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This paper paper discusses accuracy of WENO reconstruction used for unstructured grids and applied to
two common discretization approaches within Finite Volume Method (FVM). They are Cell Centered and
Vertex Centered methods. The numerical results are shown for 3D supersonic flow in a channel and for
ONERA M6 wing. The comparison of computational performance of both methods is included.

1. INTRODUCTION

WENO (Weighted Essentially Non Oscillatory) schemes were introduced in [1, 2, 8] as extension of
ENO schemes.

ENO schemes base on switching between different stencils in order to evaluate the correct recon-
struction of solution inside each mesh cell. This mechanism was used to suppress oscillations, which
tend to appear near shockwaves when high-order reconstruction/extrapolation is used (Godunov
barrier).

WENO schemes use continuous weighting of reconstruction functions (each function built on
different stencil) instead of simple switching used by ENO schemes. More recently WENO schemes
were extended to higher orders [7] and to the case of negative weights [6].

The main objective of this paper is to compare performance of WENO schemes for two different
implementations of the Finite Volume Method. These are Vertex Centered (also known as a Cell
Vertex) and Cell Centered approaches. These schemes differ by definition of control volumes used to
balance conservation quantities. For Vertex Centered (VC) the control volume is built around a grid
node and roughly coincides with the cell in the dual mesh. In the Cell Centered (CC) approach the
control volume coincides with the cell in the original grid.

Computational performance and accuracy of both methods are discussed and estimated for the
2D and 3D generic cases. These estimations are subsequently verified for two real-life examples of
supersonic/transonic flows, namely in the 3D channel and around 3D ONERA M6 wing.

2. FINITE VOLUME METHOD
2.1. The Euler equations

The Euler model of fluid is used in the present paper. The equations in conservative form can be
expressed as

oUu
—6?+V-.7:(U)=0, (1)

FU) =[F(U),G(U), H{U)],
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where p — density, V = [u, v, w] — velocity vector, E — total energy, p — pressure, H — total enthalpy.
This system of equations must be additionally supplemented with the usual equation of the state
of perfect gas,

u? + v2 + w?
st ey .

p=(7—1)p(E— 5

in which v = gf is the ratio of specific heat capacities.

2.2. Finite Volume Method discretization

After integration over the control volume (2, the Euler equations become

L Udf = - F(U)-nds 4)
dt /g, EYN

For each control volume an average value of U over {2, can be defined as

~ 1
U=— / U df. 5
B (5)
Equation (4) takes then the following form,
d - 1
if i bl F(U) -nds. 6
s A ©

For typical meshes the control volume has tetrahedral, prismatic, hexahedral or polyhedral shape
and its boundary consists of faces Iy, Iy, ... (82, = I' U T2 U...). Thus the right hand side of
Eq. (5) can be modified to

f(U)-nds=Z/rf(U)-njds=ij*(U), FOY¥E | F(U) njds, (7)
Fibad i

a0 r
where F7 denotes the numerical flux through the j-th face of the control volume. Equation (6)
becomes then

d - 1
ZU= _m;ﬂ(U). (8)

It must be noted that the numerical flux F* must be calculated using U at the cell face rather than
the averaged value taken from the cell center.

Collection of Egs. (8) written for all control volumes forms a system of nonlinear differential equa-
tions. In the present paper only a stationary case is considered and as a consequence time accuracy
is not required. Explicit discretisation provides a straightforward pseudo-time marching algorithm.
When Implicit Backward Euler discretisation is used, a large system of algebraic equations has to
be solved. This is done by the approximate Newton method in which necessary Jacobian matrix
is evaluated using the first-order space discretisation of the right-hand-side. The later approach
provides much faster convergence, but every iteration step has much higher computational cost.
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3. WEIGHTED ESSENTIALLY NON-OSCILLATORY (WENO) SCHEME

The calculation of 7 relies on values at the boundary of the control volume. Since only average

values U are known, it is necessary to reconstruct the function U(z) inside the control volume.
This step is important because the accuracy of reconstructed function determines the order of the
method. The paper presents algorithms for linear reconstruction — the extension to higher order is
possible but more tedious.

The linear reconstruction function valid inside the i-th control volume can be expressed (x;
denotes center of gravity of i-th cell) as

U(x) = U; + [VU]; - (x — x:) (9)

where gradient [VU]; has to be evaluated using the average function values from the neighbouring
cells. The main difficulty is caused by the fact that the solution contains discontinuities (e.g.,
shockwaves, slip lines). Standard approaches (like central schemes) lead to oscillations in the vicinity
of the discontinuity, therefore special treatment is necessary.

3.1. The concept of the WENO reconstruction

The general concept of WENO scheme will be shown on a 1D example of a discontinuous func-
tion u(z).

Figure 1 shows a solution obtained by FVM where dotted line represents an average value u; .
The solution discontinuity (e.g., shock wave) exists between control volumes {212 and 241 .
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Fig. 1. 1D FVM solution representation around discontinuity (shockwave); dotted lines denote the averaged
values

Reconstruction based on the central scheme leads to the following formula for the gradient,

Vu; = 2—2;(%41 =Mt} (10)
where Az denotes the width of each cell {2;.
This approach leads to strong oscillation of the reconstructed solution in the control volumes adja-
cent to the discontinuity z;,141/2 (see Fig. 2). Typical limiters used in order to damp such oscilla-
tions lower the order of the reconstruction in the control volumes adjacent to the discontinuity —
e.g., between (2,41 and 2,2
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Fig. 2. Reconstruction using central scheme (solid Fig. 3. Reconstruction using WENO scheme (solid

line); dotted lines denote the averaged values line); dotted lines denote the averaged values

In contrast reconstruction based on the WENO scheme weights gradients obtained from neigh-
bouring stencils in order to continuously eliminate these which cause oscillations,

1 1
Vuiy, = A_x(ui-i—l - u;), Vui, = E(uin — Uit1),

Vi wLVuiLH + wRVufH ; @ PP,
Weights w” and w® are chosen here in such a manner that oscillations are avoided. In particular
the weights for the control volume 2,1 should be taken as w’” ~ 1 and w® ~ 0. This type of
reconstruction leads to oscillations-free solution (see Fig. 3).

3.2. Multidimensional WENO reconstruction

General algorithm of the WENO reconstruction consist of the following steps:

For a control volume (2, define m stencils Sy, S2, ..., Spn consisting of the neighbouring control
volumes.

— Create a function P; which approximates solution on 2, based on the data from the stencil S;.

Calculate oscillation indicator o; for each function P;.

|

Calculate weights for each P; using oscillation indicator o; .

Find global reconstruction function for a control volume (2, as a weighted average of all P;.

3.3. Calculation of the weights

The reconstruction function P for the control volume (2, is defined as a weighted average
m
P Zwi - Fy. s
i=1

The weights used in Eq. (11) should have following properties:
— each weight w; should be a continuous function of oscillation indicator,

— sum of all weights should equal 1, i.e., Y iv; w; =1,
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— each weight should be positive - (w; >0, @=1,...,m),

— the weights corresponding to the minimal oscillation indicator should dominate.
Oscillation indicator for a linear reconstruction is usually defined as
0 = [IVPll, | (12)

while the weights are calculated using the algebraic formula
(e4+0i)7"

ZiA;(E +0i)7" .

In the above, the parameter r determines the behaviour of the scheme. Increasing r results in
increasing the influence of a single stencil. In the limit » — 0o, Eq. (13) leads to ENO scheme where
only one stencil out of many is used for reconstruction. Following [5] the additional parameter e is
chosen to be around 1075. Its role is to eliminate problems in areas where o; approaches zero (e.g.,
near stagnation points).

(13)

: —

4. CELL CENTERED FVM WITH WENO RECONSTRUCTION

Cell Centered FVM (CC FVM) uses each cell as a control volume (see Fig. 4). Thus for a given
grid, the number of unknowns is directly proportional to the number of cells N. Each triangu-
lar/tetrahedral cell consist of 3 faces for 2D and 4 faces for 3D. The overall number of faces is thus
equal to N - 3/2 for 2D and 2N = 4 - N/2 for 3D (each face belongs to two cells). The number of
vertices in such a mesh is approximately equal to N/2 in 2D and N/6 in 3D.

The number of edges leaving an arbitrary vertex can be roughly estimated for regular mesh as 6
in 2D and up to 14 in 3D. Both estimates were obtained by taking regular rectangular/hexahedral
grid and dividing each rectangle into 2 triangles and each hexahedron into 6 tetrahedrons.

The computational cost of a single iteration can thus be estimated as proportional to 3/2N in 2D
and 2N in 3D. This is because the numerical fluxes are calculated for all faces in the mesh.

It is worth noting that, for the explicit pseudo-time discretisation, the computational effort of
a single iteration is related solely to the calculation of nonlinear fluxes.

For the implicit discretisation one must take into account also the component related to the
solution of the auxiliary linear system (see Section 2.2). Yet in this case the cost will again be
proportional to the number of faces in the grid and not to the number of unknowns as one may
expect. This is because the number of nonzero entries in the first-order Jacobian matrix of the
auxiliary linear system is exactly equal to the number of faces (the number of equations is equal
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Fig. 4. View of typical triangular grid with Cell-Centered FVM control volume 25,
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to the number of cells). On the other hand the number of linear iterations is always fixed (10-15).
Therefore for both implicit and explicit time-discretisations the computational cost is proportional
to the number of faces in the grid.

Strategy for choosing stencils for WENO reconstruction

As a rule, stencils consist of all neighbours of the base cell 25 and of the base cell itself. The base
cell is chosen depending on the type of the stencil. For the stencil of O-type the base cell is equivalent
to the cell {2 for which the gradient is reconstructed (there can be only one stencil of 0-type). The
base cell of the 1-type stencil is a neighbour of the cell 2y (there can be 3 such stencils in 2D and 4
in 3D). The base cell of the 2-type stencil is a neighbour of the neighbour of the cell 2, (there can
be at most 6 such stencils in 2D and 12 in 3D). Figure 5 shows stencils of types 0, 1, 2 and 3.

In grids with regular cells, 0-type and 1-type stencils are sufficient for linear WENO reconstruc-
tion. However on highly distorted grid and for specially aligned cells it can be beneficial to use
higher-type stencils.
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Fig. 5. Stencils that can be used for WENO reconstruction for CC approach: a) 0-type, b) 1-type,
c) 2-type, d) 3-type

5. VERTEX CENTERED FVM WITH WENO RECONSTRUCTION

The Vertex Centered FVM (VC FVM) uses the so called dual-mesh formed as a collection of dual
cells (see Fig. 6). Each dual cell is built around the vertex of the original mesh and consist of points
in space, which are closer to this vertex than to all other vertices (in practice dual cells are built
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using a simplified approach). Number of faces of the dual cell is equal to the number of edges leaving
the vertex in the original mesh. Thus the total number of faces in the dual mesh is equal to the
number of edges in the original mesh. Since each control volume coincides with a cell of the dual
mesh, the number of unknowns is proportional to number of vertices of the original grid. Again
fluxes are evaluated at each face of the dual mesh and therefore the computational cost of a single
iteration can be estimated as N/2-3 = 3N in 2D and N/6 - 14 = 2§N in 3D (see Table 1).

In the first case the cell centered method will be on average as expensive as the vertex centered
method. For 3D this ratio is equal 12/7 = 1.71. However in the latter case, in realistic unstructured
meshes the number of edges per vertex may be different than 14 (bigger) and as a result the
estimation may not be sufficiently accurate.

Table 1. Typical number of cells, faces, nodes and edges in 2D and 3D unstructured meshes

Number of: | Cells | Faces Nodes | Edges per Node | Edges
2D N | ~3/2N | ~ N/2 ~ 6 ~ 3N/2
3D N | ~2N ~ N/6 ~ 14 ~T7N/6
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Fig. 6. View of the triangular mesh and the dual mesh Fig. 7. Stencils that can be used for VC FVM
with Vertex-Centered control volume 2

Strategy of the choosing stencils for WENO reconstruction

Typical stencil for the linear reconstruction consists of the control volume 2 and two/three adjacent
cells (in 2D/3D) — see Figs. 5, 7. For such stencils the gradient can be evaluated directly. Problems
can arise for distorted grids in which stencils may consist of cells with (almost) co-linear centres. In
such situations stencils consisting of more volumes should be applied (gradient can be calculated in

~ a least squares sense).

6. PERFORMANCE OF THE CELL CENTERED AND VERTEX CENTERED FVM METHODS

: The computational cost estimated in previous sections referred to a single step in the iteration
procedure to solve the nonlinear equation system.
Number of iterations of this procedure is difficult to estimate and depends strongly on the solution

' method (e.g., explicit/implicit pseudo-time discretisation) as well as on the requested convergence
- accuracy. For a fixed accuracy this number can be expressed as N (M) where M denotes the num-

ber of equations in the nonlinear system. Under this assumption total computational cost can be
-estimated, and the results are presented in Table 2.
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Table 2. Total computational cost of the Finite Volume method (N denotes number of cells in the original
grid), function A denotes number of iterations and depends on the solution method as well as on space
dimension

Cell Centered | Vertex Centered
2D | Nop(N)- 3N /\/21)(-]2!)%
3D | Msp(N)-2N | N;p(&). X

It is clear that VC version is significantly cheaper than its CC counterpart, if both are applied
on the same grid. The VC method will however, be less accurate since the number of unknowns
describing the flowfield will be 2(6) times smaller for 2D(3D) cases respectively. It may be of interest
to compare computational cost of both methods when they provide the same accuracy (at least with
respect to interpolation error). This will happen if number of cell is increased 6 times (for 3D case)
for VC version. The computational cost of the VC method will then be proportional to

N3p(N)7-N
as compared with
N3p(N)2-N

for the CC method.

Hence the CC method is approximately 3.5 times cheaper than VC method, in situation when
both provide comparable accuracy. This conclusion relays here on tacit assumption that the number
of iterations needed to solve the nonlinear system of equations, is the same (or at least similar) for
the VC and CC methods when number of equations is the same. Similarly the proportionality
constants omitted in Table 2 may have different values due to a different manner in which stencils
are built,.

7. NUMERICAL RESULTS
7.1. Supersonic flow in a 15° wedge channel

The first comparisons of the two schemes (CC FVM and VC FVM) were performed for the flow in
the 15° wedge channel with inlet Ma = 2. The structure of such flow is dominated by a system of
oblique shock waves and expansion fans.

The grid used in this example was quite coarse, in order to magnify differences obtained through
the use of different methods.

The grid consisted of 10776 nodes, 57937 cells, 119302 faces and 72140 edges (the reader will
note that the estimates provided in Table 1 are only approximately correct due to the large number
of boundary cells — see Fig. 8). In this case CC FVM uses around 9 times more control volumes
than VC FVM and the number of calculated fluxes is around 1.65 times greater per iteration. It is
clear that the computational cost and the memory usage are significantly greater for CC FVM.

However, larger number of control volumes results in a better quality solution obtained by CC
FVM (see Figs. 9a,b). This can be seen in particular near the corner where expansion fan in VC
FVM solution is more smeared. Similarly near the oblique shock at the upper wall, the Mach number
is smaller for CC FVM and this is known to better represent the exact solution (see Fig. 9¢ where
high quality 2D result is presented).

7.2. Transonic flow past the M6 ONERA wing

The second test case used for comparison of CC and VC FVM is the flow past M6 ONERA wing
with Mach number at infinity equal 0.84. For such a flow two oblique shock waves merge near the
tip of the wing on the upper surface. The same codes as for the first test case were used.
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Fig. 9. Comparison of supersonic flow in 15° wedge channel (the numbers within the flowfield correspond to

the same location in all 3 figures); a) Vertex Centered FVM solution for the 3D supersonic flow, Ma = 2 (middle

section, mesh shown in Fig. 8), b) Cell Centered FVM solution for the 3D supersonic flow, Ma = 2 (middle

section, mesh shown in Fig. 8), c) 2D adapted solution for the supersonic flow, Ma = 2 solution-adapted highly
anisotropic mesh consisted of 15306 triangles) [3]
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Additional results obtained by the code THOR based on the Residual Distributions Schemes (1]
and developed in Von Karman Institute [5], were used as the reference for quantitative comparison.
All calculations were performed on the same grid (see Fig. 10) which consisted of 316275 nodes
1940182 cells, 2289199 edges and 3913107 faces.

It is worth noting that for this highly irregular grid the average value of edges leaving a vertex
is equal to 14.47 ( = 2289199/1940182 - 2) which agrees very well with the estimate provided in

Table 1. Again the computational cost (per iteration) and memory usage are around 1.69 time
grater for CC FVM than for VC FVM.

}
4

:
il

Fig. 10. Tetrahedral grid [5] on the surface of the M6 ONERA wing

The comparison of Figs. 11 and 12 shows that solution obtained by VC FVM method remains
much more dissipative. The shock waves are sharper and more distinct in the CC FVM solution. Tt
is also visible in the quantitative comparison of the ¢, coefficient (Fig. 13) and of the total pressure
loss (Fig. 14). The latter quantity corresponds directly to the error of the method. According to
theory, total pressure should be constant everywhere with exception of shockwaves where it should
increase. The parameter ¢* presented in Fig. 14 is defined as

§ oo
doo

where g and go, denote total pressure at a given point and at infinity, respectively.
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Fig. 11. Mach number field for the Cell Centered FVM solution on the M6 ONERA wing (Ma = 0.84,
a = 3.04°, the numbers describing isolines correspond to the same space location as in Fig. 12)

Fig. 12. Mach number field for the Vertex Centered FVM solution on the M6 ONERA wing (Ma = 0.84,
a = 3.04°, the numbers describing isolines correspond to the same space location as in Fig. 11)
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Fig. 13. Pressure coefficient for different sections of M6 ONERA wing (7 denotes the relative position of
the cross-section), Ma = 0.84, o = 3.04°
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Fig. 14. Total pressure loss for different sections of M6 ONERA wing (1 denotes the relative position of the
cross-section), Ma = 0.84, a = 3.04°



470 R. Wieteska, J. Majewski, J. Rokicki

8. CONCLUSIONS

The numerical codes used for this comparison were very different with respect to the programming
language, data structures, implicit-explicit discretisation, solution method.

* FVM with WENO reconstruction gives for both versions of the method (CC and VC) results
which are qualitatively correct. The solution near shock-waves remains oscillation-free. Shock
waves remain smeared over 1-3 cells only.

e Cell Centered discretisation provides better resolution of shockwaves and other flow features,
than its Vertex Centered counterpart. It provides also better overall accuracy and generates
significantly smaller amount of spurious entropy. For the transonic flow around ONERA M6
wing, CC discretisation is almost as accurate as the Residual Distribution Scheme (implemented
in the VKI Thor code).

e When CC and VC methods are used on the same mesh, the computational effort of the single
iteration is the same in 2D and larger by the ratio 12/7 for 3D. The number of nonlinear iterations
depends heavily on the solution method but is expected to be larger for the CC FVM.

® When both methods deliver the same accuracy (VC FVM requires refined mesh) the CC FVM
method is estimated to be 3.5 times cheaper.
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