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A survey of three forms (strong, weak and variational) of mathematical models is presented using expressive
diagrams initiated in [3,10]. The primary and intermediate variables, governing field equations, constraint
equations and variables specified by boundary conditions are components of the graphic representation
of various FE (finite element) formulations. The attention is focused on linearly elastic plate element
QUAD [9] for Mindlin-Reissner theory and shell elements EAS4-ANS, EAS7-ANS [1] based on CBRST
(Continuum Based Resultant Shell Theory). In both cases the mixed FE models with the EAS (enhanced
assumed strain) and ANS (assumed natural strain) concepts are used.

1. INTRODUCTION

The first step of finite element (FE) computer simulation is an idealization the basic idea of which
consists in the mathematical modelling of a physical system. There are three mathematical forms of
description of relevant boundary value problems (BVP) in linear elasticity: (i) a strong form (SF)
recorded as a system of differential and algebraic equations, complemented by boundary conditions,
(ii) a weak form (WF) defined by weighted residual integral equations, (iii) a variational form
(VF) presented by appropriate functionals with their stationarity conditions. In view of both the
theoretical and computational aspects, the relationships and transformations between these forms
are essential [3]. The three mathematical forms (SF, WF, VF) can be converted into one another.
The so-called Euler equations ensuing from the stationarity conditions of a particular functional
correspond to specified differential or algebraic equations of the strong formulation. In many cases
Green’s theorem is used to perform integration by parts and to replace one form by an alternative
statement. On the basis of integral residuals, having replaced weight functions by the variations of
relevant variables, the components of functional stationarity condition are obtained.

Taking into account the discretization process and one-, two- or three-field FE approximation,
the appropriate integral form can be transformed into a matrix algebraic equation system. The
three alternative approaches may be used as the basis for the formulation of different FE types. All
forms (strong, weak and variational) are presented in [3] by schemes, introduced by a mathematician
E. Tonti, which are a graphic representation of the different approaches. A very complete description
of the physical behaviour of thin plate structures was obtained [3] by the application of the strong
form of field equations of the Kirchhoff plate theory together with weak formulations connected
with one- and two-field variational principles. In various diagrams the corresponding equations can
be found at the same point, following their interpretation. This is important for understanding both
the relations between the variables describing the problem and the correspondence between various
formulations as well. What the diagrams show clearly are the relations between all variables and
equations in algebraic, differential or integral forms. For instance, with the Tonti diagrams the field
equations for elastostatics, electrostatics or magnetostatics can be presented in a convenient graphic
form.
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The present paper is devoted to the application of graphic diagrams similar to Tonti [3] and
Wiberg [10], regarding certain formulations of boundary value problems (BVP) related to two
structure types:

(i) thin and moderately thick plate structures in which transverse shear effects are included
(Mindlin-Reissner model),

(ii) thin and moderately thick shell structures with membrane, bending and transverse shear states.

The description of different formulations provided by relevant equations or in graphic diagrams
can be treated as a starting point to the presentation of FE modelling also in a diagram. It is
worth emphasizing that the FE description of plate/shell structures can be improved substantially
by using finite elements based on the EAS (enhanced assumed strain) and ANS (assumed natural
strain) methods [1, 9, 11]. The relations between shell theories and the formulation of degenerated
shell finite elements are discussed in [4]. Paper [5] surveys FE models for the analysis of moderately
thick shells on the basis of earlier works, while paper [6] is devoted to the presentation of energy
functionals with the employment of conceptual diagrams for one-, two- and three-field and hybrid
models. The main aim of the present paper is to enhance understanding of the EAS concept and the
ANS method. The description of the EAS method is preceded by and confronted with general two-
and three-field formulations (Sections 2-4). In the two-field formulation of the EAS method, beside
the displacement approximation and strains compatible with it, an additional enhanced strain field
is used. There is also a three-field EAS concept with the approximation of displacement, enhanced
assumed strain and stress fields.

To visualize all details of the EAS formulation the graphic representation of basic formulae
is shown in the paper (cf. Section 3.4) on new diagrams following Tonti’s approach. A detailed
description of two FEs chosen from literature,

(i) Mindlin-Reissner plate element QUAD [5],
(ii) plate/shell elements EAS4-ANS, EAS7-ANS [1],

is presented (cf. Sections 5 and 6).

The matrices and vectors for the two selected FEs, defined by relevant formulae, are illustrated
in corresponding equations in the diagrams (cf. Sections 5.3.3 and 6.2-6.5). The interpretation
of equations is simplified because analogous relations occupy the same place in all the diagrams
corresponding to different approaches.

2. THREE-FIELD FORMULATION (u—o —¢)

To visualize various approaches: (i) strong formulation, (ii) weighted residual method, (iii) varia-
tional principle, (iv) FE modelling, given by corresponding equations written below, four diagrams
are shown in Figs. 1-4. The displacement, strain and stress fields are considered as three master (pri-
mary) fields, the relationships written as differential equations (with operator matrices), algebraic
matrix equations or integral statements. In the diagrams strong and weak links are introduced. The
strong form states the conditions that must be met at every material point, whereas the weak form
states the conditions that must be satisfied only in an integral sense. Following discretization, in the
three-field FE model three sets of degrees of freedom and three matrix equations are distinguished.

2.1. Strong formulation for elasticity problem

The general form of the three-field formulation for elasticity is given by the following set of equa-
tions, where the widely known abbreviations are used: Kinematic (KE), Constitutive (CE) and
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Balance (equilibrium) (BE) Equations, Kinematic (KBCs) and Force static (FBCs) Boundary Con-
ditions,

KE: e = Lu, m 42 (1)
CE: a5 D6y in £, (2)
BE: LTo+p=0, in'®, (3)
KB(s: .n=n, on 02, (4)
FBCs: t=no=t, on 042. (5)

The three fields of displacements u, strains € and stresses o in the above set of equations, assumed
in this formulation as master variables, together with the relations between them are shown in the
expanded diagram in Fig. 1. Each strong connection corresponds to each equation and is drawn as
a solid line.

KBC's : (4)

u=1

(3

KE: (1) |1
e =Lu

CE: ('2) FBCs: (5)

o =De t=no =t

Fig. 1. Expanded Tonti diagram for elasticity problem according to strong formulation

2.2. Weak formulation

The investigation of an approximate solution of the BVP is performed within a weak formulation
of this problem. Below two approaches related to the strong formulation, presented in the previous
section, are discussed.

2.2.1. Weighted Residual Method
As an alternative to the strong formulation it is possible to define two weak link residuals
rxg = Lu — ¢, rcg = De — o,

associated with kinematic and constitutive equations. Taking into account ,work-conjugate”’ the
appropriate weight functions

wkg = 00, weEg = 0,

the integrated residuals are written as
Rip = / {50’T(Lu - 5)} d2=0; (6)
7]

Rcg = /Q{aeT(Ds—a)}dn =0. (7)
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Additionally, the virtual work principle (VWP) is represented by the equation
Wint + 6Wegt = / {6eTo}d2 - / {6uTp}dn - / {6uTt}don =o0. (8)
(04 0 082

The equation is valid for virtual deformation (virtual displacement satisfying constraint du = 0
on 02, and virtual strain connected with the virtual displacement by kinematic relation de =
Ldu) and for the real stress field represented by o and t. The virtual work statement is the weak
form of the equilibrium equations and is valid for both linear and nonlinear constitutive relations.
The corresponding diagram (Fig. 2) shows weakened connections related to the weighted residual
method. The kinematic boundary conditions are omitted in Fig. 2.

The weighted residual variational approach can often be treated as a starting point for the
generalization of FE concepts.

VWP : (8) [,{6Ta}dr — [, {uTp}dr—
— fya, {8uTE}doR = 0

Wi

KE : (6) Hl
Rkg = fn {56T(Lu-—é')}dn =0

t

CE - (7) g FBCs
Rcg = ff) {JET(DE = a')} d@ =0

Fig. 2. Weighted residual method for three-field formulation (u — o — €)

2.2.2. Hu—Washizu principle

The Hu-Washizu variational functional is referred to three primary fields u, o, € (which are defined
in {2 and free from any constraints) and additionally to tractions t introduced on 942, [11]

1
Igwlu, o, | t) = Lt — Iot = / {EETDE o Lu)} d= / {qu)} dn
Q Q

_ [ (uTiyasn - / (t7(u - &)} do. (9)
8925 Oy

The stationarity condition for the functional Igyw ,

Olgw 0lgw Olgw Olgw .,
= du + o do + 9e de + 5 6t =0, (10)

with the use of Green’s theorem leads to the so-called Euler equations, which stand in 2 and 042,
or 02, assuming a free choice of du,do,de in 2, du on 92 and it on 042, :

0lgw(u,o,e,t] =

ANéu: LTo+p=0 (a) in®, t=t (b)) ondR,, no=t (c) ond,,
Ndo: e =Lu, (d) in £,

Nde: o =De (e) in £,

Adt: u=#8 (f) ondf2,,

with du =0 on 82, and do = 0 on 92, .
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Fig. 3. Weak form diagram for Hu-Washizu principle (u — o — €)

All relations describing the BVP result from the stationarity condition 6Izw = 0, and are shown
in Fig. 3.

It is worth emphasizing that the variational principle §/gw = 0 can be formulated by the addition
of relevant integrated residuals (Section 2.2.1), in which weight functions are replaced by variations
of appropriate fields as above (for example wx g = do, wog = 0, Wgpc = 0t or wrpc = du) [3].

2.3. Displacement—stress—strain FE model

FE modelling is treated as a weak formulation in which matrix equations describe the interconnec-
tions between appropriate fields, represented by the vectors of degrees of freedom (DOFs). The FE
models diagrams (Fig. 4) illustrate both the approximated fields and vectors of DOFs, treated as
master unknowns, introduced in FE approximation.

The equations of a three-field FE model are related to the approximation of three primary fields

u = N,qy, o = Nyqg, € = Neqe (11)

and to the Hu—Washizu functional.

E(N,,N,,L) @
!Nu

u P
KE:(14) BE : (15)

FBCs fi(N,,t)
E(N,,N,,L

Fig. 4. Three-field FE model (u — o — ¢)
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Having expressed the field quantity in terms of assumed modes and their associated DOFs, and
following the integrations, the functional expression gy becomes an algebraic function of a finite
number of DOFs

1 s %
Inw(au, 90, 9] = 502 Ade +9; Cay + 4z Equ — g, (£ + ). (12)

Calculating the variations § I gy with respect to the unknown parameters, according to the standard
procedure

oI ol ol
ol gw B, o Vi e 54, qs + o, oq, 0

results in the following system of three equations

Ndg.: CE: Aq.+Cq,+0q, =0, (13)
Adqo: KE: CTq.+0q, +Eq,. =0, (14)
Adqu: BE: 0Tq.+ETq, +0q, = P + ff, (15)

written additionally in a matrix form

A C 0 qe 0
ct o0 B qQ | = 0
0 ET 0 Qu A L

The following matrices and vectors are used above:
y arb Fol /Q {NTDN.}de,

C=0, = —/n {NTN,}dQ,

E Sy =/Q {NT(LN,)} d@,

£, :f5>+fj=/ {Nfﬁ}drz+/ (N7t} don.
Qe [210]

e,s

For the sake of simplicity, the kinematic boundary conditions are omitted in the equations. In the
diagrams describing this FE model (Fig. 4) the dotted links represent the relations in which the
matrices used in the calculations of FE matrices appear. The connection between variables and
vectors of DOFs used in their approximation are marked by arrows with full heads. Inclusion of
each DOFs vector in relevant FE matrix equations is drawn as an arrow with empty head, next to
the matrix by which this DOFs vector is multiplied.

3. THREE-FIELD FORMULATION WITH ENHANCED STRAIN (u— 0 — £gy)

The main idea of the EAS formulation [1, 11] is that the strain approximation is split into two
terms: (i) displacement-gradient part, (ii) enhanced strain part

e==6€y ¥ €ern =Lu+ecn: (16)

As in Sec. 2.2, the two variants of weak formulation are presented briefly below.
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3.1. Weighted residual formulation
The weighted residual method is invoked by:

(i) the following weak link residual,
rxe+ce = D(Lu+é€en) — 0, (17)
with weight function
W = 0€en

and integral residual related to the couple of kinematic and constitutive equations
RCE+KE = /Q {6, [D(Lu+ €en) — 0]} d2 =0, (18)
(i) integral orthogonality condition, ensuing from the EAS formulation
Iorr = /0 {60T€ecn}d2 =0, (19)
(iii) virtual work statement
/Q {6(Lu)Ta}ds2 - /n {6uTp}dn - /(9 - {6uTt}don = 0. (20)

The above relations are shown in Fig. 5 as links between relevant unknown and prescribed
variables.

VWP: [, {§(Lu)To}d2 - [, {uTp}d-
— Joq, {5uTt}d02 =0 (20)

CE+KE: :
Rop+ki = [ {6€T, [D(Lu+ i%en) —ol}de=0 (18)

FBCs
IORT = f{) {60'TEen} dR =0 (19)

Fig. 5. Weighted residual method for three field EAS formulation (u—0 — €en)
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3.2. Modified Hu—Washizu principle

The EAS approach is based on the variational principle which is related to the stationarity of the
modified Hu-Washizu functional, dependent on three fields: displacements, stresses and enhanced
strains

15
I}}Q"),Ven[u, 0,Een] = /9 {E(Lu + €0a) T D{Em 4+ een)} dn — /Q {a'Tsen} dn

—/n{qu)}d.Q—/an {ut}don (21)

_ Olgw Olgw
e ou+ ;o do + e

= Iy,

3.3. The three-field (u — o — €.,) FE model
In the EAS model the approximation is applied to u, o, € fields

a= Nuqu, g = Naqaa €en = Ne,enQe,en ) (22)

with a special treatment of the strain field, with introduction of the extra enhanced strains eep ,
beside the component of strains &, resulting from the displacement field

Ey = LNuqu .

The additional enhanced strain field can also be presented as a product of interpolation matrix M
and internal (not nodal) strain parameters a

€en = Mar.

The stationarity requirement for functional Igwe, which can be written as a function of DOFs
vectors

3 1 1 . g
19}, [0y Gy Q] = 5% Kau + S0 nAleen + AT en Gu + AL enCar — qy (2 +£1)  (23)
3) #
RS Y Hwven =0,

yields the following algebraic equation system,

Ad0Qcen : CE+KE: Ageen+ Cqr+Gqy =0, (24)
/\ 0q, : ORI CTQe,en +0q, +0q, =0, (25)
Adaqy : BE: Gqu,en +0q, + Kq, = ff 2 fi‘ ) (26)

with its matrix form as follows,

A0 0 Qe 0
et 8 0 QU | = g
GT 0 K Qu £P + £t

defining the following matrices and vector,
AR / {NI,,DN,..}d®,
2

C=C,=-[ {NI,N,}de,
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G =G = / {NT,,D(LN,)}d®,
2

K=Ky = / {(LN,)"D(LN,)} d®,
2.

£, = £0 + £ =/ {N’-,ff,}dn+/an {NTt} don.
2

e,s

It is important to note that in the diagrams in Figs. 5 and 6 two parts of the strain field are
shown: (i) &, displacement-gradients dependent (secondary field) and (ii) additional enhanced €cn ,
treated as one of three master (primary) fields.

G(Ns,enyNuvL)D) . - K(NuyL)D)

£2(Nu, p)

ORT: (25) [ Chdaen=0 "

Fig. 6. Three-field FE model with EAS (u — o — €ex)

4. TWO-FIELD MODEL WITH ENHANCED STRAIN (u— €gn)

In the next variant of the formulation an important assumption is made that the stress and enhanced
strain fields are orthogonal to each other,

o‘Teen dR =70,
2,

so that matrix C is identically zero,
Ceo = — / (NI, N,}dr =0, (27)
2

and the stress field disappears from the functional (21). Now, we approximate independently two
fields, displacements u and enhanced strains €ep , as

u = N,qy, €en = Ne,enqe,en . (28)
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Adopting the variational functional and principle

1 1 5 i
IfWenl@u Geen] = 50K+ 5 QL cnAeen + &l enGau — af (5 + £1) (29)

— 8L [y Geien] =0,

the following matrix equations are obtained,
Adq.: CE+KE: AQeen+Ggqy =0, (30)
Adqu: BE: Gl on+ Ka, =0 + £}, (31)

written next in a matrix form
A G Qe,en A
67 K Qu

In numerical applications enhanced strain parameters at the element level are frequently elimi-
nated,

0
£ gt |-

Qeen = —AT'Gqy, (32)
which gives the generalized stiffness matrix K*,

K =K-GTA™'G, (33)
and a compact equation as in the displacement FE model,

=1, (34)

Unlike Fig. 6, related to the three-field formulation, now in the displacement-enhanced strain
FE model two sets of degrees of freedom q , Q¢ n are plotted in Fig. 7 toghether with two matrix
equations (30)—(31). In the diagram the reduction to one Eq. (34) is given additionally at the bottom
of the figure.

G(Ne,en,Nu,L,D) K(N,,L,D)
! N, -
— fE(Nu,p)
u P
[k
L& i sasy .
. 8 n ] .
CE + KE : (30) :  BE:(31)
[ cai-0] [Faaika -nin
B ££(Nu, £)

Een

Nsyen ........ t
@ G(N¢,en, Ny, L, D) FBCs
ANz en; D)

(27) Geen = —A” Gau

K'=K-G'A"'G
(34)

Fig. 7. Two-field FE model with EAS (u — €cn)
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5. MODEL PROBLEM I: MINDLIN-REISSNER PLATE ELEMENT
The first problem discussed in detail in the paper is the presentation of new diagrams for:
(i) strong form of equations for the Mindlin—Reissner plate theory,
(ii) weak integral forms determined from relevant functionals and connected with the FE model.

Analogous diagrams describing the Kirchhoff plate can be found in [3].

5.1. Strong form of field equations

The deformation of plate is determined by deflections and rotations of vectors normal to the mid-
surface

8= {w,@)=%w 6, 6.}

In domain 2, for example at Gauss points, rotations 6, 6, with two indices are defined in planes
(z,2) and (y,2) (cf. Fig. 8). The two rotations can be denoted as 6, , 6, , according to the axis to
which respective vectors are parallel. The relation between these rotations is shown in Fig. 8 and
expressed by the following formula,

SHEENE

Fig. 8. FE model for Mindlin-Reissner plate

The KE and CE equations for first-order shear deformation plate theory are:

a
= 0
oz
KE': k=k®=V%0, vt = 0 ai ) (35)
o 4
dy Oz ;
o5
KE*: 4=v4"%=Vw-0, ¥=| %1, (36)
dy
i 0 3
b b Et
GH: M=DI€, D =Db 5l 0 y Db=1—2—1———'2—, (37)
S e et}
S 8 8 [ 1 O
CE*: S=D%, D°=D,| , ||+ D:=kGt (38)
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Three equilibrium equations (BE) can be written as

(VOYTM+S=0, VIS+5,=0.

For a thick plate independent specification of three boundary conditions from among: ki
(KBCs)

~

KBCs: 6,=6,, 0,=6,, w=,

or force (static) (FBCs),

~ A

FBCs : Mnn= nn Mns=Mns, S=S1

or mixed boundary conditions (MBCs) is permitted at each point of the boundary.

The graphic presentation of the governing equations, including boundary conditions, rela e
the strong form of the problem, is given in the diagram in Fig. 9.

KE* : (36)

CE : (38) |

Fig. 9. Strong form diagram of field equations for Mindlin-Reissner plate

The behaviour of a moderately thick plate can also be described by the condensed sets of:

(i) displacement equations !
(V))"D'V?® + kGt(Vw — ©) =0,  VT[kGt(Vw — ©)] + p, = 0, (42)

ii) mixed equations

(i) q

(V)"D'VPO® +S =0, S=kGt(Vw-0), VIS+p, =0. (43)

5.2. Displacement FE model

The formulation is repeated here to show the differences between the original one-field displacement
formulation and a mixed one, presented further in Sec. 5.3.
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5.2.1. Variational form related to total potential energy functional
In the total potential energy (TPE) functional there are only two master fields: transverse dis-
placement and rotations of transverse normal (Fig. 9). Adopting the resultant stresses enables the

separation of bending and shear states, which induces the introduction of the following parts of
energy,

Ip[w, ©)] = I% + Ip — Ioq

2 /Q {%(Vb(-))TDb(VbG))} e + /ﬂ {%(Vw — ©)TD*(Vu - e)} de

- / {wp,}dR - / {ws} don — / {@TM} doQ =0, (44)
2 I 092,
and the stationarity condition,
815+ 81 = 61 =0,

from which respective Euler equations are obtained.

5.2.2. Displacement FE model for bending and shear states

The approximation of generalized displacements as master fields,

u .= {'w} = ZNiQwi = NuQuw, (45)

© = {6,6,} = > Nigei = Noas, (46)

K*(N,,Ng,L*,D?)

K®(Ne,L?,D%)
f5: (Nw, p-)

L
K M M
....... e :
D* £y (Nuw, 5)
,Yw,Qg ______ Sw,9 S’

Fig. 10. Displacement FE model for bending and shear states in Mindlin—Reissner plate
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leads to, according to the standard procedure, the following matrix equilibrium equations (BE),
in which both bending and shear states are taken into account, with the use of displacement and
rotational DOFs,

9279 K K° Qoo £P- 4 ¢S
4 ww w6 ]) [ ] e Sl & 47
(ls K] [K 2o 1) | ao £ .

The generalized displacements w, ©, treated as master (primary) variables, are connected with
secondary variables and the two sets of DOFs q. , qe are calculated from two matrix equations.
The corresponding graphic presentation is demonstrated by a diagram in Fig. 10.

5.3. Mixed formulation — displacement FE model for bending and EAS for shear
states

To continue the discussion of Model Problem I, the description of the plate FE is presented in
which generalized displacements, shear forces and enhanced shear strains are approximated. The
weak formulations, presented in the subsequent subsections, can be considered as a starting point
of FE modelling.

5.3.1. Weighted residual form for EAS method for shear state

Following the weighted residual formulation presented in Sec. 3.1 for a general case of three-field
formulation, the integral forms for the shear state of Mindlin—Reissner plate can be derived [9, 11].

First of all, we must assure that the shear forces and additional enhanced shear strains are
orthogonal to each other, hence the orthogonality integral condition

Iorr = /_Q {‘SST'Yen} df2 =0. (48)

Iy gy = Jo {(6Vw)T(D*(Vw — © +.,)]} d2+
+ [on, {PwS}doR =0 (50) =7
I3 g = [o {(6©)T[D°(Vw — © +,,)]}d2 =0 (51)

CE+KE: |

FBC's
ORT: Iorr = [ {68Tven}d2=0 (48)

Fig. 11. Weighted residual form diagram for EAS shear formulation in Mindlin—Reissner plate
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Next, three equations in their weak form can be obtained:

T /Q {67L,[D*(Vaw — ©) + D*v,, — 8]} d2 =0, (49)
o = /Q (6Vw)T[D* (Vo — © +7,,)]} A2 + /6 - {su}ao0 =0, (50)
e = [ (0O (Vu-©+7g)}a0=0 (51)

The work of area load p, and boundary loads M is omitted here, but these loads will be included in
the description of bending state. In Fig. 11 the above integral equations related to the shear state
are treated as weakened links, marked by dashed lines.

5.3.2. Variational form of I}’J + Ifjwen — Leat functional for bending and shear states

Taking into account both the bending and shear states, as a second variant of the energy formu-
lation the sum of potential energy functional I%[w,®] and the modified Hu-Washizu functional
Iwenlw, ©,8,7,y], related to the EAS approach for the shear state, is adopted,

I[w,eaS,’Yen] = I?J+I%Wen — Ieqt (52)
= / {%(V”@)TD”(V”@)} dn
n

+ / {%(VW —8 o ’Yen)TDs(Vw = o 7en)} df2
2

_/Q{ST'yen}d.Q—/n{w;ﬁz}d.Q—/ags {wS}dan—/ans{@TM}dan.

(53)
The satisfaction of stationarity requirement is guaranteed by the equality
815 + 61w ., — 01t =0 (54)

which gives the corresponding Euler equations.

5.3.3. QUAD plate element

The QUAD plate FE, described in [9], is treated in this paper as a pattern, recommendable, low order
finite element. FE modelling of moderately thick plates was essentially improved due to the adoption
of modified variational formulation (cf. Sec. 3.3), i.e. three-field mixed approach with the EAS
method related to the transverse shear deformation. The generalized displacements (deflections and
rotations), shear forces and enhanced shear strains are chosen as master fields. The approximation
of generalized displacements,

u = {w} =INiqui = Nyqw, © =ZENiqe; =Noeqe, (55)
is employed to describe not only the displacement fields, but additionally to calculate strains K8,
~%€  treated as intermediate variables, connected with displacements w and rotations @, both in
bending and shear (cf. (35)—(36)),

k® = V’Noqe, 7“°=VNyqw—Nogs. (56)

A Il i
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(1)

(i)

K°®(Ng,L’, D)

N, |- ngz (Nuw, p2)
w Pz | 8% (cf.Fig.14)

Fig. 12. Displacement FE model for bending state in Mindlin—Reissner plate

In bending the displacement FE model is adopted, following the standard procedure (Sec. 5.2.2)

with the calculation of stiffness matrix K%e and vectors f5 : fM; all relations between primary
and secondary fields are graphically presented in Fig. 12.

In shear, beside the description of generalized displacements (55), the approximation of shear
stresses and strains is essentially improved owing to the EAS concept (cf. Sec. 3 and in [9]),
using the formulae

S = Nsqs = Mgqg, Yen = N'y,enq'y e M"/Q'y ) (57)

with matrices Mg, M, defined in the global frame. Initially, the shape function matrices are
selected,

o3

0 5 b€ Bin 1
o StEp= e o L (58

for which the following relations must be satisfied in the isoparametric space,
/ﬂ {MEM, } d¢dn = 0, /Q M, dédn = 0. (59)

The transformation of shape functions Mg and 1\7[7 for stresses and strains from the parent
isoparametric to the global frame (Fig. 13)

Ns=Mg = JOMS(&U), Nv,en = M'y E 'J;OJ(TTM"/(&"?)’ (60)

is taken into account, using the matrix

oz Oy
1
I=|a & |

on On

J(&,m) = detJ, Jijo = Jijlem=0, Jo = detJy. (61)
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Fig. 13. Transformation of shape function matrices from isoparametric to global coordinate frame

£5,(Nw, p;)(cf-Fig.12)

p

A(No,en, D)

C(NS7N7,en)

ORT: (63) |

Fig. 14. Three-field FE model with EAS for shear state in the Mindlin-Reissner plate
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(ili) All equations for the QUAD FE, related to bending and shear states, are derived from the
functional given in Sec. 5.3.2. Following the general procedure stationarity conditions,

I= I[Q’y,enaqS,Qw, QQ] = I?: + Ifwens — Lext — 61 =0,

are developed into the equations corresponding to combined relations (CE+KE), orthogonality
condition (ORT) and two equilibrium equations (BE),

NoQyen: CE+ KE :AJ Qyen + Clsqs + Gluauw + Glede =0, (
Adas: ORT:  C¥ayen +0qs+0qy +0qge =0, (63
Adaw: BE|1: Gayen +Kaw+Kode =@ e, (
Adae: BE|2:  GE ayem+Kbuaw+ (Kb +Kbo)ae = £, (

with their matrix form

A;’Y C:;S G’SYW :;9 Qry,en 0
. 8 0 0 gs-Jl =1 ¥
G, U K2 o 9 | g+l
Gy, 0 Kj, (Kye+Kbhg) de £

In Figs. 12 and 14 the equations of this FE model for bending and shear states are plotted.

In QUAD [9] the combination of displacement formulation (used for description of bending
deformation) and three-field mixed approach with the EAS method (related to transverse shear de-
formation) yields a satisfactory reproduction of the Mindlin-Reissner plate behaviour. The applied
methodology employs the approximations of displacement, stress and strain field. The introduction
of the enhanced shear fields in the FE modelling of moderately thick plate structures gives satis-
factory results of numerical analyses of square, rhombic and circular plates [9]. This is obtained
using low order four-node elements, which are locking-free FEs, and exhibit geometrical distortion
insensitivity.

6. MODEL PROBLEM II: CONTINUUM-BASED RESULTANT SHELL ELEMENT

The second problem discussed in the paper involves the four-node plate/shell elements EAS4-ANS
and EAS7-ANS (cf. [1]) In the cited paper the EAS formulation of many FEs for 2D, 3D, plate and
shell structures is given and the results of numerical analysis described therein confirm the good
performance of these low order elements.

These plate/shell elements are based on the degenerated solid approach in which continuum (3D)
is reformulated to surface structures (2D) by means of generalized strains and stress resultants [7, §].
This approach is called continuum-based resultant shell theory (CBRST). In this formulation the
membrane, bending and transverse shear actions are decomposed. To improve the description of
behaviour of shell structures two concepts are applied: (i) the EAS (enhanced assumed strain)
approach is used for the membrane and bending components, while (ii) the transverse shear state is
formulated according to the ANS (assumed natural strain) method. The four- or seven-parameter
approximation for the enhanced strain can be used as the optimal choice for the bilinear so-called
EAS4-ANS and EAS7-ANS FEs (the number of these parameters is incorporated in the name of
the FE).

In order to describe membrane and bending state of shell FE briefly, the two-field formula-
tion with enhanced strains was presented in Sec. 4, with a general idea presented in Sec. 2. For
a comprehensive presentation of the issue and in order to define the notation (different in various
papers [1, 7-9, 11]) the essential formulae from shell theory and main matrix definitions, together
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 with equations for this FE are discussed shortly below. The essential relations between membrane,
~ bending and shear variables and the main features of the formulation are graphically presented in
three new diagrams (Figs. 17, 18 and 20).

6.1. Strong form of equations for CBRST

All the detailed theoretical and computational aspects of the continuum-based resultant shell theory
are presented in [7, 8]. The basic relations are as follows.

X @ Nodal points
X 2 x 2 Quadrature points

Fig. 15. Description of geometry and deformation of CBRS-FE

For every point of the reference surface in the structure domain the position vector x° and the
normalized director vector p are applied in the definition of a general position vector (Fig. 15)

x(€,1,¢) = x%(67) + C5p(E:n). (66)

The displacement vector is described in the same manner as the position vector

u(g,n,¢) = u(&,7) + CPAD(E ) (67)

In the above formula, displacement vector u®, vector of rotations of the director Ap, defined at the
mid-surface, and matrix F(3.9) are used,

u0 = {u1 ug 'U)}, Ap =0 = {@1 @2}, K= [—62 e1]. (68)

The kinematic equations are related to: (i) membrane (index m), (ii) bending (b) and (iii) shear
(s) states [7-9]. The strains and stresses are represented by generalized strain and stress resultants
vectors, defined at the mid-surface.

It should be emphasized that different types of strain are defined with reference to different
vector bases.

In Fig. 16, three types of vector bases are plotted and their indices are used in the description
of strain and stress components, related to the (m), (b), (s) states:

: 1 /0x°0u® 0x%0u’ 1 2

(1) Eab = 5 (E‘_EET—I_FWW) ) (a;b— 1,2) T =13 & _8)7 (69)
(i) _1(/ou’ gp ou" 9p 1 (9x° 9Ap £y 0x% 0Ap (70)
W fab =5\ ora ot T ord ara) T 2\ Bre arb T arb ore )’

(a,b=1,2; rl=r rl=3s),

o 0T o 0T
(111) G al;a P+ 6)20‘ Ap, (Oé: 1,2; é’l :é', 62:77) (71)
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Fig. 16. Three vector bases

On the basis of Egs. (69)—(71) operator matrices B are derived, which will be used in the FE
kinematic relations.

In constitutive relations of the shell theory and in FE modelling, the following matrices are
introduced:

1 v 0
D™"=D,H, D’=DH, H=|v 1 0 - Ds=Ds[(1) (1)] (72)
0 0 (1-v)/2
Et t?
Dm:(—]—:——VZ)-’ Dbz'i'Z—Dm, Dsszt

In FE models, where the generalized displacements are approximated among other fields, the ex-
ternal work Iy is the place in the formulation where the prescribed area load vector p = {p1 p2 pn}
and boundary load vectors t™ = {N} = {N, N}, t¢ = {M} = {M, M,,} and t* = {$,} can be
taken into account.

6.2. Geometry of EAS-ANS plate/shell elements
According to the isoparametric formulation, the description of FE geometry and displacement field

are performed using the same approximation base functions, with standard unit square mapped to
the shell element configuration,

t.
s ; 0 : L
x(&,n,€) = Y Ni€,mx + Y Nil€,m) ¢ pi, (73)
(zit + zip) /2 1 [ =z
= (wie+yw)/2 |, Pi= | Yit—Y |
(zit + zib) /2 Loz — 2z
173
u(6,n,¢) =Y _ Ni(6,n) qui + ZNi(ﬁ,n)CE Fiqei, (74)
Vi W ]
wi = {U; v; wi}, i = {6 6ai}, F; =[—eg e = |- :
Sl . 05 ol Sl exnd = |2 TV

index t denoting the upper surface and b the lower one.
The following vector bases (e¢, e,), (er, €s) are introduced in the FE domain (Fig. 16), in
particular at quadrature points,
ox p ox
Q= —= y ==,
R0 T on
ox ox
R T E5 = B
or 0s

(75)

(76)
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egxen

e, = e¢, egg=——"—, €;=¢€ Xe, T
&% o x el : 77
and base (e1;, €2;) at nodal points,

Vi =tpi,

Vi
Vi: Az=) Nyemlé, Ay=) NipiAdl, Az= ¥ Naahl, e = HV—ill ,  (78)
Vo
Vi =Vaix Vi, ey=——2.

Using unit director vectors p; at the nodal points, the following bilinear interpolation,

ﬁ(&)ﬂ) = ZNZPZ ) Pi=

i

ik {7

gives the director field, and must be used to determine directors p at Gauss quadrature points.
Vectors p are useful in the calculation of matrices L, derived from kinematic relations (70)—(71).

=™

6.3. Approximation of strain in EAS method

The EAS formulation is applied for the membrane (m) and bending (b) states. The approximation
of the strain field, composed of two parts, is proposed
(1) v €8 = L= EGN) ¢ = Bias: (i) &2y =Mitgien, with indices a = m, b.

Initially, the matrix M2 is adopted, with four or seven columns, according to the four- or seven-
parameter approximation

¢-0 0.0 | & 0.0
Mé=|0n 0O | O én 0
BV L 0 00 0

The matrix M2 must be mapped from the isoparametric to Cartesian space using the transformation
Jo m—Tro
M? = = T;TM2.
J
Next, the matrix Ty in its standard form is computed at the central point ({ = n = 0) of the FE
domain as

Jho J310 2J110J210
To = 5 5 A8 Jow 2J120J220
Ji10d120 Je10Jd220  Ji10Jd220 + J120J210

Considering the problem in the (e, , €;) base, matrix T(rs=¢n) must be calculated,

ox 9xT  9x oxT Or " 8s

e et BRI R
ox 0xT 9% OxT = g1
on Or on 0Os on On

which is next used to transform the derivatives of shape functions,

3 £ | = [Tlre=t)]-1 [ ’ ] n=12,3,4
s a as n n ) ) ) ) )
[ N ] l a_:, o N NG

T(rs-fn) 2

and to calculate the new matrix Ty, with elements J;;o replaced by T; 0
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6.3.1. EAS model for membrane state

Now, detailed relations for the description of the strain field in the membrane state are cited. The
strains are related to the (e, , ;) base and composed of two parts, after the EAS method:

(i) displacement-gradients strains, cf. Eq. (69),

8"'7‘
=gt = b, | =E00=B7q. -+ B8ge =] B 0][3;], (80)
Ers
(ii) enhanced strains,
5273 = E€en = Ne,enqe,en = M;nck,en y Ne,en = M;n ) (81)
with
9x° o
or Or
0
LM = S i B0 BE=8 Pi=0% 6 (82)
9x° 8 9x° 8
Br 55 T 55

Matrix D™, known from the constitutive relations, will also be used in further definitions.
For the membrane state two matrix equations are

/\ JQE,en : A;ZQE,en s GgLQu =0, (83)
Ndau:  GiTqeen+Kiau =2 +£1, (84)
where

K%, = [ {(BDD"BT}dn,
2

Am

EE

= /n {MPTD™M™} dR,
G2 = | TR 4,
2

£p =/ {NTp}de, f}f‘:/ {NZN}dan.
Qe 082e,s

The modified stiffness matrix KJ.* is calculated using the following formula, ensuing from the
condensation of the enhanced strain parameters

K™ 2K — GPgAmTlgm.

Having modified the general diagram for the two-field FE model with EAS (Fig. 7), the diagram
for membrane state of the plate/shell FE is plotted (Fig. 17).
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K™ (B} ,D™)

f2(Nu, D)

o>

BE :

GMTq, on + KMy = £2 4+ £

i Gm(Ns,eny BL”) D‘m)

Fig. 17. EAS model (u — €.,) for membrane state in plate/shell FE

6.3.2. EAS model for bending state

Analogous to the membrane state, now the local orthogonal co-ordinate system (e,, e;) is used for
the bending state. The kinematic relations are

K
il T n =Llu+1L%0 =Bbq, + Bhqe = [ B}, BY | [ ;1; ] , (85)
Krs
with
= &g |, m=| g |-TE"  B=[B BY]
and additional enhanced bending strains are interpolated
el = Kon = NucnGuen = MiGeen,  Nien = M. (86)

In the bending state matrix D will also be employed
_Lpm
12 ’

In the EAS FE model, with displacement and rotational nodal DOFs and strain parameters,
three equations are

Db

Ndteen: Abcdeen +Ghuau+Gloqe =0, (87)
Noau:  Glidmen + Kinau +Kiogqe = 5, (88)

/\5(16 : GbeT;gqn,en I Kbeuqu -+ KbQQqG = fgl, (89)
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with the following definitions:

Bb)T Kb Kb
Kb :/ [ ( u :lDb BZ Bb d.Q, Kb £ [ uu nel .
. L (BT [ 6 ] Ko Kbhe

TR / {MﬁTDng}dQ,

€

Ku

Gb = / {MzTDsz}dQ, GZ@ :/ {MZTDbBbQ}d.Q, Gb = [ qu Gze ] :
2 0

= / (NTpldn, (M= / {N’-gM} don.
2 0825
The modified bending stiffness matrix is calculated as
Kb* Sie Kb %3 GbT(Ab)_le.

According to the two-field EAS FE model (Fig. 7) an analogous diagram is presented in Fig. 18
for the bending state in the analyzed plate/shell FE.

Gb(Nn,eny va Bz’ Bbe) a

Nn,e‘n
A®’(N, cn, D%

) G*(Ny e, D’, B, BY)

Fig. 18. EAS model (u — k.n) for bending state in plate/shell FE

6.4. ANS model for shear state

The transverse shear strain representation is designed according to the ANS method. The vectors
(e¢,ey) of the natural coordinate system are adopted in the description of the shear strains. The
following formulae are derived,

EZ:’YUQ:[,Z& ] =Liu+L39@=Bf‘qu+B§9q9= [ B,Z BSQ ] [ :ll; ], (90)
n

with

pT 2 9x
LS:[ ""f}, L8@=[""}-Tg‘"’, B'=[B; By].
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® Nodal pointg
X 2 x 2 Quadrature points

O Assumed strain points

Fig. 19. Positions of nodal and sampling points for ANS formulation

Fig. 20. ANS formulation for shear state in plate/shell FE

Firstly, the covariant transverse shear strains are calculated at the midpoints of element bound-
aries, i.e. components <y¢ are obtained at sampling points A and B (Fig. 19) and components 1, at
points C and D. Secondly, constant-linear fields ¢ and 7, are defined on the basis of two relevant
points

1
e = %(1 — ¢ + 5L+ (91)
B = 31— 0 + 51+ )P (92)

This way the BS and B¢ matrices are calculated and used to determine the stiffness matrix for the
shear state

Rs\T s s
K3=/ [(]_3“) ]Ds[B; By |4, K3=[K”“ u@],

(Bp)” Ko Koo
from which two matrix equations are derived
Noau: Ki.au+Kieae =1, (93)
Ndgo: Kb,au+Kbeae =0, (94)

where additionally the following vector appears,

e /6 9 {NZS} don.

The diagram for the shear state (Fig. 20) has the same structure as the diagram for the displace-
ment FE model, with the main differences: matrices B¢ and E"@ are obtained in two steps, using
two types of sampling points and with individual treatment of the two components of the shear
strain vector.
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6.5. Generalized stiffness matrix of EAS-ANS plate/shell FE

The final stiffness matrix for CBRS-FE, called in [1] EAS-ANS finite element, is obtained adding
matrices K™, K® K° and the whole idea of their derivation is graphically presented in three dia-
grams in Figs. 17, 18, 20, corresponding to the EAS formulation (applied to describe the membrane
and bending state), and the ANS formulation (used for shear state), respectively.

As shown in [1], the EAS-ANS elements yield satisfactory results in the computational analysis
of the following problems: Morley’s skew plate, Scordelis-Lo roof, infinitely long cylinder under
constant bending (locking test).

7. FINAL REMARKS

Three mathematical forms of description of relevant boundary value problems: strong, weak and
variational forms are presented. These alternative approaches may be used as the basis for the
formulation of various FE models.

The graphic presentation of finite element models, proposed in the paper in conceptual diagrams,
is a convincing methodology, giving deep understanding of not only special methodologies as EAS
or ANS, but also of alternative ways to formulate different FE types.

For years many efforts have been directed towards an improvement of FE modelling of surface
structures. Paper [1] presents a deep theoretical base of plate/shell FEs |7, 8]. The applied concepts
give low-order FEs, which behave well in the typical cases. An extension of the EAS concept to in-
corporate: (i) inelastic effects in constitutive relations [2, 9] and (i) nonlinear displacement-gradient
terms in kinematic equations [11] is an easy step to be carried out in FE modelling.
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