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The paper is a development and continuation of paper [8] where the Panagiotopoulos approach was
extended for the elastoplastic analysis. In case of elastic analysis the parameters of the Hopfield-Tank
Neural Network (HTNN) are calibrated only once but the updating of the elastoplastic stiffness matrix
needs an iteration of HTNN and FE system. The main problem is the matrix condensation repeated for
each iteration step of the Newton-Raphson method. Besides all the improvements proposed in [15], a new
interacting program has been implemented which enables a significant decrease of the processing time
(number of iterations) in comparison with the time achieved in [8]. The results of the extensive numerical
analysis are discussed for a tension perforated strip with a rigid bolt placed frictionlessly in a circular hole
in the middle of the strip.
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1. INTRODUCTION

Artificial neural networks (ANNs) have been successfully applied in the analysis of numerous prob-
lems of mechanics of structures and materials [13, 16]. In [17] the attention was turned on two fields
of ANNs applications. The first one is related to the use of ANN as a new independent compu-
tational tool. The other field is associated with the complementary features of ANNs to the finite
element method (FEM) and formulation of the hybrid FEM/ANN systems in which ANNs are used
as numerically efficient subsystems or procedures. This approach corresponds to new trends in the
computational structures technology where various hybrid systems with neural parts are pointed
out as very promising prospects [7].

In hybrid FEM/ANN programs feed-forward, multilayer and error back-propagation neural net-
works (called BPNN in [13, 16, 17]) are applied. BPNNs are usually used at the Gauss points for
the implicit modelling of material equations. cf. e.g. [3, 4, 8].

In the papers [5, 10] a recurrent network was applied in the interface zone. In this concept
the Hopfield-Tank network (HTNN) was applied for modelling unilateral constraints using the
Panagiotopoulos approach [13]. In this approach, called PA for short, HTNN evolutionary equations
are transformed to a set of ordinary differential equations which formulate the FEM as an initial
value problem. This idea can be expressed as the application of HTNN analog in FEM.

PA was successfully applied to the analysis of problems with unilateral constraints related to
fracture mechanics [5, 10], analysis of elastoplastic frames [1], delamination of composites [6] and
identification of yield surfaces [11].

In case of linear elastic problems the parameters of HTNN analog are computed only once, i.e.
at the beginning of computations when FEM quantities are formulated. Even in the analysis of

simple cases the increase of numerical efficiency of PA needs a number of modifications which were
discussed in [15].
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In the present paper three problems are considered. The first one is related to the application
of PA to the analysis of elastoplastic problems with unilateral constraints. Using an incremental
FE formulation the HTNN analog parameters have to be updated for each iteration step of the
Newton-Raphson method. That means, in fact, an interaction of the FE program and the HTNN
analog. The second problem corresponds to the analysis of a frictionless problem with an unknown
contact zone. Following papers [5, 10] an original set of FE incremental equations is condensed to
DOFs corresponding to unilateral constraints. This approach, discussed in [15], becomes much more
complicated in case of elasto-plastic problems. It was stated in [8] that the condensation of DOFs
at each Newton—-Raphson iteration is very time consuming so a number of improvements is needed.
They induce the third group of problems related to modification of numerical tools discussed in [8].

A novelty of the presented paper is a much more efficient FE program, written especially from
the viewpoint of the condensation procedure. An automatic renumbering of DOFs leads to a nar-
row semi-band of the considered stiffness method. Another improvement corresponds to a simple
adaptive scheme for the load factor step.

A higher numerical efficiency of the FEM/HTNN hybrid program than the one achieved in [15] is
shown on an example of a tension perforated strip with a rigid bolt placed frictionlessly in the hole.
A number of conclusions, valuable for the future research, can be drawn on the basis of extended
numerical analysis.

2. HTNN AND FEM FORMULATIONS
2.1. The Panagiotopoulos approach

The Hopfield-Tank Neural Network (HTNN) was formulated for continuous variables. HTNN ap-
pears to be especially useful for the analysis of mathematical programming problems [13].

In Fig. 1 the HT network feedbacks are shown. HTNN is ready for operation after the network
parameters w;; and I; are specified, i.e. computed in the so-called storage phase. The network
operates in the retrieval phase in a dynamic way. This means that after introduction of initial
values of inputs z;(0), their subsequent values z;(s) are computed recurrently. The iteration is
continued until the stable state of the network equilibrium is reached. HTNN can be considered as
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Fig. 1. Architecture of HTNN
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a dynamic system and Lyapunov’s theory can be usefully applied. For HTNN the following energy
function is defined [13],

e e 1
Bx(s) = —3 30 Y wiai(s)ai(0) - k() + D [ F @), (1)

i=1 j=1 i
where: s — iteration step, F; — activation functions, R; > 0 — network parameters. Function (1)
is also valid for the dynamic, continuous in time, process which is described by a set of ordinary
equations,
dvi OFE Vi o i . il
dt O0z; lz:(t) R; = poll; i

xi(t)=Fi(vi(t)) for i=1,...,N,

where: C; > 0 — network parameters. HTNN is an analog of the electrical network where: w;; are
conductances, I; — current sources, z; — potentials, C; — capacities and R; — resistances, cf. [13]

Equations (2) are called HTNN evolutionary equations. The stable equilibrium state is defined
by the following criteria,

C;
(2)

d
minE(t) =0 < a-’f:o. (3)
In papers [5, 10] by Panagiotopoulos and his associates it was proved that HTNN can be specified
for the analysis of quadratic programming problems with

a) bilateral constraints

min {%QTKQ - PTQ} ; (4a)
b) unilateral constraints

min {%QTKQ 2 PTQlQ > o} : (4b)

where the FE notation is used: K € RN x RN — stiffness matrix, P,Q € RN - nodal forces and
displacement vectors, respectively.
HTNN parameters are related to the components of FE matrices,
—Kij for 1 75 ] y
Ml == Wiy = i A
4 o { —Kij-}-l/R,' foBs 42704
Variables z; are specified in (1) and (2) using activation functions corresponding to types of
constraints,

A (5)

a) identity activation function for bilateral constraints,
z; = Qi = Fi(vi) = vi, (6a)
b) piecewise-linear activation function for unilateral constraints,

v %or® B;:2>05

«’Ci:Qi:Fi(Uz‘):{ S ey g (6b)

After adopting C; = 1 for i = 1,..., N and substituting Eqgs. (5) and (6), Eqgs. (2) take the form
%:_KQJerRt, (7)

where: R; — vector of residuals at time ¢. In what follows, Eq. (7) is called HTNN analog.
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2.2. HTNN and FEM in plasticity

The asymptotically stable equilibrium state of HINN corresponds to the equilibrium state of FEM
system

Z—:zR—aO ot i B (8)

where: R = P — KQ - vector of residual nodal forces. This means that instead of the analysis
of algebraic problem (8), the initial value problem (7) is considered, corresponding to the simple
gradient method of solution of the set of algebraic equations. In case of linear FEM formulation,
stiffness matrix K and reference load vector P* are fixed. The HTNN analog, i.e. analysis of the
initial value problem (7), can be used for different values of load factor A in the vector of nodal
loads P = A P*. This approach can be used efficiently for the analysis of linear elasticity problems
with unilateral constraints, cf. [15].

The analysis of elastoplastic problems by the HTNN analog is much more difficult since the
network parameters, corresponding to FEM matrices K and P in (7), are influenced by the yielding
process. Instead of Eq. (8) the incremental FE equation is used, cf. [12],

KrAQ=AA-P*+R, 9)

where: K7 — tangent stiffness matrix, AQ — increment of nodal displacements vector, A4 — incre-
ment of load factor, P* — reference nodal loads vector.

Equation (9) is solved iteratively using various control parameters [2]. Let us assume load control
and the load factor increments A,, A and iteration steps it for solving a sequence of linearized FE
equations

mK(it—l)AAQ(it) = a(it)AmA .P* + (1 =% a(it)) mR(it—l) ’ (10)
where: , K1) = K7(,,Q*1), ,,R#1) = R(,,Q(*~1)) — tangent stiffness matrix and vector of
residual forces, updated for the vector of total displacements

it—1

mQUD = 1Q+ ) AAQW), (11)
k=1

and the parameter a(®) to be

(12)

olit) — 1 for predictor at it=1,
| 0 for corrector at it > 1.

It was stated in papers [5, 10, 15] that the iteration process converges more quickly in case of
unilateral constraints. That is why elimination of bilateral constraints and corresponding condensa-
tion of the stiffness matrix is recommended. Let us assume that the condensed system has n < N
degrees of freedom and the corresponding stiffness matrix and vectors in R™ space are written in
small letters, i.e. k, q, p,r.

2.3. Condensation of bilateral DOFs

The displacement vector Q € R" is split into subvectors q € R" and Q¢ € RV,
Q i {q, QC}7 (13)

where q — vector corresponding to predicted unilateral constraints. For the sake of simplicity, Eq. (9)
is written in the form corresponding to Eq. (13),

[Eﬁ %HAA&F[gS} (14)
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After evident manipulations the following relations are obtained for the condensed system of
n degrees of freedom,

kAq=Ap, where k=Ks-KpKg'K5, Ap=AP,-KpK;'APc, (15)
and for returning to original system
AQe = -K;' K5 Aq+Kz' APc. (16)

In paper [15], the simple gradient method, used in [5, 10], was replaced by the conjugate gradient
method so the evolutionary equation of the condensed system takes the form

dv rl.ry

— =r;— T for By = ———, 17

dt t ﬂt t—1 t rgﬂ_l Py ( )
where r; is the vector of residual forces at the time instant ¢,

r, = —k(ma® D)AAq; + 6 Apd - p*(1 — al?) <m/1p* = f(mq<if—1>)) . (18)

The stiffness matrix ,, k(@1 and the vector of internal forces p,f (it=1) are to be updated for each
iteration step it on the system level. These values are fixed for the HTNN analysis at each it step.

In case of the modified Newton-Raphson method the stiffness matrix is updated only several
times at the beginning of each load level m, i.e. pnk = k(mq(s)), where s denotes the number of it
after which the stiffness matrix is fixed.

The main problem of condensation is the inversion of matrix K¢ shown in (14). A numerically
efficient procedure of the system decomposition has been worked out on the basis of renumbering
of DOFs, which leads to the minimal width of the semi-band of matrix k.

3. ANALYSIS OF A PERFORATED TENSION STRIP WITH A FRICTIONLESS CONTACT
ZONE

3.1. Assumptions and data

The computational method FEM-HTNN, depending on the interaction of FEM and HTNN, is
illustrated on an example of a perforated tension strip which is considered in many papers as
a bench-mark type problem, cf. [14]. Two special cases are discussed: A) a strip with a free boundary

of the hole, B) a rigid bolt is fitted to the hole and frictionless contact zone occurs under the applied
load, uniformly distributed along the external boundaries, Fig. 2a.

a) b)
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Fig. 2. Geometrical, load and material data for a perforated strip
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Fig. 3. FE mesh for a quarter of the strip: a) Numeration of nodes for the hole free boundary and

application of FEM only, b) Numbering of nodes for FEM-HTNN interaction
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Fig. 4. Increment of the vector of unilateral displacements of node i at a rigid bolt
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The strip is made of a homogeneous, isotropic material with the Huber-Misses—Hencky yield
surface and the linear, isotropic strain hardening, corresponding to data of uniaxial tension shown
in Fig. 2b. Because of double symmetry only a quarter of the strip is analysed. The 8-node isopara-
metric plane FEs with four Gauss points of reduced integration are used. The FE system shown
in Fig. 3 has N = 2253 — (7 + 13) = 476 DOF, where (7 + 13) = 20 DOF correspond to the sup-
ports at the symmetry axes. In case B), i.e. for the strip with a rigid bolt, the frictionless contact
is assumed. Because of the curved contact boundary the constraint condition is formulated in the
form corresponding to node ¢ of the displacement vector u, cf. Fig. 4,

Vi for lxt| S R,
= 19
s e { AAg; for |x¢ <R, (19)
where

X; = Xg + W1 + vy, AAG; = — X0 — Ug—1 - (20)

%

To make it easier the node index ¢ and iteration superscript it, cf. Eq. (18), are omitted in
Egs. (19), (20) and in Fig. 4.

3.2. Numerical analysis

The computations were carried out under the load control 7 = A for the load factor value up
to A = 2.0. Two changes of load step size were used: 1) constant increment of load factor A4,
2) adaptive increments Ap, A.

A very simple adaptation formula is assumed for Ap, 4,

Am-a1d{2 for Itm> I+,
A A & oA i for It— < Itm < It+, (21)
Asi-14 %2 i for. - Itm < It—;

where: Itm — number of iteration for the m-th step of the Newton-Raphson method; It—, It+
— prescribed number of iterations. Itm corresponds to the satisfaction of the following convergence
conditions, cf. [12],

|AAQl <eq  and R <er, (22)

where: ||(+)|| — norms of dimensionless vectors.

In case of the considered quarter of the strip it was assumed in (21) and (22) that It— = 4,
It+=T,eq=er=1-10"1

The condensation of the original FE system was performed from N = 476 DOF ton = 2x19—-1 =
37 DOF, corresponding to 19 nodes placed along the current boundary of a quarter of the strip
shown in Fig. 3. Instead of the classical 4th order Runge-Kutta method, used in [5, 10|, the 5th and
6th order Runge-Kutta—Fehlberg embedding formula with automatic step size control [15] was used.
On the basis of numerical experiments, performed in (8], the following stop criterion was assumed
for the iterative procedure, corresponding to Eq. (3),

max || Av;|| < &y, (23)
1

where: Av; = (v;); — (v3)1—1 — increment of the component i = 1,- -, n of the vector v in Eq. (17).
In the computations associated with the problem considered the admissible error &, = 1-10710 was
used. The computations were run on a PC class computer, with Linux system. In Table 1 the results
of computations are listed for two cases A) and B), i.e. for a strip with no bolt and with one the
bolt, respectively. The case A) was analysed by means of pure FEM program, then by the hybrid
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Table 1. Total number of iterations NR in the Newton—Raphson method, total number of iterations HT by
HTNN and number of load factor steps M for initial increment A; A (D — divergence of the iteration process).

Case A) Case B)
hole with no bolt hole with a bolt
Steps (free boundary of hole) (frictionless contact boubd.)
of load FEM | FEM/BPNN | FEM FEM/BPNN
factor FEM | FEM/BPNN | -HTNN -HTNN -HTNN -HTNN
AN =0ExkNR | B7 67 87 75 88 82
HT - - 161818 196231 140709 183797
AA=02 | NR | 48 40 47 D 47 D
HT - - 94441 82484
AA =01 | NR | 145 112 140 D 140 D
mNR HET - - 248635 207201
AA=02 | NR | 84 D 86 D 85 D
mNR HT - 168140 135836
A1A=0.1|NR | 46 72 47 39 30 58
HT - - 103417 114315 55104 150305
M 10 16 13 9 7 14
AijA=02 | NR| 40 38 40 41 40 59
HT = = 99897 100823 77980 144710
M 8 8 8 8 8 8
A A=04 | NR| 41 58 35 56 43 58
HT - = 85823 184435 80954 148979
M 8 13 6 13 8 13
AiA=10 | NR | 31 44 21 43 24 44
HT - - 75738 149051 52531 125173
M 5 9 5 9 4 9

program with the neural procedure taken from [14]. The same case was analysed by the hybrid
program FEM-HTNN and FEM/BPNN-HTNN.

The case B), i.e. the strip with a rigid bolt, was analysed by the programs FEM-HTNN and
FEM/BPNN-HTNN.

In both cases the fixed load steps A4 = 0.1,0.2 were applied and after M = 20,10 steps,
respectively, the load factor reached the value A = 2.0. The initial steps A4 = 0.1,0.2, 0.4, 1.0 were
used in case of application of the adaptive formula (21). The numbers NR and HT correspond to the
total number of iterations in the Newton-Raphson method and in the HTNN analog, respectively.
In case of the adaptive load step the number of load factor increments M is shown.

For the fixed values of A4 = 0.1,0.2 the results of computations for the modified Newton—
Raphson method are shown as ,,NR. After a number of experiments performed for A4 = 0.1 it
was stated that the lowest number of iterations NR could be obtained for fixing the stiffness matrix
mk(®) after the first s = 3 iterations for each load increment m. In case of the divergent iteration
process the capital D is shown in Table 1.

3.3. Discussion of results

The computations performed at different load factor increments AA did not affect significantly
the results corresponding to the final load value 4 = 2.0. It was stated that for the equilibrium
paths shown in Fig. 5 values of displacements ua (A4 = 2.0) had the same three significant digits
independent of values of AA or AA;.

In Fig. 5 equilibrium paths A(ua) are shown for the strips with and without a rigid bolt. It is
evident that the strip with a rigid bolt is stiffer than the strip with no bolt. After unloading the
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Fig. 5. Equilibrium paths A(u4) for a perforated strip with and with no rigid bolt placed in the strip hole

permanent displacement of the strip with bolt 3 = 0.72mm is about 15% smaller than displacement
uy = 0.84 mm of the strip with a bolt.

In Figs 6a,b the deformed strips are shown. As can be seen, the contact takes place only along four
FEs. In Figs 6¢,d yielding zones are shown. They are affected, of course, by the contact boundary
of the strip and bolt.

The application of an improved condensation procedure enables a significant decrease of the
number of iterations HT of the case B) analysis. It was stated in [13] A4 = 0.1 the total number of
iteration was about HT = 24-30 for the adaptive load factor (cases A4 = 0.1,1.0)

The next conclusions correspond to the results in [5, 10, 15]. The analysis of constraints by the
FEM and HTNN interaction i causes a significant increase of iterations NR, e.g. compare the results
obtained for case A) by programs FEM and FEM/BPNN vs. results by means of FEM/BPNN-
HTNN. The activation of unilateral constraints, i.e. appearance of contacts between the strip and
bolt, causes the decrease of iteration numbers HT. The advantages resulting from the incorporation
of the BPNN procedure into the FEM program (hybrid program FEM/BPNN) are not so evident as
it was concluded in [14]. In many cases listed in Table 1 the results obtained by means of the hybrid
programs FEM/BPNN and FEM/BPNN-HTNN are worse than those by the programs FEM and
FEM-HTNN. A probable reason is that the BPNN used in [14] has wider generalization features
than those needed for the analysis at longer and adaptive load factor step size.

There are no advantages of the application of the modified Newton-Raphson method (,,NR).
The simplest version of ,,NR, corresponding to single updating of the structural stiffness matrix
per one load step, leads to early divergence of the iteration process. The updating at the first three
iterations per one A/ can also be insufficient to improve the results obtained by ,,NR vs. results
by the classical NR method.

4. CONCLUSIONS

1. The Panagiotopoulos approach is developed from the viewpoint of the elastoplastic analysis. The
approach can be interpreted as an interaction of two programs, i.e. a FEM program and HTNN
numerical analog, to solve the incremental set of FE equations with unilateral constraints.

2. The procedure of FE stiffness matrix condensation is the most time consuming procedure so the
optimization of this procedure can give significant reduction of iteration number.

3. The application of a hybrid program FEM/BPNN needs deeper recognition from the viewpoint
* of sufficient generalization features of the neural procedure used in [14] for the simulation of the
Return Mapping Algorithm.
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4. The paper is the next step of research reported in [8]. The results of extended numerical analysis,
discussed in Section 3.3, indicate future research on applications of Panagiotopoulos’ approach
to the analysis of elastoplastic problems with unilateral constraints.

5. The analysis of a strip with a frictionless contact zone confirms the advantages of the modified
Panagiotopoulos approach to the analysis of contact of elastoplastic bodies. These problems are
one of more complex problems of FE analysis [18]. The approach related to the application of
HTNN analog opens the door also to the analysis of friction contact problems [9)].
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