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A finite element implementation of the unified elasto-viscoplastic theory of Bodner—Partom for non-linear
analysis is investigated in detail. Description of the Bodner-Partom constitutive equations is presented.
Proposed UVSCPL procedure has been applied into MSC.Marc system and can be introduced into wide
range of different finite elements (e.g. shell, solid, truss). For the validation of the proposed FE procedure
the numerical simulations are presented. Additionally, the first part of the paper gives brief characteri-
zation of the engineering applications of the Bodner-Partom constitutive equations used for the different
modelling of materials.
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1. INTRODUCTION

Rate-dependent plasticity and creep are major concerns in the structural analysis of the mate-
rials beyond the yield limit or subjected to cyclic loading under different temperatures. In re-
cent years, a large number of constitutive equations has been proposed for the description of
the elasto-viscoplastic material behaviour. Among others it is possible to specify the following
models proposed by: Perzyna [53], Bodner-Partom [11], Miller [48], Tanimura [67], Krempl [40],
Lehmann-Imatani [43], Chaboche [14], Krieg-Swearengen—Jones [41], Korhonen-Hannula-Le [39],
Freed-Verrilli [22], Walker [23], Aubertin [6]. The practical engineering applications of the mod-
els specified above are limited due to difficulties with identification of large number of material
constants.

In these enumerated models, all mechanisms of the inelastic effects are represented by a single
kinetic equation that defines the inelastic strain rate ¢!. Additionally, all of them are based on the
assumption of the strain additivity,

e=eP4 ¢, ; (1)

where &, é¥ and &’ are total strain rate, elastic part of the total strain rate and inelastic part of
the total strain rate, respectively.

In the present paper the author makes the detailed investigation for the Bodner-Partom elasto-
viscoplastic model. In the first part of the paper the literature survey of the numerical, scientific
and engineering applications is given. The second part gives the examples of the static and dynamic
finite element analysis.
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2. APPLICATIONS REVIEW OF THE BODNER-PARTOM MODEL

The unified plasticity approach is based on the use of a single variable that represents all the
inelastic deformations and can be developed in formulations with or without a yield criterion. An
objective of a unified constitutive theory is that it can be applicable for some classes of materials
over a wide range of strain rates and temperatures. The Bodner-Partom constitutive model was
one of the unified theories proposed by Bodner and Partom [11] in the 1970s. The Bodner-Partom
constitutive equations have been frequently utilized for modelling the elasto-viscoplastic hardening
of number materials. This model is used in many practical engineering applications, which are
presented in this section in the compact form.

Rubin [54] developed a unconditionally stable numerical procedure for time integration of the
flow rule for large plastic deformation of an metal. He focused specific attention on unified Bodner—
Partom constitutive equations. Numerical examples of simple shear, a corner test exhibiting the
transition from uniaxial compression to shear, and simple tension are considered which demonstrate
the stability and accuracy of the procedure.

Sung and Achenbach [66] studied a crack propagating in a viscoplastic material with the Bodner—
Partom model. On the basis of the adiabatic approximation, the maximum temperature is investi-
gated as a function of the crack-tip velocity and the material parameters. Assuming small strains
and moderate rotations Klosowski et al. [33] investigated the elasto-viscoplastic dynamic behaviour
of plates and shells. The Chaboche [14] and Bodner—Partom [12] models were chosen by the authors
to the description of the steel material behaviour. To avoid the calculation of the stiffness matrix,
an effective procedure using the central difference method of solving the equations of motion was
applied. A nine-node isoparametric shell element was utilised for the finite element algorithm.

The kinematic quantities needed for the description of finite deformations with inelastic constitu-
tive models and the formulation of an inelastic material model for large deformations are summarized
by Hackenberg [25]. The extended Bodner-Partom model, which includes damage effects (based on
Gurson’s model) was described. An approximation of the constitutive model is given which takes
into account the volumetric constraint and which is suitable for the incremental numerical scheme.
The elasto-viscoplastic equations of Bodner-Partom was modified to model strong non-proportional
loading path such as experienced in corner turning tests and certain cases of inelastic buckling by
Rubin and Bodner [55]. An essential generalization is made to the flow rule, causing the magnitude
and direction of plastic strain rate to become an explicit function of deviatoric total strain rate as
well as of stress and hardening variables.

A numerical method for the implementation of a micromechanical model capable of predicting
the thermomechanical response of laminated metal matrix composites in the presence of damage
development with the Bodner-Partom model was developed by Lissenden and Herakovich [46].
The non-linear lamination theory used by the authors provided the link between the micro- and
macro-level responses of laminated composites subjected to thermomechanical loading. In the
work [47] Mahnken and Stein presented a unified strategy for identification of material parameters
of Chaboche [14], Bodner-Partom [11] and Steck [63] viscoplastic constitutive models from uniax-
ial tests. The gradient-based descent methods for minimization of a least squares functional, thus
requiring the associative gradient was used. The numerical examples in the context of monotonic
and cyclic loading were described too.

Arya [5] developed a explicit integration algorithms with self-adaptive time integration strategies
which are applied to numerical analysis with Bodner-Partom and Freed—Verrilli [22] models. The
large amount of computations performed showed that the efficiency of an integration algorithm
depends significantly on the type of application. To the description of behaviour of the high-density
polyethylene Zhang and Moore [77] used the Bodner-Partom and the extended Kelvin models. Based
on the uniaxial tension tests the material parameters for both models were established. Limitations
in the application of each model were discussed too.

Foringer et al. [20] described fatigue life modelling of titanium-based MMCs (metal-matrix com-
posites). In this paper two composites SCS-6/Timetal21ls and SCS-6/Ti-15-3 were investigated.
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For the modelling the authors have used the Bodner-Partom constitutive model with non-linear
micromechanics analysis and damage accumulation model. An evolution equations of the Bodner—
Partom type with the concept of the multiplicative decomposition of the deformation gradient are
employed with different numerical examples of finite strain deformations by Sansour and Koll-
mann [57]. Kroupa and Bartsch [42] investigated an improved formulation for the viscoplastic re-
sponse of Timetalt21S matrix. Modifications to the Bodner-Partom constitutive equations provide
improved flexibility in fitting a larger strain-rate range than previously available.

The material parameters of the isotropic form of the Bodner-Partom model were found for the
eutectic solder as functions of temperature by Skipor and Harren [61]. The resulting temperature
dependent viscoplastic description for the eutectic is implemented in an infinitesimal strain incre-
mentally linear finite element method (FEM). The results of the analyses show that, along with
observed field performance of solder joints, the details of the plastic strain distribution within a joint
can have large impact on joint reliability. Sansour and Kollmann [56] studied the large inelastic de-
formations of shells when the constitutive model is based on the concept of unified Bodner-Partom
evolution constitutive equations. An algorithm for the evaluation of the exponential map for non-
symmetric arguments as well as a closed form of the tangent operator were given. An enhanced strain
FEM was given and various examples of large shell deformations including loading-unloading cy-
cles were presented. The constitutive models for metals: Johnson-Cook [29], Zerilli-Armstrong [76],
Bodner-Partom and Khan-Huang [30] were investigated by Liang and Khan [45] and have been
used to predict the mechanical behaviours of metals. Limitations for each model in describing work-
hardening behaviour of metals were discussed. .

An implementation of the unified theory of Bodner-Partom in a three-dimensional finite element
program for the analysis of anisotropic inelastic metals behaviour were given by Esat et al. [19].
A comparison of the results of the finite element analysis with experimental results for pure titanium
and 2024-T4 aluminium alloy was presented in details. Klosowski et al. [36] studied vibrations of
the circular plates subjected to shock-wave impulses. In this paper two constitutive equations types
of the Chaboche and Bodner-Partom models were used to the description of the elasto-viscoplastic
plates behaviour. Results of a finite element analysis (FEA) were compared with experimental data.
Woznica and Klosowski [72] proposed identification method to determine the material parameters
for Bodner-Partom and Chaboche constitutive models using tensile tests. Chetminski [16] stud-
ied existence and the uniqueness of global in time, strong, large solutions to the inelastic model
of Bodner—Partom with non-homogeneous boundary conditions with the perturbation term in the
equation for the isotropic hardening function. -An axisymmetric dynamic thermo-viscoelastic prob-
lem was formulated with allowance for the coupling of mechanical and thermal fields by Zhuk
et al. [78]. The behaviour of the material was described by the Bodner-Partom model. A technique
for numerical solution of the problem was developed. The laws governing the stress—strain state and
the temperature field of a circular disk under forced flexural vibrations were studied.

Barta and Jaber [8] used the Litonski-Batra, Johnson-Cook, Bodner-Partom and the power law
thermoviscoplastic constitutive relations to model the thermoviscoplastic response of a material. The
material parameters in these relations were found by solving an initial-boundary-value problem cor-
responding to simple shearing deformations with the experimental data of thin-walled HY-100 steel
tubes in torsion. These four viscoplastic relations were used to analyze dynamic thermo-mechanical
deformations of a prenotched plate impacted on the notched side by a cylindrical projectile made of
the same material as the plate. The fibber-matrix interactions and effective elasto-plastic properties
of aligned short-fibber-reinforced metal matrix composite was studied by Yang and Qin [73] by using
a micromechanical model and FEA. The fibber was assumed to be elastic and the matrix to be elasto-
viscoplastic continuum described by B-P unified theory of plasticity. The local elasto-plastic stress
fields of a unit cell in composite were examined in order to understand the mechanism of inelastic
deformations and interactions between fibbers and matrix. The authors predicted elasto-viscoplastic
properties of B/Al composites by the domain average method. Application of the Bodner-Partom
constitutive equations for glassy polymers were described by Frank and Brockman [21]. The model
was implemented into a FEA program and appropriate parameters were identified for a polycar-
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bonate. Capabilities of the model were demonstrated through the evolution of hard-body impact
problem. Gwizda [24] investigated the global in time existence of large solutions for a problem in
non-linear inelastic with viscosity. In this paper the Bodner—-Partom model was studied in details.
The proofs were based on the energy methods.

The wall ironing process of sheet metal coated with a polymer layers was investigated by Aa
et al. [70]. It should be noted that the material behaviour of metal sheet was specified by Bodner—
Partom model while the polymer layers by the Leonov model [44]. Sansour and Wagner [58, 59
presented a framework of additive models of finite strain plasticity and viscoplasticity. The Bodner—
Partom evolution equations have been modified so as to fit into the theoretical framework adopted.
The numerical treatment of the problem was fully developed. Specifically, the algorithmic aspects
of the approach were discussed and various applications to shell problems were considered. Crack
growth tests on specimens with rectangular cross-section of Incotel 718°C at 550 and 627°C in
order to examine the low-cycle fatigue behaviour were investigated by Andersson et al. [4]. The
material was described in terms of the Bodner-Partom viscoplastic constitutive equations. The
material parameters were found by fitting simulations to the experimental data. The Bodner-Partom
equations were implemented in Matlab and were used to estimate the stress response for the strain
history. A FE implementation of the unified elasto-viscoplastic theory of Bodner for the analysis
of metal matrix composites was presented by Shati et al. [60]. An original model of circular fibres
embedded in a square array of matrix material was chosen. The results of the analysis for two
aluminium matrix composites were compared with the results of Aboudi’s continuum theory and the
Halpin-Tsai equations. Barta and Chen [7] studied the thermomechanical steel block deformations
deformed in simple shear. To the description of the material behaviour a four different constitutive
equations: the Wright-Batra, Johnson—-Cook, power law and the Bodner-Partom were used. The
authors have used the perturbation method to analyze the stability of a homogeneous solution of
the governing equations.

Bodner [13] introduced the unified theories of elasto-viscoelastic material behaviour combining
all aspects of inelastic responses into a set of time-dependent equations with a single inelastic strain
rate variable. In this monograph, the first section contains a formulation of a unified constitutive
theory for elastic-viscoplastic behaviour. Special attention is given to the representation of material
behaviour at high and very high strain rates. The third section of the monograph discusses the status
of the unified theory of Bodner and Partom and some further developments for large deformations
and finishes with a computer programme for uniaxial stress and isotropic and directional hardening.
The framework for an implicit implementation of the Bodner-Partom material model was presented
by Anderson [3]. The author derived equations needed for using a Newton—Raphson algorithm to
solve the stress and hardening equations. Song et al. [62] presented the application of Bodner-
Partom model in FEA of high velocity impact. The material parameters were determined on the
basis of the experiments of Hopkins bar tests. A detailed description of the split Hopkinson pressure
bar technique is given e.g. by Klepaczko [31]. The impact process runs in so quick time that the
heat-conducting can be neglected. Therefore the functions of temperature in equations need to be
replaced by functions of plastic work.

Batra et al. [9] numerically investigated the effect on the failure mode transition speed of the
shape of the notch-tip and the presence of a hole ahead of a circular notch-tip. The Bodner—Partom
thermoviscoplastic relation was used to model the strain hardening, strain-rate hardening and ther-
mal softening response of the material of the plate. The transient plane strain thermomechanical
deformations of the plate were analyzed by the finite element method. The effects of the shape of
the notch-tip and of the presence of a circular hole located ahead of the circular notch-tip on the
initiation of a failure mode were scrutinized. The Bodner-Partom constitutive model was developed
for predicting the thermal and mechanical responses of a cobalt-based ULTIMET alloy subjected to
cyclic deformation by Jiang et al. [28]. The model was constructed in light of internal state variables,
which were developed to characterize the inelastic strain of the material during cyclic loading. The
predicted stress—strain and temperature responses were found to be in good agreement with the
experimental results.
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The influence of higher order terms which should be taken into account in the strain-displacement
relations for shell according to moderate or large rotations theories were detailed studied by
Klosowski and Woznica [35]. The different types of the viscoplastic constitutive models (Perzyna [52],
Chaboche, Bodner-Partom) applied for FE problems were investigated. Hart et al. [26] introduced
stochastic methods to describe the influence of scattering test data on the identification of material
parameters for Bodner-Partom model. The material parameters were determined for AINSI SS316
stainless steel at 600°C on the basis of creep tests, constant strain rate tension tests and cyclic
tension-compression tests. Ktosowski et al. [37] described the results of the technical Panama fabric
experiments with the purpose of identification of inelastic properties of the warp and weft. The
Bodner—Partom and Chaboche viscoplastic models were applied to the description of the warp and
weft properties. The material parameters were calculated on the basis of the uniaxial tension test
in the warp and weft directions. The results are verified by numerical simulation of the laboratory
tests. Stoffel [65] in order to predict the inelastic deformations of shock wave loaded plates sim-
ulations used viscoplastic constitutive equations of Chaboche and Bodner-Partom combined with
a structural theory.

Application of the unified elastic-viscoplastic Bodner-Partom model to the description of the
nonlinear behaviour of glass polymers was investigated by Zairi et al. [75]. To represent the nonlin-
ear behaviour and the effect of rate, a single rate independent set parameters is determined from
an original procedure. The modified Bodner-Partom model associated with the original version
shown sufficient flexibility to permit modelling of the representative amorphous glassy polymer re-
sponse. Uniaxial tension tests on a RT-PMMA material by Zairi et al. [74] were achieved under
various constant strain rates. The experimental results revealed the presence of both the nucleation
and growth deformation mechanisms. Modified viscoplastic constitutive equations for homogeneous
glassy polymers at isothermal loading, including strain softening and strain hardening, was pro-
posed. The modified Bodner-Partom model was coupled with a micromechanics formulation, using
the Gurson-Tvergaard model, to investigate the macroscopic mechanical response of the RT-PMMA.

The author is aware that the applications of the Bodner-Partom model are widely discussed
in the literature (short review is given above), but very often presented results of analyses and
investigations are incomplete or difficult to obtain (technical reports).

3. ELASTO-VISCOPLASTIC BODNER-PARTOM CONSTITUTIVE EQUATIONS
In general, the strain rate & is specified by the time derivative of Hooke’s law as
o=D:ef=D:(e-¢&), (2)

where D is the tensor of elastic modules. The stress in numerical calculation at the time ¢ can be
calculated as

to =g + Ao, (3)
where the stress increment Ao is expressed as

Ao =D :Aef =D: (Ae — A€'), (4)
while the inelastic strain increment Ae! can be calculated from the trapezoidal formula

téI it t+AtéI

Ael =
. 2

- At, (5)

or by using simple equation

Ael =tel . At (6)
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In the Bodner—Partom model the inelastic strain rate &’ is given by the equation

oy e
ST oy ")

where p, o’ and J(o') are the equivalent plastic strain, the deviatoric parts of stress and the stress
invariant, respectively. It should be noted that in the model it is assumed the existence of the
inelastic deformation from the very beginning of the deformation process. The invariant J(o') may
be expressed directly in terms of the deviatoric parts of stress o’ by the formula

J(a'):ﬁg(a’:a’). (8)

The rate of the equivalent plastic strain p is defined by (see e.g. Bodner and Partom [11])

. Dy - exp [—-1- (M)M-n-'_l} ; (9)

.1
e

where

25 Ja’) n

o
D=X:——. 10
(o) (10)
The material parameters Dy and n represent the limiting plastic strain rate and the strain rate
sensitivity parameter. In this model it is assumed that the variable Dy is fixed for a strain range.
In [49], Bodner recommended the following values for the maximum value of Dy (see Table 1).

Table 1. Values for Dy parameter

el et 2 1] 10 1P {5108
R R T 108 107

In the literature, it is possible to find another form (see e.g. Chan et al. [15]) of the rate of the
equivalent strain rate p given by

2:n
i = % - Do - exp l—% ; <—1§(_;,1))) “ : (11)

The evolution of isotropic hardening R is defined as

R— Z,\™
Z :

R=m1-(Z1—R)-(a’:éI)—Al-Zl~( (12)
where my1, Ay, 1, Z1 and Zy are the hardening rate coefficient, recovery coefficient, recovery
exponent, limiting (maximum) value and fully recovered (minimum) value for isotropic hardening,
respectively. Additionally, at the beginning of calculation the isotropic hardening has the initial
value Zy, thus R(t=0) = Zj.

The evolution of kinematic hardening X is expressed by the equation

: o _ 2ax)]”
X:m2'(g'z3'm—x>'(O'IEI)—AQ'ZI‘g'[32(1 )] 'J();)’ (13)

where mg , Ag, 7o and Z3 are the hardening rate coefficient, recovery coeflicient, recovery exponent
and limiting (maximum) value for kinematic hardening, respectively.
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In this described model the 14 parameters have to be determined (E, v, Dy, n, Zo, m1, Z1,
Ay, Zy,r1, mg, Z3, Aa, r2). In [12] Bodner applied the reduced number of parameters making an
assumption: Zs = Zy, Ay =As=Aandr; =ry =r.

Bodner and Chan [10] described procedure for including isotropic and directional damage as
load-history dependent softening variables. Directional damage is represented as the second-order
symmetric tensor with a scalar effective value. In the case of the isotropic continuum damage
development assumption, the damage expression D (suggested by Bodner and Chan [10]) can be
described under multiaxial stress as

D= % : [m (%)h{i] -D-Q, (14)

where h, H are damage material constants. The multiaxial stress function @ has the form (see
Hayhurst [27] for details)

z

Q= (o1 Ohax + @2+ J(0) + a3 tr(0)F)”, (15)
where a1, az, as, z are the material constants. The parameters o , as and a3 satisfy the relation
o1 + ag +az = 1.0. (16)
The expressions o, and tr(o)t are the maximum principal tensile stress and the first stress

invariant.

For example, in the case of the constant stress conditions the damage evolution D can be inte-
grated to (see Bodner and Chan [10])

p=eol- (g)"]} i

The rate of the equivalent plastic strain p, with isotropic damage evolution has the form

(2 (x-fa)) -0 s

2
D= E.Do.exp —'5 J(O") 2y (18)
It should be noted that in the case of damage analysis, the stress rate o is given by
6=(1-D)-D:é=(1-D)-D:(e-¢). (19)

4. NUMERICAL SIMULATIONS AND DISCUSSION
4.1. Description of applied program and proposed UVSCPL procedure

From wide range of available commercial programs to the numerical analysis the MSC.Marc system
was applied. It is a multi-purpose, FEA program for advanced engineering simulations with the
possibility of introducing user-subroutines. The standard MSC.Marc system does not support the
Bodner-Partom material models. To apply the Bodner—Partom model to the MSC.Marc system
the user-defined subroutines UVSCPL [69] is used, where the inelastic strain rate and the stress
increments must be specified. The flow graph of the procedure is given in Fig. 1. The full version of
the UVSCPL subroutine is presented in Table 4.
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Fig. 1. Flow graph of the UVSCPL subroutine

4.2. Example 1

In order to confirm the correctness of implementation of Bodner-Partom equations to the MSC.Marc
system using the UVSCPL subroutine the numerical calculations were carried out for simple shell,
solid and truss structures The geometry and boundary conditions of these structures were assumed in
order to compare the obtained numerical results with the uniaxial tension tests. In the experiments,
specimens of the steel metal sheet had the following dimensions: width b = 12.5mm, length [ =
70 mm and thicknesses t = 1 mm.

In the MSC.Marc calculations the four-node thin-shell (Element 139, [68]), the three-dimensional
eight-node isoparametric solid (Element 7, [68]) and the three-dimensional two-node straight truss
(Element 9, [68]) elements were applied. The following parameters for the Bodner-Partom model
for description of the steel material at 20°C were taken (from Klosowski [32]): E = 223.0 GPa,
v=0.3and Dy =1-10%s71, Z; = 259.38 MPa, Z; = 422.90 MPa, Z, = 0.0 MPa, Z3 = 21.35 MPa,
n=9.61, m; = 0.068 MPa™!, my = 1.82MPa™!, A4; = A, =0.0s"1, 1y =79 = 0.0.

The graphs of the stress—strain for the strain rate & = 0.01s™! are given in Fig. 2. Good agreement
of stress versus strain is obtained from both numerical calculations and experiment. It is worth
pointing out that for different types of finite element applied in the MSC.Marc calculations the
results are the same.

Additionally, Klosowski in his work [32] presented the material parameters for the steel at 20°C
for the Chaboche model. The identification of the constants for the Chaboche was based on the
known parameters of the Bodner-Partom model. The following parameters for Chaboche model
were established: £ = 223.0GPa, v = 0.3 and k£ = 210.15MPa, b = 16.74, Ry = —138.48 MPa,
a = 611.70 GPa, ¢ = 38840.0, n = 9.51, K = 14.085 (MPa - s)l/". On the basis of these parameters
the calculation for the Chaboche model was carried out (see Ambroziak [1, 2| for details). The
results of this calculation are compared with the numerical analysis with the Bodner-Partom model
and experiments, see Fig. 3. Both the Chaboche and Bodner-Partom models implemented to the
MSC.Marc give similar results, and are comparable with experiment.
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Fig. 2. Uniaxial tension test simulation for different finite element types
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Fig. 3. Results of Chaboche and Bodner-Partom simulation of uniaxial tension test

4.3. Example 2 — INCO718 analysis

The numerical simulation of uniaxial tension tests for different strain rates using Bodner—Partom
model is investigated in this example. For the finite element analysis the following material param-
eters were assumed (INCO718 at 650°C Milly and Allen [50], see also Klosowski and Woznica [34]):
E = 169.0GPa, v = 0.3, Dy = 1-10*s™}, Zy = 3130.0MPa, Z; = 4140.0 MPa, Z; = 2760.0 MPa,
Z3 = 0.0MPa, n = 1.17, m; = 0.024MPa™!, my = 0.0MPa™, 4; = A; = 0.0s7!, r; = 2.86,
o =00

The graphs of the stress versus strain for the three strain rates € = 1.0 - 1074, € =1.0-1073,
£ =1.0-10"2and & = 1.0-10~! are submitted in Fig. 4. In this case, besides of the MSC.Marc analysis
the calculations were carried out in the own FEM code (OFC) for a simple truss inelastic analysis.
Both results obtained from MSC.Marc and OFC computer programs are in good agreement.

It worth pointing out that even for the same materials in the same conditions, some material
parameters are strongly different. For example, for the chosen nickel based INCO718 alloy at 650°C
the numerical calculations were performed using the material parameters (see Table 3) given by:
Kolkaillah and McPhate [38] (Fig. 5), Eftis et al. [18] (Fig. 6) and Milly and Allen [50] (Fig. 7). It is
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Fig. 4. Results of numerical simulations of the constant strain rates tests

FE VI FAp g

1400 425 s s sen g o AW /(‘;ddt=01ls1 ...................

de/dt-001s //—----—--

1200 4~ AN NS V ...... _—-_____
= defdt =0. 0015 ,/ ¢

E.1800 disodenas 1 3 LaryiPIR | ded=000018" .
g 14 :
] Y4 : :

800 4ee i

i §Z
zoo/ﬁ[ ............... T T T ,// (
0 ; 5 ;

0.000 0.005 0.010 0.015 0.020
strain [-]

Fig. 5. Results of numerical simulations for INCO718 — parameters from [38]
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Fig. 6. Results of numerical simulations for INCO718 — parameters from [18]
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Fig. 8. Results of numerical simulations for & = 1.0 - 10™*

necessary to notice that even the elastic modules are different in these three investigated complete
groups of material parameters.

The comparison of the numerical simulations is given in Fig. 8 for the strain rate € = 1.0- 10~4.
One can observe significant differences between presented material constant for the Bodner—Partom
constitutive model analysis, e.g. Milly and Allen [50] observed hardening while Eftis et al. [18]
noticed softening of the INCO718 alloy. On the other hand, Kolkaillah and McPhate [38] for the
same material obtained the 20% increase of yield stress in comparison with other researches, see
Fig. 8. Therefore, it is worth signalling that for the detailed investigations it is necessary to make
the experiment tests and carry out the identification of the material parameters for particular cases.

4.4. Example 3 — static and dynamic steel plate analysis

The numerical analysis of circular steel plate under static and dynamic loading is studied, see Fig. 9.

Due to the symmetry of the geometry and loadings only a quarter of the plate with proper symmetry
boundary conditions was analysed.
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Fig. 9. Visualization of circular plate

Table 2. Deflection of point A (middle of plate) — elastic solution

Prcagure Pt MSC.Marc calculation FEM
iy P LargeDisp | LargeDisp+UPDATE | calculation [32]
[10° Pa) [mm]
[mm] [mm] [mm]
0.5 0.480 0.485 0.510 0.430
1.0 0.805 0.780 0.830 0.716

At the beginning, the static elastic analysis was carried out to verify the assumed boundary con-
ditions and type of analysis. The elastic modulus E = 215.661 GPa, the Poisson’s ratio v = 0.3 and
the thicknesses of plate ¢ = 0.00098 m were taken. The mass density of the steel plate p = 7850 kg/m?
was selected. In the MSC.Marc calculations two options of analysis were tested: ‘LargeDisp’ and
‘LargeDisp+UPDATE’. With ‘LargeDisp’ parameter, MSC.Marc uses to the calculation the total
Lagrangian method and with option ‘LargeDisp+UPDATE’ MSC.Marc applies to the calculation
the Cauchy stresses and true strains. The results of static, elastic numerical analysis are presented
in Table 2 for two chosen values of pressure. The obtained results are compared with the experiment
measurements and FE calculations performed by Klosowski [32]. A very good agreement of vertical
displacements from FE calculations and experiment was obtained. These calculations confirm the
assumption as to boundary conditions, values of loadings and density of mesh. For the following
calculations the ‘LargeDisp’ option should be used. It ought to be noted that, in the work [32],
Klosowski used nine-node isoparametric shell elements. In the present numerical analysis the four-
node shell elements (Element 139 [68]) were applied. The meshes are taken to correspond with
numerical calculations carried out by Klosowski [32] (the nodes are overlap in the same places).

In the first step of the dynamic analysis the elastic behaviour of the plate was investigated. The
non-linear equation of motion was integrated with the Newmark algorithm [61] with the time step
At =2.0-1075s. The Newmark method is based on two principal expressions

t+Atq = tq+ [(1 _5) -tq—l-(s'H_At(.fl] -At,

. " : (20)
HHAlg = tq+tq- At + [(0.5—7) - g+ - “ig) - Ar,
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The parameters § and  are the method parameters that satisfy the conditions § > 0.5, v >
0.25 - (0.5 4+ 6)2. In this case, in general, the non-linear equations of motion may be written in the
form

M-A§+C-Aq+ (K; +Kp)-Agq=AR-M-tq- C-'qg-tQ. (21)

The increments of the acceleration Aq, the velocity Aq and the displacement Aq are derived
from the equations

Aq = A1!+At(--l i Atq, Aq - At+Atq =5 Atq, Aq e AH—Atq £ Atq. (22)

In the present numerical calculations it is assumed that M is lumped mass matrix, and C (damping
matrix) is a linear combination of stiffness and mass matrices,

C=oa (Ki+Ks)+5-M, (23)

where « is stiffness matrix multiplier and 8 is mass matrix multiplier.

Application of the Newmark method in nonlinear analysis requires iterations at each step. It
is also necessary to construct and invert the stiffness matrix at each time step. Nevertheless, the
Newmark algorithm is effective due to good stability; therefore relatively long integration step for
elastic problems can be applied. On the other hand, when viscoplastic constitutive equations are
taken into account, and the same time step is applied in the constitutive equations’ integration,
much smaller integration step is required.

The results of the elastic dynamic analysis are given in Fig. 10. In the analysis of the elastic
vibrations of the plate the proportional damping multipliers a = 5.39 - 107¢ and 8 = 15.16 were
taken. These multipliers were established on the basis of the assumed value of critical damping
& = & = 0.01 (which marks the transition between oscillatory and non-oscillatory response of
a structure) and two known frequencies (w1 = 1060s™! and wp = 2650s~!, specified for p = 1.0
[10° Pa]). The multipliers can be calculated from the equation [17]

e 5:2.wl-m-(51'“’3‘5‘;"”1). (24)
Wwo=— &y Wy =0y

«

It should be noted that, when o = 0, the highest frequencies of constructional system are weakly
damped, while f = 0 are strongly damped.

1.50
— © 0 1 | == e=a= experiment I
g 1.25 [ e e MSC _elastic solution [|
‘::‘ : - wm—e pressure 5)
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Fig. 10. Elastic vibrations of the middle point
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Deflection of middle point 4 [mm]
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Fig. 11. Middle point of plate vibrations — analysis without damping
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Fig. 12. Middle point of plate vibrations — analysis with damping

Finally the geometrically non-linear dynamic analysis of the steel plate was performed. The
following material parameters are assumed (see Klosowski [32]): E = 215.661 GPa, v = 0.3, Dy =
1-10%s71, Zy = 259.38MPa, Z; = 422.90MPa, Z, = 0.0 MPa, Z3 = 21.35MPa, n = 9.61,
m; = 0.068MPa™!, my = 1.82MPa~1, A; = A3 = 0.0s™}, r; = ro = 0.0. Like in the previous
test to integrate the non-linear equations of motion he Newmark algorithm [51] with the time step
At = 7-1077 was applied. The results of the dynamic vibrations of the middle point of the steel plate
without damping in Fig. 11 and in Fig. 12 with damping are presented. Additionally, the Huber—
Mises equivalent stresses in the middle point of plate for top, bottom and middle layers are shown
in Fig. 14. To the analysis of the elastic vibrations of the plate the Rayleigh damping multipliers
a = 3.46-107% and B = 27.32 were taken. These multipliers were established on the basis Eq. (24)
of the assumed value of critical damping & = & = 0.01, like in the case of elastic dynamic analysis
and two known frequencies wy = 2220s~! and wg = 3570s™!, determined for p = 6.1 [10° Pa).

It should be noted that behaviour of the plate subjected to dynamic loading is definitely different
from the static behaviour, see Fig. 13. For the case of undamped vibrations the significant difference
from the experimental results is observed (Fig. 11). When the damping factor is included the
solutions are very close to the results from the laboratory tests (Fig. 12). The simple damping
model applied to the analysis and validity of material parameters can explain the small differences.
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Deflection of middle point 4 [mm]

H-M equivalent stress at middle point [MPa]
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Fig. 13. Middle point deflection — inelastic static analysis
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Fig. 14. Huber-Mises equivalent stress in middle point of plate
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Table 4. UVSCPL subroutine for Bodner-Partom model analysis

subroutine uvscpl(young,poiss,shear,b,ustrrt, etot,e,thmsti,eelas,
1 s,sinc,gf,epl,avgine,eqcrp,eqcpnc,yd,ydl,vscpar,dt,dtdl,cptim,
2 timinc,xintp,ngense,m,nn,kc,mat,ndie,nsheare,ncrde,ianisoe,
3 nstats,inc,ncycle,lovl,nvsplm)

Input variable:

young  young’s modulus
poiss  poisson’s modulus
shear shear modulus

b tangent elastic matrix
etot accumulated total strain
e current strain increment

thmsti thermal strain increment

eelas accumulated elastic strain

s accumulated stress

epl accumulated inelastic

eqcrp  equivalent inelastic strain

eqcpnc  incremental equivalent inelastic strain

yd flow stress at temperature t

ydi1 flow stress at temperature t+dt

vscpar viscoplatic data read off isotropic or orthotropic op.
dt state variables

dtdl incremental state variables

cptim elapsed time

timinc time increment

xintp integration point coordinates
ngens number of strain components

m element number

nn integration point number

kc layer number

mat material identifier

ndie number of direct components

nsheare number of shear components

ncrde number of coordinate directions

ianiso flag to indicate nonisotropic elasticity
nstats number of state variables

inc increment number
ncycle cycle number
lovl =4 during stiffness formation

=6 during residual calculation
nvsplm number of viscoplastic data read from input
Output variable:
ustrrt inelastic strain rate

sinc stress increment
avgine inelastic strain increment
gf change in stress due to change in elastic material properties associated with DT

000000GOOOOOOOO000OOOOOGOOOOOOOOOOOOOOOOOOO

implicit real*8 (a-h,o-z)

real*8 nl,ml,m2

dimension poiss(3,2),young(3,2),b(ngense,ngense), ustrrt(ngense),
1 etot(ngense),e(ngense),thmsti(ngense),eelas(ngense),s(ngense),
2 sinc(ngense),gf (ngense),epl(ngense) ,avgine(ngense) ,dt (nstats),
3 dtdl(nstats),xintp(ncrde),shear(3,2),vscpar (nvsplm)

¢ Andrzej AMBROZIAK, v1 2005
¢ This user subroutine is used for computing the inelastic strain increment
¢ for an elastic-viscoplastic Bodner--Partom material.
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dimension xxp(100,4,10,6),xx(100,4,10,6),vxxp(100,4,10,6),
1 vxx(100,4,10,6) ,vrrp(100,4,10),vrr(100,4,10) ,rrp(100,4,10),
2 rr(100,4,10) ,dev(6),SS(6)
¢ to obtain the Numel, Numnp,Ndeg,Ncord
include ’/apl/msc/2005/marc2005/common/dimen’
¢ to obtain the NSTRM2,INTEL
include ’/apl/msc/2005/marc2005/common/elmcom’

¢ Material data for the Bodner--Partom law, steel, see: Klosowski P. [32], Table 16.4
c E = 223.0D+3 ! [MPa]
¢ ni=0.3D0 ! [-]
DDO = 10000.0D+0 ! [s**-1]
Z0 = 259.380D+6 ! [Pal
Z1 = 422.90D+6 ! [Pal
Z2 = 0.0D+0 ! [Pa]
Z3 = 21.35D+6 ! [Pa]
mi = 0.068D-6 ! [Pa¥*-1]
m2 = 1.82D-6 ! [Pax*-1]
nl = 9.61D0 ! [-]
A1 = 0.0D0 ! [Paxx-1]
A2 = 0.0D0 ! [Pa**-1]
ri=:0.0D0t [-~]
r2 = 0.000 ! [-]

if (incpop.eq.inc) goto 5
do 2 ii=1,NUMEL
do 2 i2=1,INTEL
do 2 i3=1,NSTRM2
do 1 i4=1,ngens
vxxp(il,i2,i3,i4)=vxx(i1,i2,i3,i4)
xxp(il,i2,i3,i4)=xx(il,i2,i3,i4)
1 continue
vrrp(il,i2,i3) = vrr(i1,i2,i3)
if (cptim.eq.0.0) rr(il,i2,i3)=Z0
rrp(i1,i2,i3) = rr(i1,i2,i3)
2 continue
5 do 10 i=1,ngense
dxx=timinc/2.0D0*(vxxp(m,nn,kc,i) + vxx(m,nn,kc,i))
xx(m,nn,kc,i)=xxp(m,nn,kc,i)+dxx
10 continue

drr=timinc/2.0D0* (vrrp(m,nn,kc)+vrr(m,nn,kc))
rr(m,nn,kc)=rrp(m,nn,kc)+drr

sum=0.0D0
do 15 i=1,ndie
sum=sum+s (i)

15 continue
trac=(1.0D0/3.0D0) *sum

c dev(i)=(S’)
do 20 i=1,ngense
dev(i)=s(i)
if(i.LE.ndie)dev(i)=dev(i)-trac
20 continue

¢ ddd= J(S?)
sum=0.0D0
do 25 i=1,ngense
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sum=sum+dev (i) *dev (i)

25 continue
if (ndie.eq.1) sum=sum+2*trac*trac
if (ndie.eq.2) sum=sum+tracx*trac
ddd=dsqrt (1.5%sum)

¢ dddS = J(S)
sum=0.0D0
do 30 i=1,ngense
sum=sum+s (i) *s (i)
if (i.gt.ndie)sum=sum+s(i)*s (i)
30 continue
dddS=dsqrt (1.5%sum)

c SS = 8/J3(S)
do 35 i=1, ngense
SS(i)=s(i)/ddds
if(dddS.EQ.0.0) SS(i)=0.0DO
35 continue

¢ dddxx= J(X)
sum=0.0D0
do 40 i=1,ngense
sum=sum+xx (m,nn,kc,i)*xx(m,nn,kc,i)
if (i.gt.ndie) sum=sum+xx(m,nn,kc,i)*xx(m,nn,kc,i)
40 continue
dddXX=dsqrt (1.5%sum)

c DP=X:(S/J(8))
sum=0.0D0
do 45 i=1,ngense
sum=sum+xx (m,nn,kc,i)*ss(i)
if(i.gt.ndie) sum=sum+xx(m,nn,kc,i)*ss(i)
45 continue
XSJS=sum

if(ddd.EQ.0.0) then
Z=0.0D0
else
Z = (rr(m,nn,kc)+XSJS)/ddd
end if
Cc ppp - inelastic strain rate for type A of law:
ppp=(2.0D0/dsqrt (3.0D0) ) *DDO*dexp ( (-0.5D0) *
* ((n1+1.0D0)/n1)*Z**(2.0D0%n1))
c ppp - inelastic strain rate for type B of law
¢ ppp=(2.0D0/sqrt (3.0D0) ) *DDO*exp ((-0.5D0) *Z** (2.0D0*n1))

if (ppp.1t.1.0E-30) then
do 50 j=1,ngense
ustrrt(j)=0.0D0

50 continue
goto 950
endif

c ustrrt - inelastic strain rate

c calculation of inelastic strain rate
do 55 i=1,ngense
if (ddd.EQ.0.0) then
ustrrt(i)=0.0D0
else
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55

c vwp
60

70

c avg
950
80

90
100

¢ If user wants fixed stepping for creep analysis

ustrrt(i)=1.5D0*ppp*dev(i)/ddd
endif
continue

do 60 i=1,ngens
sum=sum+s (i) *ustrrt (i)

if(i.gt.ndie) sum=sum+s(i)*ustrrt(i)
continue

vrr(m,nn,kc)=mi*(Z1-rr(m,nn,kc))*vwp -
1 A1*Z1*((rr(m,nn,kc)+Z2)/Z1)**rl

do 70 i=1,ngense

if (dddXX.EQ.0.0) then

ac=0.0D0

else

ac=xx(m,nn,kc,i)/dddXX

end if

vxx(m,nn,kc,i) = m2*(1.5D0*Z3*SS(i) - xx(m,nn,kc,i))*vwp
1 - A2%Z1%1.5D0*(((2.0D0/3.0D0)*dddXX/Z1)**r2)*ac

continue

ine - inelastic strain increment
do 80 i=1,ngense
avgine (i)=ustrrt(i)*timinc
continue

do 100 j=1,ngense

sum=0.0D0

do 90 i=1,ngense

sum=sum+b (j,i)*(e(i)-avgine(i))
continue

sinc(j)=sum

continue

incpop=inc

return
end

¢ with DYNAMIC CHANGE in MSC then, he
c should use the following ubginc.f subroutine.

subroutine ubginc(incf,incsubf)
implicit real*8 (a-h,o0-z)

include ’/apl/msc/2005/marc2005/common/concom’
include ’/apl/msc/2005/marc2005/common/iautcr’

icreep=1
icrpcn=0
loadcn=1

return
end
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5. REMARKS AND FINAL CONCLUSIONS

The following conclusions and remarks may be formulated:

1. In this study, the special kind of the finite element procedure for elasto-viscoplastic calculation
has been developed. The obtained results confirm the stability of numerical algorithm, and the
validity of the proposed procedure.

2. Due to the possibility of user’s constitutive models subroutines which can be included into the
MSC.Marc system, the elasto-viscoplastic Bodner-Partom constitutive equations can be directly
applied in finite element analysis. It is shown how the models invented by Bodner-Partom can
be applied into the open commercial code.

3. Sometimes the same material in the same conditions (for example investigated in Example 2:
INCO718 alloy) demonstrate a variety of responses, which is concerned, among others, with the
process of rolling or other inhomogeneities. For the particular case of investigations, the detailed
identification of material parameters should be carried out.

4. The geometrically non-linear analysis of plate structures with elasto-viscoplastic physical equa-
tions for the Bodner-Partom model has been successfully carried out. Additionally, the obtained
results confirm the validity of the proposed Rayleigh damping multipliers used to the calcula-
tions.

5. The proposed UVSCPL procedure for FEA is open and flexible and may be applied in various
practical engineering applications.
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