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The mathematical model of solidification process can be formulated using the macro or micro-macro
approach. In this paper the second generation model (micro-macro one) is considered. The driving force of
crystallization is the local and temporary undercooling below solidification point T, . The nucleation and
nuclei growth are proportional to the second power of undercooling. Formulas determining the phenomena
previously mentioned contain coefficients called the nucleation coefficient and nuclei growth one. These
coefficients are assumed to be interval values. For above assumptions the problem has been solved by
means of interval boundary element method. In the final part of the paper the results of computations
are shown.
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1. INTRODUCTION

The solidification process proceeding in the volume of pure metal or alloy can be treated as a macro-
scopic one [7], but a more exact approach requires to regard the microscopic aspects of the phenom-
ena considered, in particular the nucleation and nuclei growth [3-5]. The Fourier-Kirchhoff equation
(energy equation) determining the course of thermal processes in the system considered contains the
term controlling the kinetics of solidification (source function). This term is proportional to the so-
lidification rate (more precisely, to the time derivative of local volumetric solid state fraction S ). The
changes of S are determined by the changes of nuclei density and temporary grains dimensions. In
the paper the exponential model of crystallization proposed by Mehl-Johnson—Avrami-Kolmogoroff
is applied [3, 5]. Such approach is widely known, but the parameters appearing in the crystallization
model this means nucleation coefficient and nuclei growth coefficient are, as a rule, treated as the
constant values, while in the model here presented nucleation and growth coefficients are assumed
to be interval values (as an example the paper [2] can be quoted). In order to solve the problem
formulated the interval boundary element method for transient heat diffusion has been applied [9)].
The examples of computations confirm the efficiency of proposed approach for solidification process
modelling.

2. MODEL OF CRYSTALLIZATION

Let us consider the solidification process in domain of pure metal (e.g. aluminium) which in equi-
librium conditions solidifies at the constant temperature T, (solidification point). Transient tem-
perature field in domain {2 describes the following energy equation,

0T (z,t)
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where c is the volumetric specific heat, A is the thermal conductivity, Q(z, ) is the source function,
T, z, t denote temperature, spatial co-ordinates and time, respectively.
The source function Q(z,t) can be expressed as follows,

.. 0S(z,t) .
Q(.’L‘,t) =L T ) (2)

where L is the volumetric latent heat, S(z,t) is the volumetric fraction of the solid state at the
neighborhood of the point considered z.

The typical feature of the models for which the micro processes are taken into account, is an
analysis of S(z,t) on the basis of crystallization processes theory. For instance, the following function
can be introduced [5],

wlz,t) = Nz, )V (z, 1), (3)

where N(z,t) is a grains density [grains/m?], V(z,t) is a single grain volume. If we consider the
spherical grains then denoting by R(z,t) a temporary radius of single grain one has

g ng(x,t)R(x, 13, ()

In this paper the exponential solidification model proposed by Mehl-Johnson—Avrami-
Kolmogoroff is applied and then

S(z,t) =1 — exp[—w(z,t)] (5)

or
S(z,t) =1—exp [—%ﬂ' N(z,t) R(z,t)3] . (6)

Denoting by u(z,t) the solidification rate, this means

u(z,t) = Q}_Zg;:_,t) ; (7)
we have
t
Bz t) = /'u,(:z;,T) dr. (8)
0

The time derivative of function S(z, 1) is calculated and finally the function Q(z,t) (c.f. Eq. (2))
takes the form

e %wL [%f’“ R(z,t)® + 3N (z,t) R(x,t)zu(:c,t)] e [_gw N(z,?) R(x,t)f'] i

Additionally, the undercooling below the solidification point 7%, is defined as follows,

AT(z,t) = {gw ki olee e i (10)

It is assumed that the local and temporary number of nuclei is proportional to the second power
of undercooling

N(z,t) = yAT(z,t)? (11)

where 7 is the nucleation coefficient. The nucleation stops at maximum undercooling.
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The solidification rate is determined by the formula
u(z,t) = pAT(z,t)? (12)

where p is the growth coefficient.

The mathematical description of the problem is supplemented by adequate boundary and initial
conditions.

The solution of the boundary-initial problem discussed requires knowledge of coefficients « and p.
Experimental estimations of these values are difficult because they are dependent (among others)
on technological conditions, object geometry etc. So, it seems that both v and u should be treated
as interval values and this assumption is closer to the real physical conditions of the process.

3. INTERVAL SOURCE FUNCTION
Let us consider the interval values of the nucleation coefficient 4 = (7, %) and the growth coefficient

it = (i, i) [8]. By this way the grain density N(z,t) and the solidification rate i(z,t) are interval
values

N(z,t) = AT (z,t)? (13)
and
a(z,t) = pAT(z,t)? (14)

where the undercooling can be defined as follows,
Ter - % [I(:'II, t) : 5 T(:I), t)] ) % [I(x, t) <+ T(-’E, t)] <A
0, L [T(z,t) + T(=,t)] > Ter,

while T'(z,t) and T(z,t) denote the first and the second endpoints of the temperature interval,
respectively.
The temporary interval radius of the single grain is defined as (c.f. Eq. (8))

R(z,t) = / BAT (z,7)2dr (16)
0

and then the interval source function can be expressed as follows,

O(z,t) = ng [%f’t) R(z,8)® + 3N (z,t) R(x,t)%z(m,t)] e [—gwﬁ(x,t)ﬁ(m,t)3} S

This interval function has to be calculated according to the rules of the interval arithmetic [7].

4. INTERVAL BOUNDARY ELEMENT METHOD
At first the time grid is introduced,
0= <t <<t/ <tf <o <t < 00 (18)

with a constant time step At =t/ —¢t/~1,
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If the first scheme of the BEM is taken into account [1, 6, 9] then the boundary integral equation
corresponding to the transition ¢/~ — ¢ is of the form

tf
B(&)T(s,tf>+c—1p / / T* (¢, 2,4/, 1) g(z, /) dTdt

gF=3. 4"

//q (&, z,t7 t) T(x,tf) dth+//T* ¢zt I ) T(z, tf 1) dn

tfll‘

/ / / Qz, ) T* (€, 3,¢! 1) ddt (19)
tf 1

where £ is the observation point, B(§) is the coefficient from the interval (0,1). The fundamental
solution T*(&,z,t%,t) [1, 6, 9] is defined as follows,

* 1 r?
T, o2, 0 = dralt! —1) exp [—m] ; (20)

where a = A/cp, r is the distance from the point under consideration z to the observation point ¢,
while

bl . 6T*(§,z tf,t)
¢'(6z,t0,1) = -2 ) (2)
and
. BT(:L' t)
a(o,t) = -2 22 (22)

In case of an interval source function the boundary integral equation has the following form,

tf
B(a):f(s,tf)+c—1p / / T*(¢,2,t/,t) 4(z, ') AT dt

tf=1 r

// (¢, z,t7t) T(z,tf) dI‘dt+//T* ¢z, tf tF ) Tz, tF 1) dn

tfll"

/ / Oz, t) T (¢, o, ¢, /1) ddt, (23)
tf »
If we use constant elements with respect to time then Eq. (23) takes a form

B(&)T(e,t7) + / iz, t7) g(¢,z) dT

I

T(z, ') (¢, 2)dl + [ [ T*(&, z,tf,tf ) T(z,t/ ) AR
ek J/

//czxtf 1) g(¢,7)d02 (24)
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where
tf
h(é,w)=$ / q*(¢,z,t/,t) dt (25)
=1
and
tf
se0) = [ Teatna. (26)
tf-1

In numerical realization we consider the following discrete form of the interval equation (24) (for
the constant boundary elements and constant internal cells),

N N L L
oGyl = BT+ Y RTTaY Zulf (27)
=1 j=1 =1 i=1
where
Gij = / g(¢,z)drly, (28)
T;
h(¢',z)dly, i#7,
Hij = /l‘j ot (29)
05 i=7,
&= / / T*(¢,2,¢/,¢/1)da, (30)
2

Za = [[ o(€)am. (31)

The system of equations (27) can be written in the matrix form, namely
G-§=H.T +P.T/"1+2Z.Q . (32)

_ After the determining the ‘missing’ boundary values of T and §, the values of the temperature
T at the internal points £* for time ¢/ can be calculated using the formula

N N L L
1 =5 AT - 3 Guf + SR+ Y 50 @)
Sl j=1 =1 =1

In the special situation when only the term determining capacity of internal heat sources is an
interval value the matrix elements G;;, H;j, Py, Z; are constant. It causes that in such a case
IBEM algorithm is essentially simpler in comparison with the variant corresponding to the interval
thermophysical parameters A, ¢, p [9]. On the other hand the interval calculations of function Q con-
nected with the crystallization process modelling require to take into account the interval nucleation
and the nuclei growth.
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5. EXAMPLE OF COMPUTATIONS

The crystallization process proceeding in an aluminium bar of square section (0.02 x 0.02 [m]) has
been analyzed. On the external boundary the Dirichlet condition T} = 650 [°C| has been assumed.
The symmetrical fragment of the domain considered has been taken into account. The boundary has
been divided into 40 constant boundary elements, the interior has been divided into 100 constant
internal cells — see Fig. 1.

The following input data have been introduced: initial temperature Ty = 670[°C], solidifica-
tion point Ti = 660 [°C], thermal conductivity A = 180 [W/mK], specific heat ¢ = 1200 [J /kgK],
density p = 2500 [kg/m?], volumetric latent heat L = 975[MJ/m?|, nuclei coefficient 5 =
(10° — 1000, 10° + 1000) [1/K?m3], growth coefficient i = (2.95-1075, 3.05 - 107%) [m/sK?|, time
step At = 0.002 [s].

Figures 2 and 3 illustrate the cooling curves obtained at the nodes 83 and 107 of the domain
considered, where T L, T_R denote the lower and the upper bounds of the temperature intervals.
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Fig. 1. Discretization of the domain 2
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Fig. 2. Cooling curves at node 83



Modelling of crystallization with interval BEM

679

670

T°Cl

665

----- TiL

660

655

node 107

650

645

500

5

10

Fig. 3. Cooling curves at node 107
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Figure 4 presents the courses of the source function at nodes 83 and 107, where Q_L and Q_R
denote the first and the second endpoints of the source interval. Figure 5 illustrates the temporary
interval mean radiuses at the nodes 83 and 107.

Summing up, the interval boundary element method is an effective tool in numerical modelling
of the crystallization process.

This paper is a part of the project “Progress and application of identification methods in moving
boundary problems” (No. N507 3592 33).
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