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The paper presents problem of discrete multicriteria optimization of two-layer regular orthogonal spatial
trusses. Three criteria of evaluation are taken into account, namely: minimum of weight, maximum of
reliability and maximum of stiffness of the structure. To simplify the problem, decomposition techniques
are applied. The decision variables are cross-sections of the truss members. The best possible cross section
is selected for each bar from a discrete catalogue. Other decision variables (coordinated variables) describe
also the geometry of the structure. The multicriteria reliability-based algorithm allows for evaluating the
objective functions values and then finding sets of nondominated evaluations and solutions. Reliability of
the structure is expressed by the Hasofer-Lind reliability index 3.

1. INTRODUCTION

Structural reliability of spatial trusses is an important aspect of their design process. During last
years many methods have been created for the purpose of determining the probability of structural
failure [1, 10, 12, 15, 17]. The most important are the First Order Reliability Method (FORM) and
the Second Order Reliability Method (SORM). Both methods are based on approximating the limit
state functions by first and second order Taylor series expansions, respectively. The probability of
failure can be expressed then by the reliability index. Although the methods of reliability analysis
are constantly improved, the optimization problems are generally considered as deterministic ones.
Especially discrete multicriteria optimization problems are difficult to solve when random character
of selected parameters is taken into account. Solving multicriteria optimization problems with dis-
crete design variables leads to a set of nondominated solutions which is possible to use in engineering
practice.

2. MULTICRITERIA OPTIMIZATION PROBLEM

The problem of multicriteria optimization, also called vector optimization, has been first formulated
in 1896 by Italian economist — Vilfred Pareto. The main difference, as compared with scalar op-
timization problem, refers to the number of evaluation criteria. In multicriteria problems, several
contradictory criteria are assumed to evaluate an object of the analysis [6, 13]. One or a few of
the criteria may concern the reliability level [5, 7, 8, 11, 14, 16]. Taken into account more than one
criterion requires application of a relatively complex and time-consuming method of solution, espe-
cially when random character of design parameters is analyzed. But formulation of a multicriteria
problem with discrete constraints leads to solution that is more applicable in engineering practice.
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Fig. 2. Solution of a multiobjective optimization problem

Criteria of a vector optimization problem are defined by appropriate objective functions and
ordered in a vector of objective functions f(x),

f@)={fi(=)}, J=1J. (1)

In discrete problems, each solution is evaluated, and the vector of evaluations is an element of discrete
set of evaluations Y, included in a J-dimensional vector space, called the space of evaluations B. In
the case of engineering objects, a linear ordering relation is usually established to order the set Y.
For minimization problems the relation is defined by a cone A°, specified by the positive orthant of
the vector space B (Fig. 1). Another significant difference between scalar and vector optimization
problems is the form of solution. In the case of multicriteria problems, the result is a K-element
set of nondominated solutions X yp . Through a transformation f(x) it gives the K-element set of
nondominated evaluations Yyp (Fig. 2).

The nondominated evaluations are the ones that cannot be uniquely improved with respect to
the assumed ordering relation.

Yoo ={ykp €Y : ~y; Z¥ip Avhp ey + A} (2)

The set of nondominated solutions X yp is obtained as the result of an inverse transformation of
Ynp, defined also as

zhp € Xnp < -3z €Y)V(j € J) fi(m:) < fi(@hp) A 3G €J) fi(m:) < fi(ahp). (3)

Although the objective result of vector optimization problems is the set of nondominated solu-
tions, engineering practice requires to select a single solution to be applied. The solution is selected
from the set X np, and called preferred solution @, . The preferred solution is a compromise between
the contradictory criteria of evaluation considered.
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3. RELIABILITY-BASED OPTIMIZATION OF SPATIAL TRUSSES
3.1. Problem statement
There are given:
e vector of decision variables
.= {23}, n=105N, (4)

e vector of objective functions

f@)={fi=}, =17, (5)

e sets of inequality and equality constraints

9(z) = {g(@)} <0, k=LK, (6)

h(z) = {hm(x)} =0, m=1M, (7)
e vector of random variables

X={X}, i=L]I (8)
e vector of limit state functions

G(X)={G(X)}, t=LT, (9)

and a set of parameters that are constant during optimization process. Find the set of nondominated
solutions and evaluations, according to Egs. (2) and (3).

In reliability-based optimization problems, as distinct from deterministic ones, random character
of selected design parameters is taken into account (Eq. (8)). The limit state functions that define
the failure of structure are described in Eq. (9). Reliability of each discrete solution is evaluated
as a component of objective functions vector. Probability of failure is usually contradictory with
economic criteria, so the preferred solution is the compromise between them. The reliability level
may be also the component of the inequality constraints vector (6).

3.2. Algorithm of solution

The proposed method of solution is based on the OPTYTRUSS system, that has been extended with
the algorithm to evaluate reliability of a truss and make it a component of the objective functions
vector. The system conducts static analysis, design, and discrete multicriteria optimization of spatial
trusses. The cross sections of bars and geometry design parameters are varied in optimization
process. The cross sections are selected from a discrete catalogue that contains the available steel
products. The process of selection is performed in deterministic way. Others design variables are
constrained by equalities (7), making the problem a discrete one. Solution of such problems is quite
sophisticated and time-consuming. Gradient methods cannot be applied, especially when objective
functions are given in implicit forms. More effective are local search methods, adapted for discrete
problems.

To make the solution more efficient, two-level algorithm has been proposed. The algorithm is
based on the theory of parametric decomposition and hierarchic optimization [4]. It allows to reduce
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dimension of the vector of decision variables and considerably simplify the problem. The vector of
decisions variables is decomposed into two local vectors

Tz — :1:,(1); “"1(2)- (10)

(1)

The components of the vector x; ’ are cross sections of the bars
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(2)

where kp is the number of the truss bars. Components of the vector @, are variables that describe
geometry of the structure (i.e. shape, height and depth, support system, etc.),

¥ ={z;}, j=F+LN, (12)

For real structures, dimensionality of the vector :cl(l) is much larger than for :1:1(2). The decom-
position allows for separating the process of minimization of truss cross sections and for analyzing
it as a scalar problem, constituting the inner loop in multicriteria optimization process (Fig. 3).
The vector "”1(2) includes the coordinate variables. In the first stage of the analysis, starting values
are established to describe geometry of single variant of the structure. Next, the starting values
are treated as parameters in the second stage. For each defined variant the optimum bars’ cross
sections are evaluated in accordance with minimum mass criterion. During the process, dead, live
and environmental loads are taken into account in load combinations. After that, for each variant
of the truss, values of the objective functions, including reliability, are determined in the outer loop
(Fig. 3). The outer loop is controlled by a local search method to minimize the number of analyzed
variants and make the process more efficient.

Three alternative methods of structural reliability analysis have been implemented in the OP-
TYTRUSS system. The first and most efficient is First Order Reliability Method. The probability of
failure is determined by Hasofer-Lind index f3, after Rosenblatt transformation. The second method
is a crude Monte Carlo method. The last method is integration, referring directly to the definition
of probability of failure

Py = 4 fx(X)dx (13)
f

where §); is the failure domain, fx(X) — global probability density function, X — vector of
random variables. The Monte Carlo and the integral methods have been employed to test correctness
of the FORM method and Rosenblatt transformation, which are more numerically complex. The

4
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Fig. 4. Linear approximation of a limit state function
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where kj, is the number of the truss bars. Components of the vector :1:1(2) are variables that describe

geometry of the structure (i.e. shape, height and depth, support system, etc.),

e = {z;}, j=F+LN, (12)

For real structures, dimensionality of the vector a:l(l) is much larger than for :1:1(2). The decom-
position allows for separating the process of minimization of truss cross sections and for analyzing
it as a scalar problem, constituting the inner loop in multicriteria optimization process (Fig. 3).
The vector a:l(z) includes the coordinate variables. In the first stage of the analysis, starting values
are established to describe geometry of single variant of the structure. Next, the starting values
are treated as parameters in the second stage. For each defined variant the optimum bars’ cross
sections are evaluated in accordance with minimum mass criterion. During the process, dead, live
and environmental loads are taken into account in load combinations. After that, for each variant
of the truss, values of the objective functions, including reliability, are determined in the outer loop
(Fig. 3). The outer loop is controlled by a local search method to minimize the number of analyzed
variants and make the process more efficient.

Three alternative methods of structural reliability analysis have been implemented in the OP-
TYTRUSS system. The first and most efficient is First Order Reliability Method. The probability of
failure is determined by Hasofer-Lind index S, after Rosenblatt transformation. The second method
is a crude Monte Carlo method. The last method is integration, referring directly to the definition
of probability of failure

P= x(xax (13)

where €y is the failure domain, fx(X) — global probability density function, X — vector of
random variables. The Monte Carlo and the integral methods have been employed to test correctness
of the FORM method and Rosenblatt transformation, which are more numerically complex. The

AY}

Fig. 4. Linear approximation of a limit state function
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stress and displacement limit state functions are regular and may be approximated

by a first order Taylor expansion (Fig. 4).

the polyoptimum shape of the cover (Fig. 5), the modular distance between nodes, and

9].
In the presented example, random character of design parameters and loads is considered. During

3,

b

2

For real engineering problems the FORM method is the most efficient and precise enough. In case
S

vector of the random variables X. For each variable, appropriate probability distribution and its

parameters are established. To simplify the problem, it is assumed that the variables are statistically

independent.
which is a cover of a sports hall. The dimensions of the cover are 40 x 80 m (Fig. 5). The upper

and lower layers are realized as orthogonal and parallel grids.
the longer walls of the hall. Bars of the truss are made of hot-rolled tubes, connected at nodes as

The numerical example for the proposed algorithm considers the analysis of a steel spatial truss

reliability analysis proceeds in parallel to the other deterministic objective functions (Fig. 3). Apart
from the method of the analysis, the input data have the same form. It is required to formulate the

4. NUMERICAL EXAMPLES

of spatial trusses
the analysis
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Fig. 5. Cover of the hall
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the depth and rise of the cover are determined. Thus, the four-element vector of decisions variables
x is taken into account

= {z.} n=1.4, (14)
where

1 — number of the shape of the cover,
x1 = 1 — one-sloped plane cover,
1 = 2 — two-sloped cover,
x1 = 3 — cylindrical cover with circular arc,
xo — number of modular divisions, described by a pair of numbers z, and z3,,
z3 — depth of the cover,
x4 — rise of the cover.

The constraints define the feasible domain of the problem
X={zecid;glx) 0, hiz) =0} (15)

The decision variables must satisfy the inequalities g(x) and equalities h(z)

g(x) ={gk(z)} <0, k=17, (16)
h(z) = {hm(x)} =0, m=1,4, (17)
where
i(x) %6<%<\/76, =%=;82% (18)
galad) :C1-&leY €3] (19)
g3(z) : 10 < zg, < 14, (20)
ga(z) : 20 < @9y < 28, (21)
gt 20 < x4 < 6.0, (22)
g6(z) : B =20, (23)
A e, e k55 (24)
and
hi(x): =, € I, (25)
ho(z) : T2z =i -2, ielIt, (26)
h3(x) : Toy =1i-4, ielIt, (27)
halz) : 23 =4-06, ., ielt, (28)
hs(x): z4 =12, ielt, (29)

I'" - the set of integers,
a — modular dimension of the layer divisions.

The inequality constraints g; () refer to technological recommendation that the angle between
bars is within range [30°,60°]. The following inequalities ga(x) to gs(x) determine the upper and
lower bounds of variation of decision variables . The constraints gg(x) and g7(x) restrict the limit
reliability and displacement level, respectively. The components of the vector h(x) assure discrete
character of the feasible domain.

Three criteria are assumed for evaluating the solutions — minimum of the mass of the cover,
minimum of the greatest nodal displacement, and minimum of probability of failure or maximum of
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reliability level. The first and the second criteria are treated as deterministic functions. All criteria
are expressed formally in the vector of objective functions

f(@)={fi(z)}, =13, (30)
where

fi(m) =) Ailip, (31)

fo(z) = % (32)

fs(z) = Ps(-B), (33)
where

B = min[(y"y)?),

1 - the number of a truss bar,

A; — cross sectional area of the i-th bar,

l; —length of the i-th bar,

p - density of steel, p = 7850 kg/m3,

ky — the number of bars in the truss,

N; - force in the i-th bar caused by virtual load,

N; — force in the i-th bar caused by real load,

E - Young modulus,

y — vector of coordinates of the point on the failure surface.

The cross sections of bars are selected from a five-element discrete catalogue [18] (Table 1).

The vector of random variables contains fifteen components, presented in Table 2. The un-
bounded distributions has been truncated (450 in case of double-sided unbounded distributions)
and normalized with the use of Rosenblatt transformation.

Two limit state functions are assumed — the stress limit function (34) and the displacement
limit function (36),

Gi=1-"— =R, (34)

where o; is the stress in i-th element and o}t — the limit stress, defined as

o'll-t = {0? o= O}V{O'fr &0 < 0}, (35)

where g; is the i-th node displacement and ¢ — the limit displacement. In Eq. (35), 0? is the yield
stress of steel and of" is the Euler buckling stress.
The reliability index 3 is defined as

B = min(min §; , g7) (37)

where 3; concerns the stress in the i-th bar and 8/ — the displacement of the truss.
During the analysis, six types of loads are taken into account:

e dead load — mass of the structure and the roofing,
e snow load,

e wind load in the direction (+X) (Fig. 5),
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Table 1. Catalogue of the feasible cross sections of the bars

_Dolmm] __fomm]
300 3y
700 i
. 63
s 135
355.6 el

Table 2. Random variables assumed in the example

_ Diameterofbars | X;-X; | log-normal nominal value (Table 1) | 0,01
Thikness ofthe ross section wall | X, - Xip|_logenomal_| nominalvalve (Table ) | 0,01
Yield stress of steel Xy | lognormal 6OMPa | 010
_ Young modulus X | logenorma 225GPa_ 005
Dead load multiplier Xy | nommal Wil s 0.10
Swowloadmuliplier | X, | Fmeha | 10 | 020
_ Wind load multiplier Xis | Gumbel (max) | 10 020

e wind load in the direction (—X) (Fig. 5),

e wind load in the direction (+Y) (Fig. 5),

e wind load in the direction (—Y") (Fig. 5).

The directions and the areas of actions of loads are assumed in accordance with the design codes.
Ten combinations of loads are analyzed:

dead load,

dead load + snow load,

dead load + wind load in the direction (+X),

(
dead load + wind load in the direction (—X),
dead load + wind load in the direction (+Y")
dead load + wind load in the direction (—-Y")
dead load + snow load + wind load in the direction (+X)

dead load + snow load + wind load in the direction (—X)

)
)

>
bl

dead load + snow load + wind load in the direction (+Y),

(
(
(
(

dead load + snow load + wind load in the direction (-Y').
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Table 3. Set of nondominated solutions and nondominated evaluations of the analyzed cover

Decisions variables Objective functions e
Number of Numberof | ‘ Mass Displacement Reliability index
sosizsin | O | oiioee | P | R Ll e Y.
! b | lowen | 86 | a0 | 3 1085 2389
2 8 [iox20 | 30 | 40 | 21595 | 1001 2384
s E [0 | 36 | 40 | ze3s | s 2632
8 é 10x20 | 36 | 60 | 22993 g 3.151
7 it L o4y ap TeuE T bR T W
I 10x20 3.0 20 | 21460 e D )
4 g‘g 10x20 | 36 | 20 | 22687 825 2,637
SRR 5 1 1 R T T T T T
13 e T T i lavela - oy 2057
2 ‘duxdn b owo 1 o siag 11.09 2399
3 ioxan | 30 beeoo | menl s 2514
5 10x20 | 36 | 40 | 22051 | 878 2.091
6 10pd0 | 36 1. 60 [ 213171 033 2.068
7 TSR SR R e e
8 ke | 43 | 60 I sae g0 3975
10 12x24 | 30 | 20 | 23464 | 98 | 253
i Podelaxat | 30 | #v. | gae 1088 2386
20 14x28 | 3.0 A0 | 25034 | 950 R

During the process of selection of the cross section areas, the most disadvantageous load combi-
nations is taken into account for each bar.

The problem is solved according to the presented algorithm as a hierarchical optimization prob-
lem. Parametric decomposition of decision variables is applied. The variable z; that describes shape
of the structure is treated as the coordinated one. Thus three local problems are obtained.

The results of the analysis, namely the set of nondominated evaluations and nondominated
solutions, are presented in Table 3.

In order to solve the problem, the exhaustive search method is employed. The dimension of the
solutions space and the small number of discrete alternatives of the decision variables make this
method efficient enough. The local search methods for discrete problems can be also employed for
the example, but the numerical effectiveness is similar. The important advantage of the exhaustive
search method is its ability to find the global set of nondominated solutions.

Values of objective functions are normalized and the preferred evaluation is selected by a distance
function method. The preferred evaluation Y, = Yg and corresponding preferred solution @, = xg
is marked in Table 3,

Y, = {25.3; 6.35; 3.975}, (38)
2y = {3; (10 x 20); 4.2; 4.0)}. (39)
The preferred solution is the cylindrical cover, with modular divisions of 10 x 20, depth of 4.2m
and rise of 4.0m. Mass of the preferred structure is 25.3kg/m? of the projection of the cover,

maximum displacement of the node is 6.35 cm and reliability index is 3.975. The reliability level of
the structure equals 0.99996.
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Fig. 6. Analyzed spatial truss

Another numerical example of proposed algorithm is polyoptimum design of the truss of dimen-
sion 40 x 40 m, shaped in Fig. 6. Similar as above, random character of design parameters and loads
is considered. During the analysis, the polyoptimum modular distance between nodes, the depth,

and rise of the cover are determined. Thus, the three-element vector of decision variables @ is taken
into account,

&= {Zn} N Lo (40)
The decision variables must satisfy the inequalities g(z) and equalities h(x),

g(x) = {g(x)} <0, k=16, (41)

h(z) = {km(z)} =0, m=1L3. (42)

As above, the inequality constraints refer to technological recommendations, determine the up-
per and lower bounds of variation of decision variables & and restrict the limit displacement and
reliability level. The components of the vector h(x) assure discrete character of the feasible domain.

Another elements of the problem statement, like objective functions, random variables, limit
function and load combinations, are established as in the example before. The results of the analysis,
namely the set of nondominated evaluations and nondominated solutions, are presented in Table 4.

Table 4. Set of nondominated solutions and nondominated evaluations of the shell

Number of |
e




496 S. Jendo, W.M. Paczkowski, E. Silicka

Values of objective functions are normalized and the preferred evaluation is selected by a distance

function method. The preferred evaluation Y, and corresponding preferred solution x, are indicated
by bold face font in Table 4.

y, = {18.87; 9.47; 6.566}, (43)
x, = {10; 3.0; 2.0)}. (44)

5. CONCLUSIONS

After numerical researches and analysis several conclusions may be formulated.

e In the case of multicriteria optimization of complex structures, a hierarchical approach to for-
mulation of the problem is recommended. Decomposition of the vector of decision variables and
evaluation of several local problems greatly increases efficiency of the optimization process.

e Formulation of multicriteria problems is advisable in case of engineering objects. Structural relia-
bility may be assumed as one of the criteria of evaluation as well as one of constraints. Reliability
criteria are usually contradictory with the economic ones. The solution is then a compromise
between them.

e The presented algorithm is efficient enough to become a commonly applied engineering tool. All
technological and design requirements and real loads combinations may be taken into account
in the analysis.
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