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Numerical results are presented for the effects of thermal radiation, buoyancy and heat generation or
absorption on hydromagnetic flow over an accelerating permeable surface. These results are obtained by
solving the coupled nonlinear partial differential equations describing the conservation of mass, momentum
and energy by a perturbation technique. This qualitatively agrees with the expectations, since the magnetic
field exerts a retarding force on the free convection flow. A parametric study is performed to illustrate the
influence of the radiation parameter, magnetic parameter, Prandtl number, Grashof number and Schmidt
number on the profiles of the velocity components and temperature. The effects of the different parameters
on the velocity and temperature profiles as well as the skin friction and wall heat transfer are presented
graphically. Favorable comparisons with previously published work confirm the correctness of numerical
results.
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1. INTRODUCTION

The study of the dynamics of conducting fluid find applications in a variety of engineering problems,
the one related to the cooling processes of nuclear reactors, and that related to the connected flow
through a porous medium, since the geothermic region gases are electrically conducting and affected
by a magnetic field. The effect radiation MHD flow and heat transfer problems have become more
important industrially. At high operating temperature, radiation effect can be quite significant.
Many processes in engineering areas occur at high temperatures and knowledge of radiation heat
transfer becomes very important for the design of pertinent equipment. Nuclear power plants, gas
turbines and the various propulsion devices for aircraft, missiles, satellites and space vehicles are
examples of such engineering areas. In recent years, considerable progress has been made in the
study of heat and mass transfer in magnetohydrodynamics flow due to its application in many
devices, like the MHD power generator and Hall accelerator. The influence of a magnetic field on
the flow of an electrically conducting viscous fluid with mass transfer and radiation absorption is
also useful in planetary atmosphere research [1].

Ram et al. [2] studied the heat and mass transfer of a viscous heat generating fluid with hall
current. Jha and Prasad [3] investigated MHD free convection and mass transfer flow through a
porous medium with heat source. Takhar et al. [4] investigated the hydromagnetic convection flow
of a heat generating fluid past a vertical plate with hall current and heat flux through a porous
medium. Georgiou and Georgantpoulos [5] studied the mass transfer effects on the transient behavior
of the asymptotic laminar boundary layer. Hydromagnetic flows and heat transfer have become more
important in recent years because of many important applications, for example in many metallurgical
processes which involve cooling of continuous strips or filaments, these elements are drawn through
a quiescent fluid. During this process, these strips are sometimes stretched. The properties of the
final product depend to a great extent on the rate of cooling. This rate of cooling has been proven to
be controlled and, therefore, the quality of the final product by drawing such strips in an electrically
conducting fluid subject to a magnetic field [9]. Soundalgekar et al. [6] used a finite difference method
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to investigate free convection effects on the Stokes problem for a vertical plate in a dissipative fluid
with constant heat flux.

Ram [7] also used the finite difference method to solve the MHD Stokes problem for vertical plate
with hall and ion slip currents. Chaturvedi [8] studied the flow of incompressible viscous fluid past
an impulsively started infinite porous plate with variable suction. Many works have been reported
on flow and heat transfer over a stretched surface in the presence of a magnetic field [9-20]. Takhar
et al. [21] studied the radiation effects on MHD free-convection flow of a gas past a semi-infinite
vertical plate. Recently the radiation effect on heat transfer over a stretching surface was studied
by Elbashbeshy [22].

The purpose of this work is to study the effect of thermal radiation and heat generation or
absorption on hydromagnetic flow over an accelerating permeable surface. The coupled nonlinear
partial differential equations are solved by the perturbation technique. The effects of the different
parameters on the velocity and temperature profiles as well as the skin friction and wall heat transfer
are presented graphically.

2. FORMULATION OF THE PROBLEM

Consider steady, laminar, viscous boundary-layer flow over an accelerating semi-infinite vertical
permeable surface. A uniform magnetic field is applied in the horizontal direction that is normal to
the surface. A temperature dependent heat source or sink is assumed to be present in the flow and
that thermal radiation and buoyancy effects are significant. All fluid properties are assumed to be
constant except the density in the body force term of the balance of linear momentum. The magnetic
Reynolds number is assumed to be small so that the induced magnetic field is neglected. No electric
field is assumed to exist and both viscous and magnetic dissipations are neglected. Under these
assumptions, along with Boussinesq approximations, the boundary layer equations for this problem
can be written as [12]

Oou Ov

55 T oy, S0 b
ou ou 0%u oB?

U'a—x'f-’l)'a—y' —l/a—y2+g,3(T—Too)—Tu, (2)
oT orT T A% Qo 1 dq,

PR bt g e I et e e 2

where z, y are the vertical and horizontal directions, respectively, u, v and T' are the fuid velocity
component in the z and y directions and temperature, respectively, p is the fluid density, v is the
kinematic viscosity, Cp is specific heat at constant pressure, a(Ki/pCp) is the thermal diffusivity,
K is the fluid thermal conductivity, 8 is the volumetric expansion coefficient, 8* is a constant, Q,
is a constant, o is the electric conductivity, By is applied magnetic induction, g is the gravitational
acceleration. The terms f*u(Too — T') and Qo(T — Ti), (with B* and Qg being constants) both
represent the heat generated or absorbed per unit volume. The first form was used by Acharya
et al. [23] while the last form was used by Vajravelu and Nayfeh [26] and Chamkha (12, 27] . The
reason for retaining both forms in the present work will be explained below, g, is the thermal
radiation and T is the free stream temperature. The radiative heat flux term gr is simplified by
using the Rosseland approximation (see [12, 16, 24, 25]).
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where 0* and K* are the Stefan-Boltzmann constant and the mean absorption coefficient, respec-
tively.
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The fluid phase temperature differences within the flow are assumed to be sufficiently small so
that 7% may be expressed as a linear function of temperature. This is done by expanding T* in
a Taylor series about the free stream temperature T, and neglecting higher-order terms to yield

T = ATS T — 3T,
By employing Eq. (4), Eq. (2) becomes
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and the boundary conditions can be written as
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where a is a constant, vy, is the wall suction (v, < 0) or injection (v, > 0) velocity, and T, (z) is
the wall temperature.
Using the stream function % such that
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and substituting the following non-dimensional similarity transformation
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By substitution Egs. (7)-(8) into Egs. (1)—(3), we get
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It is seen from §, = ;Cr—ﬁ and A = p%ﬁ? that using a heat generation or absorption effect of the
form B*u(Te — T') produces a locally similar set of equations since d, depends on z. However, by
employing the form Qo(T — Ts) yields self-similar equations everywhere along the surface. Since
one of the objectives of this work is to obtain similarity equations, the second form for the heat
generation or absorption effect is employed. Also, the first form is kept in the formulation for merely
comparison purposes with [12, 23]. It should be noted here that positive values of A indicate heat
generation while negative values of A indicate heat absorption.

The appropriate flat plate, free convection boundary condition is also transformed into the ap-
plicable form

F0) =1, [(0)=-fo, 6(0)=1,

f!(c0) =0, 6(c0) =0, (11)

where fo = % is the wall mass transfer coefficient such that fo < 0 indicates wall suction and
fo > 0 corresponds to wall blowing conditions.

The resulting differential equations contain arbitrary parameters, the Prandtl number P, , the
magnetic field strength artd the buoyant force, the ratio of the Hartmann number is a measure of the
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relative influence of the magnetic and buoyant forces on the temperature and flow fields. Solution
of the resulting semi-infinite domain, nonlinear equations is accomplished with a three part series
method. The employed power series, contains a term A that satisfies the boundary conditions and
differential equations at infinity, a second term that satisfies the boundary conditions at zero and is
the solution to the initial homogeneous differential equation, and additional terms that are utilized
to obtain increased numerical accuracy. This accuracy is limited by number of terms that will not
initiate divergence of the numerical results,
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Equation (13), the temperature representation, along with Eq. (12) and the associated boundary
conditions Eq. (14), contain an undetermined parameter € < 1 which aids in the collection of terms
for each set of the resulting linear differential equations. Substitution of the series representation
into the differential equations and collection of terms by like powers of ¢ result in a family of linear
differential equations, and the first three sets are
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The solutions to the first two sets, Eqs. (21)-(23), when substituted into Egs. (12)—(13), provide
the required representations for F' and ’. The constant A is determined by satisfying the boundary
conditions F'(0) and is a function of P, and M,
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The coefficients a; are specified in the Appendix.

It should be mentioned that the skin friction coefficient and the wall heat transfer are important
physical parameters for this flow and heat transfer situation. Knowing the velocity, we can calculate
the skin friction and from temperature field, the rate of heat transfer in terms of the Nusselt number.
These parameters can be defined as follows,
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It is seen that Cy and Q are directly proportional to the wall velocity and temperature gradients,
respectively.

3. RESULTS AND DISCUSSIONS

For the purpose of discussing the results, some numerical calculations are carried out for non-
dimensional velocity, surface temperature gradient, skin friction and Nusselt number for different
values of heat generation, wall suction/blowing conditions, Grashof number, Hartmann number,
thermal radiation parameter and heat absorption generation. In order to verify the accuracy of our
present method, a comparison of non-dimensional wall velocity gradient f”(0) and Nusselt number
(—6'(0)), with those reported previously by Acharya et al. [23] and Chamkha [12]. The result of this
comparison is given in Table 1. The comparisons in all the above cases are found to be in excellent
agreement. Sets of representative numerical results are illustrated graphically.

Table 1. Comparison of the non-dimensional wall temperature gradient (—6’(0))

fo=0.45,6, =05

Fo="0.45,46, = 1.0

fo=0.0,6, =0.5

fo=0.0,6,=1.0

Acharya et al. [23] 0.8225 0.9618 0.9462 1.0789
Chamkha [12] 0.82397 0.96191 0.94769 1.07996
Present work 0.822757 0.9626045 0.946481 1.077021

Figures 1 and 2 illustrate the non dimensional wall temperature gradient (—6'(0)) against mag-
netic parameter M for several of the heat generation or absorption parameter §, and the suc-
tion/injection parameter fo values. It is known that imposition of wall fluid suction reduces both
the hydrodynamic and thermal boundary layers, which indicate reduction in both fluid velocity
and temperature profiles. However, the exact opposite behavior is produced by imposition of wall
fluid blowing or injection. Figs 1 and 2 show that the non-dimensional wall temperature gradient
(—6'(0)) increases as d, increases.

Figures 3 and 4 illustrate the variations of the wall velocity (—f”(0)) against magnetic param-
eter M for various values of suction / injection fy and the thermal Radiation parameter Ng. As
mentioned before increasing the value of the suction / injection parameter fo causes both the hy-
drodynamic and thermal boundary layers to increase causing the wall gradients of both the velocity
and temperature profiles to decrease.

To see the effect of Grashof number (G,) on the boundary layer flow, in Figs. 5 and 6, the
non-dimensional velocity f’(n) and the non-dimensional temperature 6(n) are plotted against 7 for
different values of (G,), respectively. All other parameters are set to zero in order to study the
influence of a single effect at a time. Increase of Grashof number has the tendency of inducing
more flow in the boundary layer due to the effect of the thermal buoyancy. For small buoyancy
effects (G, = 1.0), the maximum flow velocity occurs at the surface. However, as the buoyancy
effect becomes relatively large, a distinctive peak in the velocity profile occurs in the fluid adjacent
to the wall and this peak becomes more distinctive as (G,) increases further. Along with this flow
behavior, the thermal boundary layer reduces as (G,) increases causing the fluid temperature to
reduce at every point other than that of the wall. It can be seen from Figs. 5 and 6 that as expected,
f! increases but 6 decreases with increasing Grashof number (G, ). In addition, the curves show that
the peak value of velocity increases rapidly near the wall of the plate as Grashof number increases,
and then decays to the relevant free stream velocity.

Figures 7 and 8 display the variation of velocity f'(n) and temperature 6(n) for several values of
magnetic parameter (M). Application of a transverse magnetic field to an electrically conducting
fluid gives rise to a resistive type force called the Lorentz force, which opposes the flow, also increases
and leads to enhanced deceleration of the flow. The result qualitatively agrees with expectations,
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Fig. 1. Variation of non-dimensional wall temperature gradient (—6'(0)), for different values of heat
generation d;, when P, =0.71, G, = 0.0, fo = 0.45, Nr = 0.0, A =0.0,p=1.0

— ©Y0)

2.40 | 1 | | |
F o T 50 OB o G o, WO,
2.00 — o 0o o o o 0 o o
1.80 =7 -
1.20 —
Heat generation 52
—@— o5
—5— 1.0
el il i e o2 5 Vot e M
0.00 20.00 40.00 60.00 80.00 100.00

Fig. 2. Variation of non-dimensional wall temperature gradient (—6'(0)), for different values of heat
generation d; , when P, = 0.71, G, = 0.0, fo = 0.0, N = 0.0, A = 0.0, = 1.0
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Fig. 3. Variation of non dimensional surface velocity gradient (—f"(0)), for different values of wall suction
blowing (fo), when P, = 0.71, G, = 1.0, 6, = 0.0, Ng = 0.0, A = 0.0, = 1.0
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Fig. 4. Variation of non dimensional surface velocity gradient (—f"(0)), for different values of wall suction
blowing (fo), when P, = 0.71, G» = 1.0, 6z = 0.0, N, = 5.0, A = 0.0, n = 1.0
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Fig. 5. Variation of non dimensional velocity f'(n) for different values of Grashof number (Gr) when
P, =0.71, fo = 0.0, - = 0.0, Np = 5.0,A=0.0,M=0.0
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Fig. 6. Variation of non dimensional temperature 6(n) for different values of Grashof number (G,) when
P. =0.71, fo = 0.0, 6, = 0.0, Nr = 5.0, A = 0.0, M =0.0
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Fig. 7. Variation of non dimensional velocity f'(n) for different values of magnetic parameter, when

P.=0.71, fo=0.0,4. =0.0, Nr =0.0, A=0.0,Gr=1.0
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Fig. 8. Variation of non dimensional temperature 6(n) for different values of magnetic parameter, when

P. =071, fo =0.0, 6 =00, Np =0.0,A=00,G, =10

since the magnetic field exerts a retarding force on the free convection flow. In addition, while the
hydrodynamic boundary layer thickness is not affected by the increase in the magnetic field strength,
the thermal boundary layer thickness is significantly increased. These behaviors are depicted in the
respective decreases and increases in the profiles of f’ and 6 as the magnetic parameter M is
increased. This means that the magnetic field works to increase the values of the temperature in
the flow field and then decreases the gradient at the wall and increases thickness of the thermal

boundary layer.
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Fig. 9. Variation of non dimensional velocity f'(n) for different values of thermal radiation parameter,
when P, = 0.71, fo = 0.0, 6; = 0.0, N = 0.0, A = 0.0, G, = 1.0
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Fig. 10. Variation of non dimensional temperature 6(n) for different values of thermal radiation parameter,
when P, =0.71, fo =0.0, 5 = 0.0, Nr =0.0, A =00, G, =1.0

Figures 9 and 10 are the graphical representation of horizontal velocity profile f’ (n) and temper-
ature profile 6(n) against 7 for different values of the thermal radiation parameter N, respectively.
The radiation have significant influences on velocity profiles, temperature profiles. It is observed here
that the radiation have significant influences on velocity profiles, temperature profiles. Increasing
the thermal radiation parameter Ng gives a significant increases in the thermal condition of the fluid
and its thermal boundary layer. Through the buoyancy effect, this increase in the fluid temperature
induces more flow in the boundary layer causing the higher velocity of the fluid there. In addition,
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Fig. 11. Variation of non dimensional velocity f'(n) for different values of heat absorption/generation
parameter, when P, = 0.71, fo = 0.0, 6; = 0.0, Nr = 0.0, A =0.0, G, =1.0, M =0.0
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Fig. 12. Variation of non dimensional temperature 6(n) for different values of wall suction/blowing
parameter, when P, = 0.71, fo = 0.0, 6; = 0.0, Nr =0.0, A =0.0, G, =1.0, M =0.0

the hydrodynamic boundary layer thickness grows with Ng . These behaviors are clearly shown in
Figs. 9 and 10.

The effect of surface mass transfer fy on the dimensionless velocity and temperature distributions
is displayed in Figs. 11 and 12. Suction makes the velocity and temperature distributions more uni-
form within the boundary layer. It is known that wall fluid suction reduces both the hydrodynamic
and thermal boundary layers, which indicate reduction in both the fluid velocity and temperature
profiles. However, the exact opposite behavior is observed by the imposition of wall fluid blowing
or injection. These behaviors are clear from Figs. 11 and 12.
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Fig. 13. Variation of non dimensional temperature 6(n) for different values of heat absorption/generation
parameter, when P, = 0.71, fo = 0.0, 6; = 0.0, Nrp = 0.0, A =0.0, G» =1.0, M =0.0

The influence of the presence of a heat source or a heat sink in the boundary layer on the
temperature field is depicted in Fig. 13. Heat source in the boundary layer generates energy, which
causes the increase of the fluid temperature, which grows the flow field due to the buoyancy effect.
On the other hand, a heat sink in the boundary layer absorbs energy, causing the fluid temperature
to decrease, which in turn reduces the flow velocity in the boundary layer as a result of the buoyancy
effect.

4. CONCLUSION

Steady, laminar, viscous boundary layer flow over an accelerating semi infinite porous surface in
the presence of a magnetic field, thermal radiation, buoyancy, heat generation or absorption was
considered. The coupled nonlinear partial differential equations were solved numerically by the
perturbation technique. The results for a simplified case with no radiation and no magnetic field
were compared with the previous works and to be found in a good agreement. Next calculations
were performed for a more general case and find out that the wall heat transfer decreases in the
presence of magnetic field, heat generation, thermal radiation or positive wall mass transfer, while
it increases due to the thermal buoyancy forces.
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