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The paper is devoted to applications of evolutionary algorithms in identification of structures being under
the uncertain conditions. Uncertainties can occur in boundary conditions, in material parameters or in
geometrical parameters of structures and are modelled by three kinds of granularity: interval mathematics,
fuzzy sets and theory of probability. In order to formulate the optimization problem for such a class of
problems by means of evolutionary algorithms the chromosomes are considered as interval, fuzzy and
random vectors whose genes are represented by: (i) interval numbers, (ii) fuzzy numbers and (iii) random
variables, respectively. Description of evolutionary algorithms with granular representation of data is
presented in this paper. Various concepts of evolutionary operator such as a crossover and a mutation
and methods of selections are described. In order to evaluate the fitness functions the interval, fuzzy and
stochastic finite element methods are applied. Several numerical tests and examples of identification of
uncertain parameters are presented.
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1. INTRODUCTION

In the majority engineering cases it is not possible to determine exactly all parameters of the
physical systems. It is necessary to introduce some uncertain parameters which describe the granular
character of data. Representation of uncertain values may have different forms. It depends of the
physical meaning of the considered problem and the assumed model of uncertainty. There are several
formal frameworks in which information granules can be built [7] among them interval analysis [19],
fuzzy sets [21] and random variables [3] can be considered.

The aim of an identification problem is to find some unknown parameters of a mechanical system
having some measurements of physical quantities such as displacements or natural frequencies [4].
The identification problem is considered as the minimization of a functional which depends of an
error between measured and computed physical quantities as e.g. displacements in the sensor points.

The evolutionary algorithms [1], as the global optimization technique for searching uncertain
values, can be applied in finding the interval parameter [7], fuzzy models [8], fuzzy controllers [11],
fuzzy rules [2], random parameters and others. In such algorithms, the chromosome consists of
uncertain genes. Therefore, the evolutionary operators are modified for uncertain types of data.

This paper describes a new conception of application of the granular evolutionary algorithm
in identification problems with uncertain parameters. The following systems are considered as the
granular models (i) interval numbers, (ii) fuzzy numbers and (iii) random variables. The proposed
granular evolutionary algorithm is examined for testing bench-mark, due to the optimal parameters
of the algorithms (population size, probability of mutation and crossover) are found. Next, the
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algorithm is applied for identification problem in mechanical structures. The paper presents the
application of the algorithm in finding the shape, material coefficients and boundary conditions of
the mechanical structures.

2. GRANULAR EVOLUTIONARY ALGORITHM

The paper concerns the granular evolutionary algorithm with granular operators and granular re-
presentation of the data. The chromosomes contain granular genes. Each gene decides about the
heredity of one or a few characteristics. The individuals can be modified by means of the granular
operators. The evolutionary operators generate new chromosomes. The next step is the operator of
the selection. It creates a new generation, which contains better chromosomes. All steps are repeated
until the stop condition is fulfilled (Fig. 1). .
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Fig. 1. The flow chart of the granular evolutionary algorithm

In the granular evolutionary algorithm an individual expresses a granular solution. In each gen-
eration the granular evolutionary algorithm contains a population of solutions. Each solution is
evaluated, and as the result a granular value of the fitness function is obtained.

2.1. The granular representation of chromosomes
2.1.1. The interval chromosome

In most cases the evolutionary algorithm has the genes as the real values. The granular algorithm
works on the granular data, so the gene should be modified to granular data. In the paper the
following cases are considered: (i) interval genes, (ii) fuzzy genes and (iii) random genes.

In the interval case the gen [z] = [z, Z] is described by the central value cv([z]) = (z + Z)/2 and
the radius r([z]) = (z — Z)/2.

Therefore the interval chromosome can be expressed by

et feal, - 0], o TERlL (1)
The interval chromosome can be replaced by the real-coded chromosome
[(C’U]_ y rl)a (C’Uz, TZ)) irery (C'Ui, Ti)) ceey (C’Un, rn)] (2)

where [z;] = (cv;, 3).
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Fig. 2. The interval representation of the gene



The granular computing in uncertain identification problems 697

2.1.2. The fuzzy chromosome

In the fuzzy case the gene x can be considered as a fuzzy set (Fig. 3a). The fuzzy set is considered
as a set of pairs of the zand the density function p(z). When the fuzzy set is convex and normal and
the density function is continuous, the fuzzy set is the fuzzy number (Fig. 3b). The concept of a-cuts
plays the important role in the theory of fuzzy sets. An a-cut of a fuzzy number A is a interval that
contains all the numbers of A that have the membership value of A greater than or equal to a. In
this case the fuzzy number can be replaced by a set of the interval values, which are stretched on the
adequate levels (a-cuts) of the fuzzy value. The number of the a-cuts can be arbitrary. Figure 3c
shows an example of the replacement of the fuzzy number by 5 interval numbers.
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Fig. 3. The fuzzy a) set, b) number, c) corresponded intervals

This approach has some advantages. For each a-cut the very good known interval arithmetic
operators are used. It is possible to obtain different forms of the fuzzy values due to the generation
of a few a-cuts and corresponding them interval values [z;Z]. The forms can be symmetric or not
symmetric. They describe some characteristic forms of the fuzzy values, and permit to build a new
form of the fuzzy value too. Finally, each gene z is expressed as the real value: the central value
cv(z) (Fig. 4) and a set of parameters a;(z) and b;(x) which define distances between cv(x) and
the boundaries of the intervals (Fig. 4). It is possible to introduce the constraints on the cv(z) and
non-symmetric constraints on the widths of the intervals using the central value cv(z).

Therefore, the fuzzy chromosome can be expressed by

Be %0 ) s 5 Riiyis 60 - Xd s (3)

The fuzzy chromosome can be replaced by the real-coded chromosome (for 2 a-cuts)

[(a'lvalvcvlablibl) (a2aa§’w2,b b%)7 s (a,,a,,cv,,bz bl) ) (a"rlwa?wcvmbrznbrlz)] (4)

where x; = (a}, a?, cv;, b?, b}).
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Fig. 4. The gene in the fuzzy evolutionary algorithm

2.1.8. The stochastic chromosome

In the random case the gene is represented by a random variable, which is a real function X; = X;(v),
~v € I', defined on a sample space I' and measurable with respect to P: i.e., for every real number
z;, the set {7 : Xi(7) < z;} is an event in F. The chromosome X(v) is a function (measurable with
respect to P) which takes every element v € I" into a point x € R™ [14].

The chromosome

X(y) = [X1(), X2(7),-- - Xi(7), - -+, Xa(7)] (5)

has an n-dimensional Gaussian distribution of the probability density function, given as follows,

1 : B
) g veos gy eve o ) T o e i K’i' D =T s — . ) 6
Bty ey B B = SRR | TR PR = miey ) ©)

i,j=1

where |K| # 0 is the determinant of matrix covariance, |Kj;| is the co-factor of the element k;; of
the matrix K and 7 — the element of the random space.

It is assumed that random genes are independent random variables. The joint probability density
function is expressed by the probability density functions of single random genes as follows,

p(T1, T2, oo Tiy oo, Tn) =P1(21) P2(22) - - - Pi(Ti) - - - PalTn), (7)
where
1 z; —m;)?
Mm:Nm“m=me“4iﬁE¥% ®)

is the probability density function of the random gene X;(vy).
It can be seen that if the random genes X;(v), ¢ = 1,2,...,n, are random independent Gaussian
variables, two moments describe the probability density function of the random variable X;(vy).
Therefore the stochastic chromosome (5) can be replaced by

[(ml,al),(mz,ag), ,(mi,ai),...,(mn,an)] (9)

where m,; — the mean value and o; — standard deviation.

2.2. The granular mutation

In the interval case two types of the mutation operators are applied. In both cases the modified
gene z; is randomly selected from the chromosome z = 121, 28, 1 €35 » vy B
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In the first type of the mutation (mutation I) the central value cv(z;) of the j-th interval value
z; is modified. The operator is expressed by the following equation,

h(z}) = h(z;) + G, (10)

where h(y) = cv(y) for each gene y, Gy — random value (with Gaussian distribution), j =1...n is
the number of the gene.

The second type of the mutation operators (mutation II) concentrates/deconcentrates the interval
value. The mutation changes the radius r(z;) according to Eq. (10), where h(y) = r(y) for each
gene y.

Therefore, two types of the mutation operator are introduced, both can work together or inde-
pendently. In the fuzzy case two types of the mutation operators are also applied. In both cases the
modified gene z; is randomly selected from the chromosome z = [z1, z2, ..., Zj, ..., Zn].

In the first type of the mutation (mutation I) the central value cv(z;) of the j-th fuzzy value z;
is modified. The operator is expressed by Eq. (10), where h = cv.

The second type of the mutation operators (mutation II) concentrates/deconcentrates the fuzzy
value z; . The mutation changes the distances a;(z;) or bj(z;) by Eq. (10) where h =a;, b; .

This operator is considered as symmetric (a;(z?) and b;(z?) are changed by means of the same
value), and non-symmetric ones. The operator can change only the selected a-cut. Therefore, two
types of the mutation operator is introduced, both can work together or independently.

In the random variables case, two types of the mutation operators are also applied. In both cases
the modified gene z; is randomly selected from the chromosome z = [z1, 2, ..., Z;, ..., Tn].
The first type changes the first normal moment m using formula (10), where h = m. The second
type changes the standard deviation of the j-th random variable using Eq. (10), where h = 0.

2.3. The granular crossover

The granular arithmetic crossover operator is proposed in the granular evolutionary algorithm.

The crossover creates two offspring individuals z* = [z],23,...,2],...,2;] and y* =
Wi, 45, s Y5a:ee yx] on the basis of two parent chromosomes z = [z1, 2, ..., Zj, ... , Tn)
andy=[y1,¥2,---,Yjs --- » Yn]- The selected parameters of the j-th genes of the offspring chro-
mosomes are expressed by the following equations (interval cases),
h(z;) = Ah(z;) + (1 - A)h(y;), (11)
h(y}) = Ah(y}) + (1~ Vh(z}), ‘ (12

where h = cv,r, and X € [0, 1] is a random value with the uniform distribution.

In the fuzzy case the selected parameters of the j-th genes of the offspring chromosomes are
expressed by Egs. (11) and (12), where h = cv, a;, b;.

In the random variables case the offspring chromosomes are expressed by Eq. (11) and (12),
where h = m, 0. ;

2.4. The granular selection

The last modified operator for the interval, fuzzy values and random variables is the selection
operator. This operator is constructed on the basis of a well known tournament selection. In this
selection the fitness function values f are compared, and the better chromosome wins more often.
Therefore the special strategy of comparison of two granular values is proposed.

In interval and fuzzy cases the special conditions are constructed,

h(f1) < h(f2)- (13)

where h = cv,r.
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In the fuzzy case the condition (13) is checked, where h = aj, b, 7. In the stochastic case the
condition (13) is checked, where h = m, 0.

2.5. The granular fitness function

One of the most important steps of the evolutionary algorithm is the evaluation of the fitness
function. If the design variables are deterministic, the fitness function result is also deterministic.
In the case of solving the granular optimization problems, the problem of evaluating the fitness
function is much more complicated. A few ways to estimate the results are possible in this case. In
the case of simple mathematical functions the basic arithmetic operators {+; —;*; /} for granular
representation are used.

Unfortunately, in many cases the fitness function can be examined after solving the inter-
val/fuzzy /stochastic boundary-value problem. The boundary-value problems can be solved by means
of the interval/fuzzy /stochastic boundary element method or the interval/fuzzy/stochastic finite el-
ement method.

3. TESTING THE GRANULAR EVOLUTIONARY ALGORITHM

The aim of the test is to find the vector x which minimizes the granular function

n

f=fx) =% [%m — 0713 (5 — cos (2mpla: - 0.7|%))] (14)

f=1

where n — the number of granular design decision variables z;, p — the number of the optimum.

In the first step of examination, the best (optimal) probabilities of mutation (pm) and crossover
(pc) operators were searched. In the second stage the best population size (ps) was searched. For
each combination (n =1...5,p=1...5) the 10000 independent experiments were run. The optimal

Table 1. The optimal probabilities pm, pc and population size ps of the granular evolutionary algorithm
(interval case)

n p
1 2 3 4 5

pm | pc | ps|pm | pc | ps|pm | pc | ps|pm | pc | ps | pm | pc | ps
1104 0214104102 3.1.03101]131]031[011:4]031]01}°3
2 =04 | Ul o4 P04 101 [-4 L0401 4 O304 7030014
3ab0.3 104 4-+0.3 LOA B0 0.1 =4 027 0.0 o4 [70.2-70.1 2
A 0.3 0.1 By 02 1 0.1 | 4 0.2 1.0.1°| 4., 02,1 0:1 [ 4.1.027% 0711 4
B3| 0.3 Ok 5102000 .5 J=0. 2000 1A 10:3:120:0 L 4 | 0.2. 1015

Table 2. The optimal probabilities pm, pc and population size ps of the granular evolutionary algorithm
(fuzzy case, 2 a-cuts)

n p
3

pm | pc | ps | pm | pc | ps | pm | pc | ps | pm | pc | ps | pm | pc | ps
04 [01.L 5104 1:01.1:4 .03 01 | 510316011 51.03101]| 6
04 01| 41 064:01LE.55.04,.00 5:.-04.10:1.1 71040118
0540211105 021560602 15105|02|18 (0502119
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Table 3. The optimal probabilities pm, pc and population size ps of the granular evolutionary algorithm
(fuzzy case, 3 a-cuts)

n p
] 2 3 4 5

pm | pc | ps | pm | pc | ps|pm | pc | ps | pm | pc | ps | pm | pc | ps
04101454 0:82/-0.1 4 -6+]-0.3--[-0:|- 8103 |01 - 9°1-0:3 - Db | 11
0410141041015k -6:104 [-01# 6104 {-01|-9104 | D1 |11
04102 .:8}04102}14 |04 {0213 |-04- 0.2-} 13 |-0:4-1 D:2:| 15
0502|1005 }02(19 |04 (0211704 02|21 0.5 |0.2]|22
D502 | 11 0.5 [0:2-#16 | 0.5 | 0.2 19 | 0:5:1 0.2 [ 24 | 0:5 | B2 | 27
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Table 4. The optimal probabilities pm, pc and population size ps of the granular evolutionary algorithm
(stochastic case)

n P
1 2 3 4 5

pm | pc | ps | pm | pc | ps | pm | pc | ps | pm | pc | ps | pm | pc | ps
1°L0a ol 4 o4l 0.8 037015 4 [0.3 00 29 =08 201 L1
210310114063 to01 | 6103701 9 104101 910410111
302 0L 4 1502000151 6G21011 5 [104°102 (13704 7102]15
TT07101 74 FOZLOT 510270105 104102121 |05 1 0.2 | 22
EE02 0114 1702101 5502 01,4 105 | 02124 -85 0.2.] 27

probabilities and population size of granular evolutionary algorithms (interval, fuzzy and stochastic)
are included in Tables 1-4.

4. THE IDENTIFICATION OF THE INTERVAL DEFECTS PARAMETERS

The aim of the identification problem is to find the parameters which define the circular defect: ,
y and 7 (Fig. 5). The plate was restrained and loaded by the interval continuous traction q. The
actual interval parameters of the defect are included in Table 5.

Table 5. The results (interval case)

actual values found values
lower value | upper value | lower value | upper value
T 2.90 3.10 2.92 341
\ Y 2.90 3.10 2.97 3.07
sensor r 1.90 2.10 1.87 2.10
points o 0.00 0.00 0.21 0.87

Fig. 5. The plate with the sensor points

Chromosome takes the form: ch = [z, 2, z3] = [z,y,r], where z and y (the coordinates of
the centre) and r (the radius) are interval values. The material parameter E and loading q were
also assumed as the interval values. 21‘points on the boundary were selected as the sensor points
(Fig. 6).

The plate was loaded by q = [99.8;100.2] kN. The Young module is contained in the interval
[2e+11 — 2%, 2e+11 + 2%).
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Fig. 6. The plate with the fuzzy material distribution a) sensor points, b) FEM discretization

The identification problem is expressed by the minimization problem of the displacement function
f = Z (uk i ’[l:k)2 (15)
k

where 4 — the measured displacement, u; — the displacement computed for the structure with
defects generated by the evolutionary algorithm, k& — the number of the sensor points.

The following values of the granular evolutionary algorithm were received: the population size 7,
the probability of mutation 0.3, the probability of crossover 0.1, the number of generations 1000.
The actual and found parameters are included in Table 5.

5. THE IDENTIFICATION OF THE FUZZY MATERIAL DISTRIBUTION

Consider a 2-D elastic body in the plane stress loaded by force F. The material of the body is
isotropic but homogeneous. After the discretization by means of the finite element method each
finite element of the body can have different material properties. In each element the Young moduli
is equal to the mean values of Young moduli in the nodes of the elements. The Young moduli E; of
the [-th nodes are computed on the basis of the Young moduli in the corners E;, Ey, E3 and E;4
(Fig. 6a) by using linear approximation

E =) EM, (16)
b T= 10 By 96— ploy the Tole of sntetpoltion Funckions

M, = %(1—51)(1—52)(—51—52—1)» M, = %(1+€1)(1—§2)(§1—§2—1)» 1

My i(1+§1)(1+§2)(§1 +& — 1), My = i(l—ﬁl)(1+§2)(—§1+§2—1), o

where £ and & are coordinates.

The aim of the identification problem is to find the Young moduli in the corners. The actual
fuzzy values of Young’s moduli parameters of the corners are equal to E; , By, E3 and E4 (Table 6).
The force is assumed to be a fuzzy one: F' = [1.00;0.50; 10.00; 0.50; 1.00] [kN].

21 boundary nodes were selected as the sensor points (Fig. 6a). The following values of the
granular evolutionary algorithm parameters were assumed: the population size 15, the probability
of mutation 0.4, the probability of crossover 0.1, the number of generations 400. The results are
presented in the Table 6.
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Table 6. The results (fuzzy case)

actual values found values

ay as cv by by a1 as cv by by
E; | 2.00e7 | 1.00e7 | 2.00ell | 1.00e7 | 2.00e7 | 2.00e7 | 1.06e7 | 1.98ell | 1.12e7 | 2.12e7
E, | 4.00e7 | 2.00e7 | 1.95el11 | 1.00e7 | 1.00e7 | 3.86e7 | 2.06e7 | 1.92ell | 1.10e7 | 1.08e7
Es3 | 3.00e7 | 0.50e7 | 2.05el1l | 2.00e7 | 3.00e7 | 3.12e7 | 0.50e7 | 1.99ell | 2.09e7 | 3.22e7
E; | 2.00e7 | 1.50e7 | 2.00e1l | 0.50e7 | 4.00e7 | 1.80e7 | 1.48e7 | 2.02ell | 0.53e7 | 4.08e7
¥ 0.00 0.00 0.00 0.00 0.00 0.07 0.04 0.21 0.02 0.12

6. THE IDENTIFICATION OF STOCHASTIC BOUNDARY CONDITIONS

Consider a two-dimensional elastic structure (plane stress) with prescribed boundary conditions
(Fig. 8). The following parameters of the structure: (i) geometry, (ii) material properties and
(iii) boundary conditions, can be modelled by using the stochastic approach. In this example loads
Xi(y)i =1,2,...,n, are random variables. The rest of the parameters are deterministic.

The aim of this test is to find n=2 random loads: F;(y) and F>(v) (Fig. 8). The actual stochastic
parameters of the load Fy(7) is described by: (m1, o1), where m; = 10.0 [kN], and o7 = 0.167 [kN].
The actual stochastic parameters of the load F»(7) is described by: (mg2, 02), where mo = 15.0 [kN],
and oy = 0.167 [kN]. The loads are independent random variables.

The stochastic chromosome X(v) = [Fi(7), F2()] is replaced by deterministic one containing
moments of F;(v), ch = [(m1, 01) (m2, 02)].

21 boundary nodes as the sensor points were selected (Fig. 7).

The following parameter values of the stochastic evolutionary algorithm were assumed: the pop-
ulation size (ps) 5, the mutation probability (pm) 0.4, the crossover probability (pc) 0.1, the number
of generations was equal to 500.

The actual and found parameters are included in Table 7.

F :(;f)l Fy(y)

Table 7. The results (stochastic case)

actual values found values

m o m o
Fi(v) | 10.000 | 0.167 | 9.982 | 0.177
F5() | 15.000 | 0.167 | 14.902 | 0.159

f 0.000 | 0.000 | 0.202 | 0.023

Fig. 7. The plate with the random loads

7. CONCLUSIONS

An effective intelligent technique based on the granular evolutionary algorithm has been presented.
This approach can be applied in the optimization and the identification of systems that are in the
uncertain conditions. This approach is very promising for reliability optimization in which the safety
of a system is estimated and represented by the probability of its failure, i.e. the occurrence of an
ultimate limit state manifesting itself.
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The more general approaches will be developed in future. The other types of probability density
function (PDF) with a greater number of moments will be examined. The dependences between
random numbers will be also examined.

In the general case uncertain conditions have the granular form [3]. The models based on the
interval and fuzzy numbers were used instead of stochastic approach presented in this paper. The
models based on the perturbation numbers will be presented in the future.
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