, is this model applicable to negative selection issues, we performed some tests with
KDD Cup 1999 dataset (described in Section 3 ).

From testing dataset, we separated the subset Krcump , containing all samples with ICMP connec-
tion. Next, Kjopmp was divided into the subsets with connections dedicated for particular services,
namely: eco_1, ecr_1, red_1, ttm_i, urh_i, urp_i.

Kiomp = KicMP.., ;U KicMpP.., ;U KiomPy ;U KicMPyn U KicMP, YU KiCMP,., -

In all the experiments, training sets were composed from all self samples of particular datasets.

As the Kiemp,,, ; and Kiomp,,, , subsets contains only self samples, we can discard them at
the very beginning. All remaining subsets were normalized and subsequently each of 41 attributes
were quantized to 2, 4 and 8 equal sized clusters. As a result we obtained binary strings with length
41, 82 and 123, respectively.

First, we determined, for all testing dataset, how many various binary representations can be
created for: 1) all its self samples; and 2) all its samples (self + nonself). Results are presented in
Table 1.

It is worth to notice, that for Kicmp,., ;, Kicmp,., ; and Kjcmp datasets, regardless of used
quantization, the numbers of various binary strings for self samples is significantly lower than for
full subsets. It means, that for these subsets, binary receptors should plays an important part; about
30-60% of various binary representations of samples can be recognized by them. Unfortunately, for
Kiempy,, ; and Kicmp,,, ; subsets, we can not expect that binary receptors were helpful.

Next, for the same subsets, binary receptors were generated, using r-chunk algorithm, for very low
r values, namely r = {5,7,10, 12,15} (in comparing to string lengths). In this case, the classification
sets contained only nonself samples. Results are presented in Table 2.

These results are confirmation of our assumption made after first experiment. Efficiency of binary
receptors is very significant for K;cmp,,, ; and Kjcup subsets. Using even very small detectors
r =5 or r = 7, they allow to classify about 80-90% of nonself samples. It means that, almost all
nonself samples can be recognized without time consuming operation on real values.

The poor result for Kjcmp,,, ; subset probably is caused by fact, that most of nonself samples
have the same binary representation as some self samples from this subset.

Table 1. Number of different quantized self samples (denoted as Self) and all samples (All) after quantization
of each attribute by 1, 2 and 3 bits per attribute for selected dataset. Columns Bit. per. [%] contains the
percentage of all quantized samples which are covered by selfs

Samples Number of different binary representations
Dataset count 1 bit per attr. 2 bits per attr. 3 bits per attr.
Self |  All | Self | All | Bin.rec.[%] | Self | All | Bin.rec.[%] | Self | All | Bin.rec.[%)]
Kienp 7y 11081 15302 |-737:} 61| 39.4 76 | 152 |  50.0 152 | 354 | 42.9
Kicmp,, ; | 3010 | 3754 | 16| 40 60.0 62 | 108 42.6 158 | 233 32.2
Kicmpun 6 9| 5| 6| 16.6 51 T 38 6 71 148
Kicmp,,, ;| 2686 | 2689 | 45| 47 4.3 263 | 266 1.2 688 | 691 0.4
Kicmp 4427 | 11910 | 54 | 111 51.4 270 | 406 33.5 626 | 903 30.7
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Table 2. Number of detectors (Det.) and percentage of recognized nonself samples (Rec.[%]) for various

quantizations (1, 2 and 3 bits per attribute) and r parameters

B Nonself § 1 bit per attr. 2 bit per attr. 3 bit per attr.
count Det. | Rec.[%] | Det. | Rec.[%] | Det. | Rec.[%)]
5 3 18.57 0 0.00 0 0.00
T 65 88.60 27 41.55 12 7.08
Kiomp., . | 4221 [10]| 886 | 8889 | 772| 9242| 650 | 67.78
" 12 3908 88.94 3731 92.5 3505 78.65
15 | 32549 88.94 | 32193 93.06 | 31802 96.04
5 10 6.53 0 0.00 0 0.00
T 89 16.67 49 7.34 12 027
Kromp., .| 744 [10| 961| 1788 | 866 | 1801| 139| 18.68
3 12 4018 17.88 3882 18.28 3582 19.35
15 | 32669 17.88 | 32467 20.03 | 32008 19.62
5 17 0.00 12 0.00 12 0.00
7 102 0.00 93 0.00 95 0.00
Kiompan .| 3 |10 974 oo00| 92| o00| 968] 0.0
2 12| 4038 | 66.67 | 4015 | 0.00 | 4024 | 0.00
15 | 32515 66.67 | 31550 0.00 | 29960 0.00
5 1 0.00 0 0.00 0 0.00
7 55 33:33 7 0.00 0 0.00
KICMPW ; 3 10 866 100.00 596 0.00 315 0.00
5 12 3878 100.00 3392 0.00 2654 0.00
15 | 32515 100.00 | 31550 66.67 | 29960 0.00
5 1 0.07 0 0.00 0 0.00
7 50 51.40 2 0.04 1 0.00
Kiomp 7483 10 5878 78.55 3983 53.23 742 9.92
12 6040 80.72 3284 78.46 2638 51.41
15 | 32492 81.95 | 31331 88.32 | 29917 69.56

6. CONCLUSIONS

This paper present the dual representation model of samples for negative selection issues. We use
both types of receptors (binary and real-valued) to minimize time consuming operations on real
numbers through replacing them by much faster operations, namely, the comparing of binary strings.

The very preliminary results presented in this paper shows, that even more than 80% nonself
samples can be classified by very short binary receptors (in comparing to the sample’s length). It
is the significant result, with regard the size and dimensionality of testing dataset. However, we
realize, that in some cases this model can be useless, like for two datasets presented in this paper.
Thus, this model should be in detail investigated with various datasets in the future to confirm its

usefulness.
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