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The exploration of protein conformation can be supported by methods of similarity searching that allow
seeking the 3D patterns in a database containing many molecular structures. We developed a novel search
method called EAST (Energy Alignment Search Tool), which serves as a tool for finding strong structural
similarities of proteins. It differs from other algorithms that concentrate on fold similarities. We use the
EAST to find protein molecules representing the same structural protein family and inspect conformational
modifications in their molecular structures as an effect of biochemical reactions or environmental influences.
The similarity searching is performed through the comparison and alignment of protein energy profiles.
Energy profiles are received in the computational process based on the molecular mechanics theory. These
profiles are stored in the special database (Energy Distribution Data Bank, EDB) and can be used later by
the search engine to find similar fragments of protein structures on the energy level. In order to optimize
the alignment path we use modified, energy-adapted Smith-Waterman method, which is one of the main
phases of the EAST. The use of fuzzy techniques improves the fault tolerance of presented method and
allows to measure the quality of the alignment. In the paper, we present the main idea of the EAST
algorithm and brief discussion on its basic parameters. Finally, we give an example of the system usage
regarding proteins from the RAB family that play an important role in intracellular reactions in living
organisms.
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1. INTRODUCTION

Proteins are biological molecules that play very important role in all biological reactions in living
cells. They are involved in many processes, e.g.: reaction catalysis, energy storage, signal transmis-
sion, maintaining of cell structure, immune response, transport of small biomolecules, regulation of
cell growth and division [11]. Appropriate activity of proteins depends usually on many factors influ-
encing their spatial structures. Therefore, the knowledge of protein structure allows to understand
and to predict protein function in organisms. Furthermore, it allows to model the function, e.g. in
drug design processes, and plan intended modifications of the structure to influence the function,
e.g. in protein engineering. For all these reasons, the analysis of protein structures became very
important to study the entire chains of complex processes proteins are involved in [5].

The very interesting and very important types of proteins are enzymes that catalyze cellular
reactions. The activity of enzymes in catalytic reactions depends on the exposition of some typical
parts of their 3D structures called active sites [11-13]. Conformation and chemical features of active
sites allow to recognize and to bind substrates during the catalysis [5, 12, 19]. For these reasons,
the study of active sites and spatial arrangement of their atoms is essential while analyzing activity
of proteins in particular reactions [8, 10]. Having a group of proteins indicating strong similarity
of selected structural modules we can explore the atomic arrangement of the interesting fragments
taking part-in respective reactions. The exploration can be supported by techniques of similarity
searching. The similarity searching that base just on the protein amino acid sequence (like BLAST (3]
or FASTA [25]) can be supportive but it does not consider geometrical features. More advanced,
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structural methods allow seeking the 3D structural patterns in a database containing many protein
structures. This is a very complicated task since proteins are usually composed of thousands of
atoms. Searching for similar proteins through the comparison of their spatial structures requires
efficient and fully automated methods and become an area of dynamic researches in recent years. The
most popular methodologies developed so far base on various representations of protein structures
in order to reduce the search space, e.g. secondary structure elements (SSE) in VAST [14], locations
of the Ca atoms of a protein body and intermolecular distances in DALI [17], aligned fragment
pairs (AFPs) in CE [31], or 3D curves in CTSS [7]. However, these methods are more appropriate
for homology modeling or function identification.

During the analysis of small parts of protein structures that can be active sites in cellular reactions
it is required to use more precise methods of comparison and searching. For this reason, in our
research we benefit from the dependency between the protein structure and the conformational
energy of the structure [6]. Scientists made a huge progress developing theories that describe relation
between chemical variety of protein sequence, structure and the shape of energy. There is also a group
of algorithms of similarity searching based on the atomic potentials. They use Molecular Interaction
Potentials (MIPs) or Molecular Interaction Fields (MIFs), e.g. [15, 18, 21, 28, 33]. MIPs/ MIFs are
results of interaction energies between the considered compounds and relevant probes [28]. This
group of algorithms is usually used in the process of drug design.

In our research, we calculate so called energy profiles (EPs) that are distributions of various
potential energies along polypeptide chains of proteins. Energy profiles represent protein structures
in the similarity search process. In this way, we reduce the complexity of the search process and we
improve the efficiency of a “pattern vs. database” comparison. Although EPs and MIPs /MIFs base
on the identical background theory of molecular mechanics [6] they are not the same. In the paper,
we briefly describe the idea of energy profiles (Section 2), the method of similarity searching of
proteins in different biological states EAST (Section 3), its parameters and usage (Sections 4 and 5,
respectively).

2. PROTEIN STRUCTURE ENERGY PROFILES

In our research on active sites of enzymes, we calculate distributions of conformational energy along
amino acid chains of proteins. However, amino acids (peptides) are not directly considered in the
calculation process. On the contrary, all performed calculations base on Cartesian coordinates of
small groups of atoms constructing each peptide. Therefore, energy distributions can be seen as
forms of representation of protein structures. The distribution of energy of various types along the
protein/enzyme polypeptide chain may be very descriptive for protein function, activity and may
reflect some distinctive properties.

Definition 1. Let R be an ordered set of m residues in the polypeptide chain R = {riryrs. .. sy
and X{“ be a set of atomic coordinates building the ith residue r; (n; is a number of atoms of the
ith residue r; depending on type of the residue), then simplified protein structure can be expressed
as the ordered set of small groups of atoms X = {X{" X732 X723 .. XI'm},

The energy characteristics or energy distribution E*, where t is a type of energy, is an ordered set
of energy values (energy points) e calculated for groups of atoms X constructing the consecutive
residues r; in the protein polypeptide chain R:

Bt = febebel 116l ) (1)

where: ef is energy point of the ith residue, ¢ is a type of energy (described later in the section).

1
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Fig. 1. The structure of example polypeptide containing five amino acids a), symbolic distribution of
energy E* for the molecule b)

The molecule presented in Fig. 1a is an example of simple polypeptide R with five peptides:
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The structure of the polypeptide is represented by set X. For the set X we calculate energy
characteristics E* (Fig. 1b):
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In our approach, we compute energy characteristics base on the protein atomic coordinates
retrieved from the macromolecular structure database Protein Data Bank (PDB) [4]. During the
calculation we use TINKER [26] application of molecular mechanics and one of several standard
force fields that are sets of physical-chemical parameters, usually Amber [9], and also Charmm [20]
and Amoeba [27].

Energy characteristics represent protein structures in much reduced form of ordered sets of energy
points (Fig. 1b), just like other algorithms as sets of positions of C, atoms. The simplification of
protein structure does not consider some elements of tertiary structure, like disulfide bonds. However,
during the computation process of energy characteristics we include also cross-group interactions of
atoms, so any energy point is calculated in the context of entire molecular structure. This reduces
the search space during the comparison of two protein structures and during the search process that
affects entire database of protein structures. The electrostatic energy characteristics for the real
molecule of the Crystal Structure of Human RAB5A taken from the PDB is presented in Fig. 2.
The RAB5A molecule is one of the proteins analyzed in our research on similarity searching and
signal transduction phenomena [24].

Energy characteristic(s)
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Fig. 2. Electrostatic energy characteristics for sample molecule 1IN6H (Crystal Structure of Human RAB5A)
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For any given structure represented by set X we calculate the energy characteristics for various
types of energy t. In consequence, we obtain a set of energy characteristics called the protein energy
profile.

Definition 2. We define a single protein energy profile EP as a set of energy characteristics of
various types of energy, determined for a given protein structure,

EP = (Est’ Eben,Etor’Evdw,Eel,Etot> (2)

where: E*t denotes a distribution of the bond stretching energy which is a result of a deformation
of optimal bond lengths, E%" is a distribution of the angle bending component energy which is
a consequence of changes of the optimal angles between each pair of adjacent covalent bonds, E®"
is a distribution of the torsional angle energy, EY*" is a distribution of the van der Waals energy that
is caused by correlated motion of the electron clouds of interacting atoms, E¢ denotes a distribution
of the electrostatic energy which is represented by the Coulomb’s law. E! is a distribution of the
total energy, which is a summary of all component energies in each residue.

We had computed complete energy profiles for about 5000 protein structures from the PDB
and we store them in a special database. To this purpose, we designed and developed the Energy
Distribution Data Bank (EDB). The EDB is a foundation for the similarity search task. With the
use of the EDB protein structures can be compared to each other based on their energy profiles, in
order to find strong structural similarities, places of discrepancies, or possible mutations.

3. STRUCTURAL ALIGNMENT WITH ENERGY PROFILES

We can use energy profiles to search for structurally similar proteins (all molecules) or search just
for some particular parts of their structures (structural patterns). The search process is performed
on the energy level. To this purpose, we designed and implemented the EAST algorithm (Energy
Alignment Search Tool), which uses energy profiles stored in the Energy Distribution Data Bank
(EDB). The search process is realized through the comparison and alignment of energy character-
istics of query protein and each candidate protein from the EDB. Considering the possibility that
any two compared molecules could diverge from common ancestor molecule through evolutionary
changes over a time we use the alignments with gaps [2] in order to obtain better results. In the com-
parison we consider only one selected type of energy from each EP. The alignment can be thought
as the juxtaposition of two energy characteristics that gives the highest number of identical or sim-
ilar energy points (residues). A similar word means that energy points do not have to be identical
but they should indicate similarity with the given range of tolerance. This tolerance is different for
different types of energy considered in the search process. As a consequence of a suitable juxtapo-
sition and based on appropriate similarity measures it is possible to evaluate a similarity degree
of compared molecules and optionally find regions of dissimilarity. Therefore, the EAST algorithm
examines identities, similarities (both are qualified as matches) and disagreements (mismatches) of
compared energy points of both energy characteristics. Analogically to the nucleotide or amino acid
sequences alignment, some mismatching positions and gaps can appear in the best alignment of
energy characteristics.

General idea of the EAST algorithm is presented in Fig. 3 (the algorithm was described in our
previous work [22] in more details). During the search process a user specifies a query protein (or
a part of a molecule) with a known structure. This query-structure is then transformed into the
energy profile (QEP). Query-molecule EP (QEP) can be compared with other energy profiles stored
in the EDB. This is a pairwise comparison — each pair is formed by the query energy profile QEP
and energy profile of the successive molecule from the EDB (candidate energy profile, CEP).

In the pairwise comparison, both QEP and CEP are represented by only one chosen energy
characteristics (e.g. torsion angle energy, bond stretching energy, electrostatic, or other). During this
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Fig. 3. Overview of the similarity search process with the EAST algorithm
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Fig. 4. Distance matrix for comparison of torsional angle energy characteristics for two similar molecules
— query molecule 1FSO and candidate molecule 1FST from EDB. The matrix is visualized with the use of
EAST toolkit — darker colors indicate stronger similarity of compared regions

phase we build a distance matrix D (Fig. 4) to check the distance between energy characteristics of
query molecule and all candidate molecules.

The distance matrix allows to compare all energy points of the query molecule energy charac-
teristics By = (4 €/ 5. ..€Y4,) (part of the QEP) to all energy points of the candidate molecule
energy characteristics Ey = (633,16’35,2 ...€5 ) (part of the CEP) and is filled according to the
expression (3).

In the energy distance matrix D, the entry d{}B denotes the distance between energy points of
the ith residue of protein A and the jth residue of protein B, and can be expressed as

di = |el; — ebl (3)

where: t is a type of energy that is considered in the searching.
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Based on the distance matrix D we perform the optimization of the alignment path. The aim
of the optimization is to find the longest path (with possible high quality) that reflects similarity
of selected regions of two compared molecules. To optimize the alignment path we use modified,
energy-adapted Smith-Waterman method (originally used to align amino acid sequences [32], with
later refinements presented in [1, 16, 30, 34]) that produces the similarity matrix S according to the
following rules:

for0<i<nand 0<j<m:

Sio = Soj =0, (42)
8 =811+ 0(diB), (4b)
Si(j2) = lgll?sxn{si—k,j — Wk}, (4c)
Si(f) = lléll%{si,j—z =& (4d)
s =, (4e)
Sy = max{S}, (4f)

where: wg, w; are gap penalties for horizontal and vertical gaps of length k and I, respectively, and
¥(d) is a function which takes a form of similarity award 9+ (d{;B ) for matching energy points (ef‘u
and e%, ;) or a form of mismatch penalty 9~ (dﬁ-B (usually constant value) in the case of mismatch
(Fig. 5).
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Fig. 5. Similarity award/penalty 9¥(d) allows to measure the similarity based on the distance between two
energy points of compared molecules

The match/mismatch is resolved based on distance d{iP between considered points (stored in
the distance matrix D) and additional parameter dy called cutoff value. The cutoff value is the
highest possible difference between energy points ef‘l’i and etB’j when we treat these two points as
similar. Cutoff value determines the range of tolerance for energy discrepancies.

The cutoff value can differ for various types of energy, e.g. for torsional angle energy default value
was established based on a priori statistics to dg = 1.4 kcal/mole. Default settings for the energy-
adapted Smith-Waterman method are (taken directly from the original method [32]): mismatch
penalty ﬁ‘(d;‘}B) = —1/3, affine gap penalty wj = 1.2+ 1/3xk [2], where k is a number of gaps and
d;j is single cell value of the distance matrix D. The similarity award 9+ (dﬁ-B ) for a match depends
on distance d;; .

In the scoring function 9(d) we have to define two values: a cutoff value dy, and identity thresh-
old d;s. The identity threshold d;q is the highest possible difference between energy points
when we treat two points as the same. The value of identity threshold was chosen arbitrary to
0.3-0.5 kcal/mole during observations of energy characteristics performed for many proteins.
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The calculation of similarity between two energy points based on their distance is presented in
Fig. 5. For each distance d;; from distance matrix D we calculate a similarity coefficient ¥;; = 9(d;;)
(similarity award/penalty for a single match/mismatch). If d;; < do then 9;; has a positive value
from a range <0,1>. However, the higher distance between two energy points, the lower is their
similarity similarity. If d;; > do then ¥;; has a negative value —1/3 regardless of the dissimilarity.
All these degrees of similarity are aggregated for the optimal alignment path during the execution
of the Smith—-Waterman method and contribute to the cumulated Smith—Waterman Score. The
Smith—Waterman Score is a sum of all similarity awards for matches and penalties for mismatches
and gaps.

The energy-adapted Smith-Waterman method is one of the most important parts of the EAST
search algorithm. In the Smith-Waterman method cumulated value of similarity score (Smith-
Waterman Score) rises when considered energy points match to themselves (are equal or similar with
the given range of tolerance), and decreases in regions of dissimilarity (mismatch). Moreover, the
energy-adapted Smith—-Waterman algorithm with the similarity award/penalty given by a function
(not constant values) considers both, number of matching energy points and a quality of the match in
the final alignment. This allows to measure the similarity (and further the quality of the alignment),
not only to claim the similarity exists or not. The advantages of using fuzzy similarity award are
presented in [23].

We also calculate additional similarity measures — the Score measure (5) and the Root Mean
Square Deviation RMSD (6):

Length,

SCORE gasT = RMSD, (5)

where: Length, is a length of the alignment frame (in residues) and RMSD; is a Root Mean Square
Deviation for the aligned energy characteristics calculated in the alignment frame;

1 n
RMSDy = |~ (¢}~ gf)’ (6)
i=1

where: e is a single value of the energy (of the type t) for ith residue of the candidate protein energy
characteristics from the EDB, ¢! is a value of the energy (of the type t) for ith residue of the query
protein energy characteristics, n is a number of aligned residues (without gaps, equal to alignment
frame in some cases).

4. MAIN PARAMETERS OF THE EAST ALGORITHM

The contribution of particular component characteristics in the search process can differ. Thus,
their support for the process is not the same. Preliminary studies show some characteristics are
more predestined to distinguish one group of proteins from other molecules. In the section we
discuss the usage of particular component characteristics in the search process run with the EAST
algorithm. In addition, we present results of our research on basic parameters of our method.

The cutoff value dg and identity threshold d;4 are different for particular component character-
istics and can differ for particular group of proteins. In the search process carried out with our
EAST method these parameters can change according to the users’ will — users have an option to
specify any value. However, based on research and a priori statistics (Table 1) we established a set
of default values of the cutoff and identity threshold for all component characteristics contributing
to energy profile (Table 2).

In the first phase, we carried our studies with the use of groups of molecules representing the same
proteins in different biological states. These groups were separated based on the protein annotations,
sequence similarity or literature data. For all possible pairs of molecules in the particular group of
similar molecules we compared each type of energy characteristics and we calculated values of the
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Table 1. Average values of the RMSDs for each type of energy [kcal/mole]

Component energy of EP | MRMSD, | MRMSD; | MRMSD;o | MRMSD;5
bond stretching 1.617 0.950 0.622 0.596
angle bending 4.104 1.599 1.212 1.037
torsional angle 1.891 1.421 14170 1.014
van der Waals 7.106 5.101 37141 3.114
electrostatic 8.413 6.093 5.145 4.003

Table 2. Recommended ranges of cutoff values and default values of the cutoff and threshold identity for
searching with each type of the energy characteristics of the EP

Cutoff value Default value Default value
Component energy of EP | [kcal/mole] of cutoff of identity threshold
from | to |kcal /mole] [kcal/mole]
bond stretching 0.6 1.6 1.0 0.3
angle bending 0.8 4.0 1.6 0.3
torsional angle 0.8 1.9 14 0.3
van der Waals 3.1 7.1 5.1 0.5
electrostatic 2.4 8.4 6.1 0.5

Root Mean Square Deviation (RMSD). Calculations were done for all energy points of the compared
pair of characteristics. Therefore, for one pair of molecules and selected type of energy we obtained
the value of the RMSDy . In the next step, we cut off 5% pairs of energy points indicating the highest
differences and we computed the RMSD once again (we got the RMSD5). Twice more we cut off 5%
pairs of energy points indicating the highest differences and each time we computed the RMSD. As
a result we got RMSD79 and RMSDj5 . After calculations for all possible pairs of molecules within
groups, we calculated average of the RMSDy, RMSD5, RMSD;g9, RMSD;5 for each type of energy
regardless of the group of molecules (across the groups). In consequence, we got the values of the
Mean RMSD (MRMSDg, MRMSD5, MRMSD;1p, MRMSD;5). Based on the values we assumed
boundary values of the cutoff dy (from MRMSD;5 to MRMSDy) and the default values of the cutoff
do (MRMSDs3). The values of identity threshold d;q were chosen arbitrary.

In the second phase, we performed a series of search processes and observations of the distance
matrices changing the cutoff value with the 0.1 kcal/mole within the assumed ranges. We also carried
out additional search processes beyond the boundary values of the ranges. In this way, we decreased
the left boundary value for angle bending energy and torsional angle energy from 1.0 to 0.8 kcal /mole
and charge-charge (electrostatic) energy from 4.0 to 2.4 kcal/mole. After the second phase of the
research we obtained a final set of boundary and default values of the cutoff dy (Table 2).

The wide range of the cutoff value for the van der Waals component energy is flexible (Table 2).
The usage of the component energy in the search process is limited due to high fluctuations of
energy values as a consequence of some structural changes observed in the groups of the same
molecules. We noticed strong energy changes for small conformational discrepancies. On the other
hands, there are regions of the energy characteristics where the distribution of the van der Waals
component energy changes in the small range. For all these reasons, it is difficult to set appropriate,
common cutoff values for this type of energy.

Generally, all default values of the EAST algorithm can be modified before the execution of the
search process. Changes of the default cutoff value dy influence the sensitivity of our method. If we
set higher value of the dp the algorithm will qualify more energy points as similar. This will also
increase the similarity measures for compared molecules and spread the similarity frames. However,
too high value of the dy (beyond the recommended range) causes a danger to get more molecules
in the result set that are not structurally similar but indicate this with high values of similarity
measures. On the other hand, when we set the dy beneath the left endpoint of the cutoff range we
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will observe narrow frames of alignment, a decrease of the percentage of matching energy points
and low values of the Score and SW-Score measures.

5. EXPERIMENTS ON PROTEIN MOLECULES

We heavily exploit presented algorithm in our research on active sites of proteins (parts of protein
structures). Moreover, the dependency between a protein structure and its conformational energy
allows to observe: conformational changes of proteins in particular reactions, conformational dis-
crepancies in protein structural mutants, and compare predicted proteins to existing molecules in
order to verify results. In our experiments we performed search tests for 100 molecules (or their
parts) against the EDB database containing about 5000 EPs of protein structures from the Protein
Data Bank (containing more than 40000 proteins). The subset was chosen arbitrary. The size of
the EDB containing profiles generated with 3 different force fields is approximately 600 MB.

Beneath we present results and analysis of one of the search process performed in our tests. The
process was run for query molecule representing the whole protein. However, it can be executed just
for the smaller parts of protein structures representing active sites, biological functional domains,
3D motifs or any other structural pattern. The presented example concerns proteins from the RAB
family that are members of the bigger group of GTPases — particles that have the ability to bind
and hydrolyze GTP molecules. Therefore, proteins of the RAB family play an important role in
intracellular reactions of living organisms. They are elements of the signal pathways where they
serve as molecular controllers in the switch cycle between active form of the GTP molecule and
inactive form of the GDP. In Fig. 6 we can see results of the similarity search process performed
for the IN6H molecule (Crystal Structure Of Human RAB5A). Results are sorted according to the
Score similarity measure.

Best results for job: 2006-08-04 13:13:55
Cut-off: 6.1; id threshold: 0.5; energy type: Charge-charge
S-W type: Fuzzy; mismatch: -0.3334; gap open: 1.2; gap ext.: 0.3334

PDBID Chain Length Matches Matchj, RMSD Score S-W Score

1N6R A 159 154 96 2.091 73.64 132.84
iN6L A 162 155 95  2.247 68.98 134.78
iN60 A 128 126 98 1.914 65.85 98.01
1N6K A 161 155 96 2.365 65.53 130.45
1N6I A 154 146 94 2.391 61.06 121,69
1HUQ A 146 140 Qb= 1:2,:296 61.01 114.89
1N6P A 136 129 94.  2.269 56.85 104.47
1N6N A 146 137 93  2.488 55.06 110.64
1TU3 A 142 138 M - 2:.763 49.95 96.85
1R2Q A 43 38 88 2.914 13.04 32.13
1GRN A 28 27 96.7-3.259 8.29 8.96
1GUA A 38 32 84  3.960 8.08 4.87
1R8Q A 26 25 96 3.357 7.45 5.58

Fig. 6. Results of the similarity search process with the use of the EAST algorithm for human RAB5A
— molecule IN6H (Crystal Structure Of Human RAB5A). Parameters — cutoff value: 6.1 kcal/mole, identity
threshold: 0.5 kcal/mole, energy type: electrostatic

Results can be interpreted based on similarity measures: Score and Smith—Waterman Score (SW-
Score) — the higher value the higher similarity, RMSD - the lower value the better quality of the
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alignment, and based on output parameters: Length — alignment frame, Matches — number of aligned
energy points, Match% — percentage of matching positions in the alignment frame (the higher the
better).

Molecules above the horizontal line (Fig. 6) were qualified as similar. The line was inserted
manually after the search process and verification based on similarity measures, annotations of
molecules and literature. Analyzing the result set we made the following interesting observations:

The molecule 1R2Q (in the result set in Fig. 6) has weak values of similarity measures. Never-
theless, it is in the group of similar molecules. In fact, it is just a part of the RAB5A — so called
GTPase domain, responsible for the signal transfer in cells through GTP/GDP binding.

The molecule 1HUQ in the group of similar molecules has the same function in mouse organism
(mus musculus) as query molecule IN6H in human. The energy characteristics alignment of query
molecule IN6H and candidate molecule 1HUQ is presented in Fig. 7. Energy characteristics for both
molecules have many matching energy points indicating structural similarity. Some parts of these
characteristics cover each other what verifies a good quality of the alignment. There are also some
parts indicating small conformational differences in the compared structures (e.g. residues 104-110).

a) Energy Alignment
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Fig. 7. Alignment of energy characteristics with the EAST toolkit for query molecule 1N6H (Crystal Struc-

ture of Human RAB5A) and resultant molecule 1HUQ (Crystal Structure of the Mouse Monomeric GTPase

RABS5C): a) line representation, b) stairs representation. Visible parts: residues 68-145. Grey color (bright
line) indicates mismatching parts, no gaps visible

Comparison of the 3D structures of query molecule IN6H and resultant molecule 1HUQ is pre-
sented in Figs. 8 and 9.

There are structure mutants of the RAB5A particle in the result set (Fig. 6): 1N6I (Crystal
Structure of Human RAB5A A30P Mutant Complex with GDP), 1IN6K (Crystal Structure of Human
RAB5A A30P Mutant Complex with GDP and Aluminum Fluoride), 1IN6L (Crystal Structure of
Human RAB5A A30P Mutant Complex with GTP), IN6N (Crystal Structure of Human RAB5A
A30R Mutant Complex with GPPNHP), IN60 (Crystal Structure of Human RAB5A A30K Mutant
Complex with GPPNHP), IN6P (Crystal Structure of Human RAB5A A30E Mutant Complex with
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a) b)

Fig. 8. Comparison of the 3D structures (ribbon representation) of molecules: a) query 1IN6H (Crystal Struc-
ture of Human RAB5A), b) resultant 1HUQ (Crystal Structure of the Mouse Monomeric GTPase RAB5C).
Visualization made with the use of the RasMol program [29]

a)

Fig. 9. Comparison of the 3D structures (sticks representation) of molecules: a) query 1IN6H (Crystal Struc-
ture of Human RAB5A), b) resultant 1HUQ (Crystal Structure of the Mouse Monomeric GTPase RAB5C).
Visualization made with the use of the RasMol program [29]

GPPNHP), IN6R (Crystal Structure of Human RAB5A A30L Mutant Complex with GPPNHP).
Observations of energy characteristics confirm a single mutation appears in residue Ala®® in the part
of the molecule called P-loop (residues 2?GESAVGKS3*) causing structural changes in the switch
region I (residues 47-65) and switch region II (residues 77-93) and the decrease in the intrinsic
GTPase activity. These effects were described in the literature [35] in more details.

6. DISCUSSION AND CONCLUSIONS

Similarity searching is one of the most frequent tasks performed in bioinformatics database systems.
We developed a novel algorithm of searching for structurally similar proteins (or their parts) with
the use of energy profiles that represent structures of proteins. The algorithm differs from other
methods of structure similarity searching. The EAST focuses on strong similarities in the same



692 D. Mrozek, B. Maltysiak

families of proteins. On the contrary, the methods such VAST or DALI deal with large (fold)
similarities of structures. Although in the first phase the EAST method base on geometric features,
it has a different purpose.

We conducted a set of experiments on the usage of different energy characteristics and parameters
in the search process. They showed the torsional angle and electrostatic characteristics support the
search process better than others (e.g. van der Waals). For this reason, these components are more
significant in the searching and are used more frequently. Other component characteristics have
a supporting role. Fault-tolerance of our algorithm appears in two places: 1) the EAST algorithm
accepts small discrepancies between energy points (up to the given cutoff value) and measures
their similarity, 2) it allows mismatches and gaps to appear in the alignment — it does not reject
mismatching parts if there is another fragment around indicating similarity. All these features cause
we have a powerful tool to observe the conformational switching of protein structures in particular
reactions, detect structural mutants, and compare computed protein structures (e.g. with the use
of the NPF method [36]) to existing molecules.
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