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An adaptive information system is constructed in order to approximate a set of multidimensional data. To
get better approximation properties a pre-processing stage of data is proposed in which the set of points,
forming the multidimensional data base and called a training set TRE, undergoes a clustering analysis. In
the analysis two independent clustering algorithms are used; on each cluster a feed-forward neural network
is trained and a membership function of a fuzzy set is constructed. The constructed system contains a
module of two-conditional fuzzy rules consequent parts of which are of the functional type. Each rule is
designed on a pair of clusters.

1. INTRODUCTION

Construction of universal approximators for multivariate functions (i.e. real-valued functions of
many variables) is often based either on artificial neural networks or on fuzzy inference systems.
Some of them are grounded with theoretical results concerning the existence problem, others are
equipped with adaptation schemes. In the previous century, general existence results have been
obtained within fuzzy systems (cf. [2, 8]) or within neural networks (cf. [3, 4, 7, 22, 25]).

The present authors have approached that problems using the both tools: one based on an
adaptive fuzzy inference system, the other — on feed-forward neural networks [17, 27-30]. It has
been also shown there that a non-homogeneous M-Delta neural networks as well as an adaptive
fuzzy inference system equipped with a generalised Takagi—Sugeno-Kang fuzzy rules are universal
approximators [17, 29].

While constructing and working with neural networks and fuzzy inference systems our experience
shows that their real approximation capabilities can be improved by an appropriate pre-processing
of sample data introduced for such systems. In fact our observations made for an adaptive fuzzy
inference system show that they are very sensitive to the definition of the membership functions
of the fuzzy sets and their support used in the covering of input domain. It is difficult to adjust
the overall output of the system to the sample data by adapting the generalised weight vector and
parameters of the membership functions if the data are of a particular type. For example, if on a part
of the domain the function to be approximated is constant, while on another part the function has
very high gradients.

In the present paper we are changing the order of construction. Knowing a particular multidi-
mensional data base TRE which can be regarded as points from a graph of a multivariate real-valued
{continuous) function (that is known in a discrete number of points), we start our construction pro-
cedure with a process of data mining. In that initial process the knowledge about the type and the
behaviour of the function to be approximated is extracted. This knowledge will be used in the actual



652 W. Kosiniski, D. Kowalczyk, M. Weigl

designing process. The process of knowledge extraction from numerical multidimensional data is just
a kind of clustering analysis during which partitioning of the data base into two unions of subsets
is performed. Since each entry to the data base can be treated as an order pair in which the first
component represents a value of a multidimensional input vector, while the second is a real-valued
output to that input value, the set TRE can be regarded as a subset of the Cartesian product of
multidimensional input space, say & and 1D output one, say ). Hence together with that parti-
tioning of the data base one can perform the projection on the space X to get a splitting of the
input domain into sub-domains or clusters.

After the first stage of the construction procedure the next one appears in which on each cluster
a single mapping neural network SIMNN is designed and trained. Moreover, with each cluster a fuzzy
set is attached with the corresponding membership function in the form of a generalised Gaussian
function. The function possesses in its definition two characteristic features of the cluster: its co-
variance matrix S and its centroid a. Then a module of two-conditional rules if-then for a fuzzy
inference system is constructed, consequent parts of which are weighted sum of outputs of artificial
feed-forward neural networks already constructed. In each premise part of the rules a pair of fuzzy
sets attached to the pair of clusters from both unions (cluster coverings) appear. The number of
rules is equal to the product of the numbers of members (clusters) of the both unions.

In the author’s opinion proposed type of procedure can reduce greatly the discrepancy (or noise)
contained in the numerical data. Then the overall output of the approximating system is defined as a
convex combination of all outputs given by consequent parts of all rules, where the coefficient of the
combination aggregates values of their membership functions. The aggregation can be made with the
use of some t-norm. However, if the fuzzy sets and their membership functions involved will be re-
garded in most general sense, namely ordered fuzzy sets proposed by the first author in [14], as some
generalisation of ordered fuzzy numbers [11, 15], then all algebraic operations are for our disposal,
and ¢-norm are no more necessary. For example in his Ph.D. Thesis [24] Prokopowicz has invented
different aggregation procedures which can be adapted for the case of ordered fuzzy sets, as well.

At the end an adaptation (or so-called learning) process is performed on the whole set TRE
during which some free parameters of the membership functions involved in the fuzzy sets of the
fuzzy rules can be tuned.

Notice that in this paper we make the next step beyond our previous approach [13, 18, 21]
with generalised Takagi—-Sugeno-Kang fuzzy rules [26], since each consequent part of the rule is a
weighted sum of outputs of two single mapping neural network SIMNN constructed for data from
the corresponding clusters. Each network is trained on the cluster as on its input domain.

The constructed information system has grounded rather well the term a fuzzy-neural system. In
the author’s opinion proposed type of procedure is essential for the efficiency and accuracy of the
constructed system: an adaptive fuzzy-neural inference system. Moreover, it can reduce greatly the
noise contained in the numerical data.

For knowledge extraction from data one can use different methods. We can suggest two of them
proposed recently in our previous publications. One is based on a seed-growing methods [9, 16],
another uses an evolutionary programming, that makes use of a problem-oriented genetic algo-
rithms [19].

The organisation of the paper is as follows. In Section 2 we make assumptions about the covering
of data space. Single mapping neural networks with different activation functions defined for their
neurons and trained on individual clusters are described in Section 3. The adaptive fuzzy inference
system equipped with two-conditional fuzzy if-then rules is shortly sketched in Section 4.

2. KNOWLEDGE EXTRACTION FROM DATA

In the standard approach when dealing with an approximation problem the knowledge about the
function to be approximated is contained in a set of the so-called training pairs

TRE={p?= (@%y9) eR*": ¢=1,2,..., P} (1)
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that represents a discrete number of points from the graph of unknown (i.e. to be looked for) function
relationship between values of = and desired y since in each pair p? = (29,y9) € TRE the value y?
is the so-called desired value corresponding to data represented by given input vector z9.

We describe two methods of extracting knowledge from the set TRE: a seed growing approach for
clustering problem of large numerical multidimensional data set [9] and the evolutionary approach
[10, 19] for inference systems.

Clustering via seed growing algorithm

The approach used in [9] is based on image segmentation known in the medical, digital picture
segmentation to extract the significant information from images and to improve the interpretation
process realised by the end-user, e.g. a physician. Notice that in digital processing of large numerical
multidimensional data the clustering analysis corresponds some how to the image segmentation in
the picture processing . However, in medical images the number of possible classes is given by the
physician explicitly together with the seed pixel for each class. Here one should choose in some
sense automatically by the algorithm. Moreover, in the set TRE i.e. in the subset of a graph of a
scalar-valued multivariate function, there is a lack of a natural neighbouring topology of the images
that is based on the concept of the 4- or 8-connectedness.

The seed growing algorithm is composed of two parts:
Rough clustering according to y in which a fuzzy histogram of the variability of y is used, and is
divided into the following steps:

1. create a histogram of the variability of y;
2. fuzzify it by calculating its convolution with a Gauss-like function;
3. use the minima of the fuzzy histogram as boundaries of subintervals in y;

4. divide all the elements (pairs (z,y)) of TRE into clusters; pairs with y’s belonging to the same
subinterval form the same cluster.

Ezact clustering according to & and y in which the seed growing approach is developed after the
rough clustering [9].

At the end of this clustering analysis we get a covering {Kip, h = 1,2,..., M1}, i.e. a union of
clusters that covers the whole set TRE.

Clustering via evolutionary algorithm

In [19] an evolutionary algorithm for extracting the knowledge from the database by splitting it into
clusters was proposed and implemented in [10]. Here we sketch only its main features.

We are distinguishing two types of evolutions: external, at the level of clusters, and internal,
at the level of training pairs. We introduce three types of selection operators for the population of
clusters: roulette, tournament selection, proximity selection, as a combination of two others, and
four types of genetic operators (cf. [19]) for the population of clusters: unification operator that acts
on a pair of clusters and produces a new cluster as a union of both parents, crossover operator that
exchanges parts of two clusters, separation operator that produces two other clusters by splitting
a cluster into two, and global mutation operator that acts on an individual covering, regarded as
a family of clusters producing a new covering.

To evaluate each off-spring cluster in the population we are using different local fitness functions:
it could be the maximal distance of the elements of the cluster from the cluster centroid, or a mean
variation of all elements in the cluster. Basing on the local fitness function of cluster one can build
a global fitness function for the whole covering as a sum of local fitness function of its clusters.

In the first stage m independent evolutionary processes of m coverings by creating m initial
coverings are performed. It is done with the help of the histogram as in the previous approach.
During the evolutionary process for each generation one of the genetic operators that acts on
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clusters (or pairs of clusters) is applied. Then one of the selection operators to the whole population
is used. In this way new covering is constructed that forms the population for the next generation.
After a fixed number of generations a global fitness (evaluation) function to each covering is applied
and then a population of all coverings is formed.

The present authors belief that in real time applications constructing approximating systems
the use of two different tools: one based on an adaptive fuzzy inference system, the other — on
feed-forward neural networks, may be more promising.

2.1. Characterisation of clusters

At the end two coverings of TRE by clusters are ready, i.e. two families of clusters
{Ka1;Kaa,- -, Kohii}; o = 1,2, such that

M1 M2
TRE:=: | JCii 2and ¢ TRE'S [ f sy (2)
h=1 k=1

For each cluster K1, C R™! and Ko € R™*! its centroid p'* = (a'?,d'?) € X and p?* =
(a?*,d?*) € X, respectively, is defined in similar way to (3)

1 Nin . 1 Ny =

1h 1 2k

= E 5 e iz E 2k 3
p Nlh =1 pJ p N2k =1 pJ ( )

To each cluster K1p, or Ko we relate its scatter (variance-covariance) matrix W and W2k re-
spectively, calculated according to the formula [1]

Nip 1 N

1
Wismpeadts IOl —r),  WH— S EASpN el sl
j=1 =1

where ® denotes the tensor product of two vectors. The scatter matrix can be used to measure the
efficiency of the clustering analysis in the definition of the fitness function [19].

Now the projection of each K;p,, Kox € R™! on the input space X ¢ R” forms two families
{X1, X2, ..., Xm,}, @ = 1,2, of sub-domains (input clusters) that forms two coverings of the
input data z’s from X.

In a similar way to Eq. (4), we can define two corresponding scatter matrices Sy, and Sgi of
each input cluster X5 and Xof,

Nin
1
Slh = —N Z(w}h = alh) ® (m]lh T alh), (5)
i1

and in a similar way S, where h =1,2,..., M,k =1,2,..., Ms. Let us notice that the matrices
S1n, Sok, as well W WP are symmetric and positive semi-definite. The eigenvectors corresponding
to the vanishing eigenvalues determine the directions of the vanishing “thickness” of the cluster.
These observations can be used in reducing the data.

We assume here for simplicity that matrices Sy, Sk, h = 1,2,...,My, k = 1,2,..., M5, is
nonsingular.

One can go beyond the present case of the extraction of knowledge from the data base. Such
a case has been described by the author of thesis [21]. In [21] Kowalczyk assumed that on the
input domain two families of fuzzy rules have been constructed: the first family contained multi-
conditional (generalised) fuzzy rules of Takagi-Sugeno—Kang and the other — one-conditional rules,
similar to SIMNN as their consequent parts.
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3. SINGLE MAPPING NEURAL NETWORKS

On each cluster from the both families {X1, X2, ..., Xm.}, @ = 1,2, of sub-domains (input
clusters) that forms two coverings of the input data z's from X we construct a single mapping
neural network which is a feed-forward neural network.

A standard back-propagation perceptron-type neural network cannot well approximate given
set of training pairs and leads to rather high values of an error function. In the present paper,
after the extracting knowledge from the set TRE we build a family of mapping neural networks.
Each h-th element of the first family {X;, X2, ..., Xa,} and each k-th element of the second
family {X1, X2, ..., Xum,} leads to a single network SIMNN, composed of one hidden layer. The
number of neurons in the input layer is n, while the number of neurons in the hidden. layer is I
and I , respectively. We restrict ourselves to a perceptron type neural network, which is a universal
approximator [22, 23]. Hence in the h-th network and k-th network each neuron of hidden layer is
equipped with an activation function, say op, or oy, respectively, which is not a polynomial. The
activation function can be taken from the family of two—parameter generalised sigmoidal functions,
implemented by the present authors in a number of publications (cf. [17, 18, 21, 30]),

on(z) =

Mh

1+ exp(—dp2)’ (6)

and the same for the index k. Both parameters my, and d, give more flexibility in the adaptation pro-
cess. Moreover, their appearance has given a possibility to design a corrected adaptation algorithm
for neural network weight vector [6].

More complex neuron networks are also possible. However, in the present paper output layer
nodes (neurons) have the identity activation function, and hence neurons can be characterised by
constants, only. Hence the output from the h-th network, denoted by yx, or from k-th network,
denoted by ¥k, can be written as

Yo = fn(, ) = th]Uh (Z wh,,zz) Yk = fr(z, %) = Zwk]Uk (Z w;@-m) (7)
i=0

1=0
where w I and “’th’ e TR e w,IcI and w,’zkﬁ, Fi="1,0 G, v =10, 2. i, are ‘eonstant
components of the weight vectors w,’f ; w,IU, and w 2 wij, respectively. Here the zero component zg

of the input variable z is equal to 1 and was introduced to incorporate the bias w,{JO (or wi ]0) under

one summation sign. The vector {2, incorporate all above components of weight vector together with
parameters rj, and d, of the activation function. In the similar way we define the vector 2, for each
=2 Mo,

Each SIMNN is trained on the data from TRE belonging to the corresponding cluster, i.e. each
fn is trained on the cluster Kp, with A = 1,2,..., M1, and each fj is trained on the cluster Ki:,
withe b =172, My :

4. ADAPTIVE FUZZY-NEURAL INFERENCE SYSTEM

The next stage of construction of approximation system is to define two families of fuzzy sets Ap
and B, corresponding to the family of clusters A} and X}, respectively, in the input domain. In the
paper we assume the membership functions as generalized Gaussian functions

bh
an(@) = oxp (05 ((@ - @) - Sy —ah) " ). ®)
and similar form for Bj . Here S’ denotes the inverse of the matrix S" defined in the previous

section on the corresponding cluster Fuzzy sets Ap and By related to the pair of clusters Xip
and Xoy for each pair (h,k) through the matrices S14, Sox and the centroids p™* = (a1t M),
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p** = (a?*,d?) from Eq. (3), will be involved in premise parts of fuzzy rules of the constructed fuzzy

inference system as our approximation information system. In the learning process the adaptation
will undergo the parameters d* and b".

In our pubhcatlons ( [17]) it was shown that by introducing two additional adaptable parameters
d" and b" one makes the system more flexible. The parameter d”* has to be non-negative and such
that the maximum value of the membership function does not exceed 1. A crucial adaptive features
is contained in exponent b". Depending on its value (i.e. whether it is smaller or bigger than 1, or
even non-negative) we can reach for a particular membership function practically a constant value
or a singleton. The negative exponent b" is also possible.

Constructing the fuzzy inference system for our problem we consider a family {R,, : m =
1,2,...,Q} of two-conditional rules of the form

if xisA, and =xisBj then yisCy(x), (9)

with @ = M - M3, since all possible pairs (h, k) are admitted, in which the consequent part Chy
is not a fuzzy set but a weighted combination of two functions f and fi , namely

Chi(@, On, ) = pa, (@) fu(@, 2n) + B, (@) fi(, ). (10)

This type of generalised Takagi-Sugeno-Kang’s fuzzy rule will lead in the final construction stage.
Now we define the overall output of the fuzzy-neural inference system as

M; M
z=f(z,6,2) =3 % v()C(z, B, %), (1)
h=1k=1
where
1
v(x) = : (12)

My wh pa,, () + ML M2 g ()

Then at each x the overall activity of all two-conditional rules is normalised to one. Here
2 is a collection of all individual vectors 24, 2, h = 1,2,...,My, k = 1,2,...,M,, and
6 = {(d"b*, (d*,b%)) : h = 1,2,..., My, k = 1,2,..., My} forms a vector of parameters, that
will be adapted in the final stage of the learning process. It is worthwhile to mention that when
more different fuzzy domain coverings are constructed, one can assume multi-conditional rules in
the module [16, 21].

Notice, that if the fuzzy sets and their membership functions involved will be regarded as ordered
fuzzy sets proposed by the first author in [11, 15], then all algebraic operations are for our disposal
on the right hand side of Eq. (12)!.

5. FINAL STAGE OF LEARNING, IMPLEMENTATION AND CONCLUSIONS

Constructed in the last sections the approximation information system (APIS) presented in the form
of Eq. (11) needs the last stage of adaptation of the coefficient v of the convex combination. Since
only free parameters now are (d”,by,) we have to define a new error function.

The form a new error function will be

M M, 2

3
E(6,x,y) = 1-|f(z,0,2) —y|* = ZZ ) Cni(, h, %) ~ (13)
h=1k=1

where © = (2, (%) is a vector parameter to be adapted.

'In his Ph.D. Thesis [24] Prokopowicz has invented different aggregation procedures and methods of determination
of the level of activation of two-conditional fuzzy rules with ordered fuzzy numbers, which can be adapted for the
case of ordered fuzzy sets, as well.
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Fig. 1. Cluster of training data for the function (14)

Now the terminal stage of the construction follows: the adaptation of the weight vector . To
this end the error function (13) will be minimise over all points (z,y) taken from TRE. The gradient
descent method or a genetic algorithm can be implemented for this purpose, since the error function
is non-quadratic in the variables ©. As initial values for each d" one can take the y-component of
the centroid (cf. Eq. (3)) of the cluster KCq;, while initial value for by, could be taken 1.

The presented algorithm has been implemented in C++ and is in a testing stage for 4-D input
data. We have adapted the network using 216 elements of training data in TRE and other 125 ele-
ments as testing data TES. The training and testing pairs were chosen randomly from the graph of
the real-valued function of 3 variables,

§ =P (e ine ) T3)= (1 + x?'5 e :v2_1 + :1:51'5)2 - (14)

where z1 , 3, 3 were randomly taken from the interval [1,6]. Output values y were in the interval
[5.101,22.049]. The result of this implementation will be presented in the next paper [12]. Here only
one of clusters constructed in the covering analysis from 28 elements, is presented in Fig. 1.
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