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The discrete counterpart of a class of Hopfield neural networks with periodic impulses and finite distributed
delays is introduced. A sufficient condition for the existence and global exponential stability of a unique
periodic solution of the discrete system considered is obtained.

1. INTRODUCTION

A neural network is a network that performs computational tasks such as associative memory,
pattern recognition, optimization, model identification, signal processing, etc. on a given pattern via
interaction between a number of interconnected units characterized by simple functions. From the
mathematical point of view, an artificial neural network corresponds to a nonlinear transformation
of some inputs into certain outputs. Many types of neural networks have been proposed and studied
in the literature and the Hopfield-type network has become an important one due to its potential for
applications in various fields of daily life. The model proposed by Hopfield, also known as Hopfield’s
graded response neural network, is based on an analogue circuit consisting of capacitors, resistors
and amplifiers. More details about artificial neural networks can be found in Section 2.

Hopfield neural networks have found applications in a broad range of disciplines [12-14] and
have been studied both in the continuous and discrete time cases by many researchers. Most neural
networks can be classified as either continuous or discrete. In spite of this broad classification, there
are many real world systems and natural processes that behave in a piecewise continuous style inter-
laced with instantaneous and abrupt changes (impulses). Periodic dynamics of the Hopfield neural
networks is one of the realistic and attractive modellings for the researchers. Signal transmission
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between the neurons causes time delays. Therefore the dynamics of Hopfield neural networks with
discrete or distributed delays has a fundamental concern.

In the present paper, we introduce the discrete counterpart of a class of Hopfield neural networks
with periodic impulses and finite distributed delays. Combining some ideas of [2, 26], we obtain
a sufficient condition for the existence and global exponential stability of a unique periodic solution
of the discrete system considered.

2. ARTIFICIAL NEURAL NETWORKS

An artificial neural network (ANN) is an information processing paradigm that is inspired by the
way biological nervous systems, such as the brain, process information. The key element of this
paradigm is the novel structure of the information processing system. It is composed of a large
number of highly interconnected processing elements (neurons) working in unison to solve specific
problems. ANNs, like people, learn by example. An ANN is configured for a specific application,
such as pattern recognition or data classification, through a learning process. Learning in biological
systems involves adjustments to the synaptic connections that exist between the neurons. This is
true of ANNs as well.

Neural network simulations appear to be a recent development. However, this field was established
before the advent of computers, and has survived at least one major setback and several eras. Many
important advances have been boosted by the use of inexpensive computer emulations. Following
an initial period of enthusiasm, the field survived a period of frustration and disrepute.

The first artificial neuron was produced in 1943 by the neurophysiologist Warren McCulloch
and the logician Walter Pitts (see [20]). But the technology available at that time did not allow
them to do too much. Neural networks process information in a similar way the human brain does.
The network is composed of a large number of highly interconnected processing elements (neurons)
working in parallel to solve a specific problem. Neural networks learn by example. Much is still
unknown about how the brain trains itself to process information, so theories abound.

An artificial neuron is a device with many inputs and one output (Fig. 1). The neuron has two
modes of operation; the training mode and the using mode. In the training mode, the neuron can
be trained to fire (or not), for particular input patterns. In the using mode, when a taught input
pattern is detected at the input, its associated output becomes the current output. If the input
pattern does not belong in the taught list of input patterns, the firing rule is used to determine
whether to fire or not.

An important application of neural networks is pattern recognition. Pattern recognition can be
implemented by using a feed-forward (Fig. 2) neural network that has been trained accordingly.
During training, the network is trained to associate outputs with input patterns. When the network
is used, it identifies the input pattern and tries to output the associated output pattern. The power
of neural networks comes to life when a pattern that has no output associated with it, is given as
an input. In this case, the network gives the output that corresponds to a taught input pattern that
is least different from the given pattern [4, 9, 10].

The above neuron does not do anything that conventional computers do not already do. A more
sophisticated neuron (Fig. 3) is the McCulloch and Pitts model (MCP). The difference from the
previous model is that the inputs are ‘weighted’, the effect that each input has at decision making
is dependent on the weight of the particular input. The weight of an input is a number which when
multiplied with the input gives the weighted input. These weighted inputs are then added together
and if they exceed a pre-set threshold value, the neuron fires. In any other case the neuron does not
fire. In mathematical terms, the neuron fires if and only if

XiWh + XoWo + XsWs +--- > T,

where W, , i = 1,2,..., are weights, X;, 7 = 1,2,..., inputs, and T a threshold. The addition of
input weights and of the threshold makes this neuron a very flexible and powerful one. The MCP
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neuron has the ability to adapt to a particular situation by changing its weights and/or threshold.
Various algorithms exist that cause the neuron to ‘adapt’; the most used ones are the Delta rule and
the back error propagation. The former is used in feed-forward networks and the latter in feedback
networks.

Neural networks have wide applicability to real world business problems. In fact, they have
already been successfully applied in many industries. Since neural networks are best at identifying
patterns or trends in data, they are well suited for prediction or forecasting needs including: sales
forecasting, industrial process control, customer research, data validation, risk management, target
marketing.

ANN are also used in the following specific paradigms: recognition of speakers in communica-
tions; diagnosis of hepatitis; recovery of telecommunications from faulty software; interpretation of
multi-meaning Chinese words; undersea mine detection; texture analysis; three-dimensional object
recognition; hand-written word recognition; and facial recognition.

Hopfield-type (additive) networks have been studied intensively during the last two decades and
have been applied to optimization problems [6-8, 11, 13, 14, 23]. Their starting point was marked
by the publication of two papers [12, 13] by Hopfield. The original model used two-state threshold
‘neurons’ that followed a stochastic algorithm: each model neuron i had two states, characterized
by the values Vi0 or V;l (which may often be taken as 0 and 1, or —1 and 1, respectively). The input
of each neuron came from two sources, external inputs I; and inputs from other neurons. The total
input to neuron ¢ is then

Inputto &= H; = ZTUVJ + I;
1#]

where Tj; can be biologically viewed as a description of the synaptic interconnection strength from
neuron j to neuron ¢. The motion of the state of a system of N neurons in state space describes the
computation that the set of neurons is performing. A model therefore must describe how the state
evolves in time, and the original model describes this in terms of a stochastic evolution. Each neuron
samples its input at random times. It changes the value of its output or leaves it fixed according to
a threshold rule with thresholds U; [13, 14]:

Vi V0 it Y TVi+L<Ui,
£
Vio V! i ) TVi+L> U
1]
The simplest continuous Hopfield network is described by the differential equation

dz(t)
dt

= —a(t) + W f[z(2)] (1)

where z(t) is the state vector of the network, W represents the parametric weights, and f is a non-
linearity acting on the states z(t), usually called activation or transfer function.

In order to solve problems in the fields of optimization, neural control and signal processing, neu-
ral networks have to be designed such that there is only one equilibrium point and this equilibrium
point is globally asymptotically stable so as to avoid the risk of having spurious equilibria and local
minima. In the case of global stability, there is no need to be specific about the initial conditions
for the neural circuits since all trajectories starting from anywhere settle down at the same unique
equilibrium. If the equilibrium is exponentially asymptotically stable, the convergence is fast for
real-time computations. The unique equilibrium depends on the external stimulus. The nonlinear
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neural activation functions f;(-), ¢ € Z*, are usually chosen to be continuous and differentiable
nonlinear sigmoid functions satisfying the following conditions:

(a) fi(z) = F1 as z — Foo;

(b) fi(z) is bounded above by 1 and below by —1;

(c) fi(x) =0 at a unique point z = 0;

(d) fl(z) > 0and f/(z) - 0 as z — Foo;

(e) fl(z) has a global maximum value of 1 at the unique point z = 0.

Some examples of activation functions f;(-) are

file) = tanh(@) = S5, fi@) = T = tanb(s/2),
2
il )= %arctan (gm) - filz) = 7 -T_ = gn(z),

where sgn(+) is a signum function and all the above nonlinear functions are bounded, monotonic and
non-decreasing functions. It has been shown [24, 28] that the absolute capacity of an associative
memory network can be improved by replacing the usual sigmoid activation functions. There, it
seems appropriate that non-monotonic functions might be better candidates for neuron activation
in designing and implementing an artificial neural network. In many electronic circuits, amplifiers
that have neither monotonically increasing nor continuously differentiable input-output functions
are frequently adopted [15, 25].

In the formulation of the systems of type (1) it is implicitly assumed that the neurons of the
system process input and produce output instantaneously and such outputs are delivered to the
receiving neurons instantly. It is, however, known that such instantaneous processing and deliv-
ery is not always true and there are significant time delays both in neural processing and axonal
transmission. The reader can see more details of time delays in neural networks in [19].

In [22] the global stability characteristic of a system of equations modelling the dynamics of
additive Hopfield-type neural networks both in the continuous and discrete-time cases is investi-
gated. In particular, a novel method of obtaining a discrete-time dynamical system whose dynamics
is inherited from the continuous-time dynamical system is studied. This aspect is important since
numerical algorithms of Hopfield-type differential equations lead to discrete-time dynamic systems
and such discrete-time systems should not give rise to any spurious behaviour if either system is
to be used for coding equilibrium as associative memories corresponding to temporally uniform ex-
ternal stimuli obtained. The discrete-time models serve as global numerical methods on unbounded
intervals for the continuous-time systems [21].

In [1] we investigated the global stability characteristics of these systems supplemented with im-
pulse conditions in the continuous-time case. The presence of impulses required some modifications
and the imposing of additional conditions on the systems. A subsequent paper [2] was devoted to the
formulation of the discrete-time analogues of these impulsive systems and the investigation of their
stability. Let us recall that convergent difference approximations for nonlinear impulsive systems of
differential equations in a Banach space were obtained in [3].

The results of [1, 2] were improved and generalized in [5]. In the last three years (2004-2006)
numerous papers devoted to different kinds of stability and existence of periodic solutions of neural
networks with impulses have appeared. Here we mention only [16-18, 26].
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3. STATEMENT OF THE PROBLEM. MAIN RESULT

In [26], the authors consider a class of Hopfield neural networks with periodic impulses and finite
distributed delays, which are formulated in the form of a system of impulsive delay differential
equations

dda: = —oizi(t) + J; bijg;(z;(t)) + ; /Ow cij(s) g5 (z;(t — 5)) ds + di(t),

t>0, t#tg,
:Bi(tk - 0) = ﬁz’kmi(tk), 1=1m, ke€ Z+,

(2)

where m is the number of neurons in the network, z;(t) is the state of the i-th neuron at time ¢,
a; > 0 is the rate at which the i-th neuron resets the state when isolated from the system, b is
the connection strength from the j-th neuron to the i-th one, g;(-) are the transfer functions, w
is the maximum transmission delay from one neuron to another, ¢;;(-) is the delayed connection
strength function from the j-th neuron to the i-th one, d;(t) is the w-periodic external input to the
i-th neuron, Z" is the set of all positive integers, t; (k € Z*) are the instants of impulse effect,
Bik (i =1,m, k € Z") are constants. Let us assume that:

H1. For j = 1,m, g;(-) is globally Lipschitz continuous with Lipschitz constant L;,
lgi(z) — gi(y)| < Ljlz — y| for all z,y € R.

H2. For ¢,j = 1,m, c;j(-) is absolutely integrable on [0, w].

H3. 0=t <tag<--- <tp <w, tgqp =tk +w, Bik+p = Bir for i = 1,m, kedr.

H4. There exist positive numbers \q,..., \,, such that

Xiay > Z )\j (Ibﬁl +/ |Cji(8)| dS) AesgEsT] Fng
j=1 o

Later in the paper [26] system (2) is assumed to be accompanied by the initial condition

‘T(T) o '¢(T)7 re [—w,O], (3)

where 9 : [~w, 0] — R™ is piecewise continuous with discontinuities of the first kind at the points
ty —w, k = 2, p. Moreover, 1 is left-continuous at each discontinuity point and satisfies

[\

Yi(ty — w + 0) = Bipthi(ty — w), s=1, &=

The solution of the initial value problem (2)-(3) is denoted by z(t,1). Under the assumption that
|Bik| < 1 for all ¢ = 1,m and k = T,p, making use of the Contraction mapping principle in
a suitable Banach space, in [26] it is proved that system (2) is globally exponentially periodic, that
is, it possesses a periodic solution z(t,1*) and there exist positive constants a and S such that
every solution z(t,1) of Eq. (2) satisfies ‘

» D-

lz(t,¥) — z(t, ") < all —¢*|le ™  for all t > 0.
Here

[l = sup max [yi(r)], [zt ¢)ll = max |zi(t, )]

—w<r<0 i=1,m i=1,m
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Now we shall formulate the discrete counterpart of problem (2)—(3). For N € Z* we choose the
discretization step h = w/N. For the moment we assume N so large that

h < miﬂ(tk+1 . tk)

k=1,p

In this case each interval [nh, (n + 1)h] contains at most one instant of impulse effect ¢.

For convenience we denote n = [t/h], the greatest integer in t/h, for t > —w, ng = [t/h]. Also,
by abuse of notation we write z;(nh) = z;(n).

Let n € Z, n # nj, . This means that the interval [nh, (n + 1)h] contains no instant of impulse
effect ¢, . Following [22], we approximate the differential equation in Eq. (2) on the interval [nh, (n+

1)h] by
d m N

= @@e) = et { S bygiay(m) + 33 Gy gy(esn—v)) 4 dim) ,  i=Tom,
j=1 j=1lv=1
where the quantities C;;j(v) are suitably chosen, say, Cj;(v) = f(';h 1A p Cij(8) ds or Ci;(v) = ¢ij(v)h.

We prefer the first choice, so that Z 1 Gii(v fo cij(s) ds is independent of h.
We integrate this differential‘equa,tlon over the 1nterval [nh, (n + 1)h] to obtain

. . eai(ntl)h _ eainh
z;(n + l)e“’("+1)h — mi(n)ea’”h ==

a;
m w2l N
> bisgi(i(n) + Y > Cij(v)gi(ws(n — v)) + di(n)
j=1 3=1 =1
If we denote by ¢;(h) the positive quantities
o —aih
$i(h)=———, i=Tm
a;
we can rewrite the last equation in the form
m N
zi(n + 1) = e7 % g;(n) + ¢s(h Z bijgi(@i(n Z Z Ci;(v)gj(zj(n —v)) +di(n)| ,
g=1 v=1
i=1,m, T oy 7k (4)

Next, for n = ny, the interval [nh, (n+1)h] contains the instant of impulse effect ¢;. On this interval
we approximate the impulse condition in (2) by

zi(nk + 1) = Bizi(ng), i=1m, keZ". (5)
Finally, the initial condition (3) is replaced by
z(n) = ¢(n), n=~N,-N+1,.:.,;0 (6)
where ¥ = (¢5,...,%m) : {=N,—N+1,...,0} - R™. We assume that 1 satisfies 1;(—N) = 1;(0)
and
Yi(ng +1— N) = Buthi(ng — N), i=1m, k=T1p.
We can regard the initial functions 1 as elements of the vector space
€= l(n)] i=1m n==-N+1,...,0;
Yi(nk +1 = N) = Bigthi(ny. — N), k =2,p;
$i(=N +1) = 8a#i(0), i =T,m} c R™
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equipped with the norm

bl 7. iR BRI,

The solution of the discrete initial value problem (4), (5), (6) is denoted by z(n,®), n € Z, n >
—N + 1. We shall use the norm

llz(n, )|l = max |zi(n, )|

1=Im

Conditions H3 and H4 are replaced respectively by
ﬁg. Di=my i< no < <’I”Lp<N, nk+p:nk+N, ﬁi,k+p:ﬁik for 2 =1, m, keZt.

H4. There exist positive numbers Ay, ..., A, such that

m N
Nia; > L Z)\j (lbﬂl + Z |C31(V)l> s b= 1oy,
j=1 =l

Our main result is the following

Theorem 3.1. Let system (4)—(5) satisfy the conditions HI, }’I\{/&, H4. Then there exists a number
Ny such that for each integer N > Ny system (4)—(5) is globally exponentially periodic. That is,
there exists an N-periodic solution x(n,1*) of system (4)—(5) and positive constants a and q < 1
such that every solution z(n,v) of Eqgs. (4)—(5) satisfies

lz(n, %) — 2(n, ¥)I| < ally — ¢*|lg"  for all n € Z*.

4. PROOF OF THE MAIN RESULT

Lemma 4.1. Let conditions H4 hold. Then there exists a number p > 1 such that for 1 < p < p
and 1 = 1, m we have

m N
Ai(1— pe=®") — Ligi(h) Y A |plbsil + ) 1C5:(v)]p" | > 0. (7)
9=T v=1
In particular,
m N
Ai = Ligi(h) DA D ICsa(v)| 9+ > 0. (8)
j=1 wv=1

Proof. Let us denote by Gi(p), i = 1,m, the left-hand side of inequality (7). The functions G;(p)
are continuous for p > 1 and

Gi(1) = Xi(1 — e %) — Ligi(h) Zm:)\j

j=1

m N
= ¢i(h) [Miai — Li »_ ) <|bji| + ¥ |Cji(V)|> >0
7=l =]

by virtue of H4. There exist numbers p; > 1 such that Gi(p) > 0 for p € (1, ps].
Let p= min p;. Then for 1 < p < p we have

i=lm

N
sl + > 1C;i(v)]
v=1

Gi(p) > 0, 1=1,m. O
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In order to prove Theorem 3.1, we need the following lemma.

Lemma 4.2. Let z(n,)), (n, ) be a pair of solutions of system (4)—(5). If conditions H1, H3, H4
are satisfied and p is given by Lemma 4.1, then for any p € (1,p] and all n € Zt we have

1(0,n—1)
lz(n, %) — z(n, §)|| < K(N,p) [[ (1+pBe)oIlv — I, (9)
k=1
where
m N v
K(N,p) = mln{)\ a]}z)‘ { ZLJZICZJ(V)ZPT}a (10)
j=1lm j=1 v=1 r=1
By, = max |Bixl, i(0,n — 1) = max{k: nx <n-—1}.
1=1m

Proof. Let us denote

)= FRCHC SR S

Then for n # ny we derive
yi(n+1) < pe~ %My, +pZ|le|L ¢;(h)y; ”)‘*‘ZZWQ ) Lidj(h) p" yi(n - v).
4=1 p=1
We define a Lyapunov functional
m m N n—1
=Y XN w(n)+ > Ligi(h) Y IC; @) o Y wilr) ¢
=1 i § v=1 r=n—v

We can now estimate the difference V(n+ 1) — V(n) along the solutions of (4) for n # ny as follows:

m N
Vin+1)=V(n) <Y Ai(pe 1)y Z A Z Lj;(h [mbm +3"1C5(w)] p} yi(n).
=1 v=1

In the second term we change the order of summation with respect to ¢ and 7, and then we replace
1 by 7 and wvice versa. Thus we obtain

Vin+1) = V(n) <) Nlpe ™ =1)yi(n) + > Ligi(h) > Aj {p|bﬂ| = Z 1Ci(v)| p” 1} yi(n)
) =1 9=

m m N
== {)\z‘(l — pe” ") — Ligi(h) Y N [P|bji| +1Cii(w)] p”“] } yi(n)
) F=1 Ti—% §
G

i(p)yi(n) <0 for ¢ p€ (1, ),

that is,

Vin+1) <V(n) for neZ"\{n,ne,...}.
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Next we find successively
|zi(ng + 1,9) — zi(ng + L9)| = |Bacl|zi (g, ) — i (g, )| < Bielwi(rg, ) — wi(ng, )],
Yi(nk + 1) < pByyi(ng),

m N Nk
Ving +1) Z i {kay,-(nk) - Z Lj¢j(h) E |Cij(l/)| pu-l-l Z yj('r)} :
=1

j=1 r=np+l-v

Thus, by virtue of Eq. (8), we find

; m m N
Vi +1) = (14 pBe)V(ng) < — {Az Ligi(h) Y A ) 1Cii(v ”“}yi(nm
j=1

=1 vl
m m N nip—1
—kaZL (,25z Z)\JZ[C U+1 Z y,'(nk —l/)
=1 7=1 =] r=ng+1l-v
m N
~ (1+pBy) ZL $i(h) > X D 1CHw)| p (i —v) < 0,
g=X v=1
that is,
V(ng+1) < (14 pB)V(ng) for keZ'.
Combining these estimates, we derive
i(0,n—1)
Vin) <V(©0) [] (+pBw). (11)
k=1
Further we notice that
LLT O =
V(n) > p" ‘|z (n,¥) — zi(n,
(n) > p ;@(h)' (n,9) = @i(n, 9)|
> p" ) Nailzi(n, ) — zi(n, )|
i=1
. g% mln {/\ aJ}Zkv, n,¥) — z;(n, )|
i=1
> " ,m%g{Ajaj}||w(n,w) - a(n, ). (12)
j=Im
On the other hand,
vi)=S "N { +ZL¢J Z V)Y y }
1= r=—v

m m N
) Z*i{ 40—l Ly 35,3 st Z i }

m m N v
<3 A {Jh) Y Czj(V)IZp’"} I — Il (13)
¥ 1 = r=1
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From the inequalities (11), (12), and (13) we derive the assertion of Lemma 4.2 with K (N, p) given
by Eq. (10). O

Proof of Theorem 3.1. Let s € Z§ =Z" U{0} and Ns+1 <n < N(s+1). Then i(0,n — 1) <
p(s + 1) and from Lemma 4.2 we obtain

lz(n, %) — 2(n, P)|| < K(N,p) [T(1 +pBy) l|¢ A (14)

k=1

P
H 1+ pByg)

Let g € (p~1,1). Then we can find Ny such that for N > Ny we have

p
H 1+ pBg) <

Then (14) takes the form

|lz(n, ) = z(n, P)I| < K(N,p) ¢*N |9 — 9| (15)

for Ns+1<n< N(s+1) and K(N,p) = K(N,p) [Th_,(1 + pBy).
Now we define an operator P : C* — C* as follows. fory={fin-N); d=1m n=1,N}
we set

Py = {zi(n,¥); i=T,m,n=T,N}.
Then

pstly — {wi(n,¢); o I,m,n=Ns+1,N(s+ 1)}
and according to (15) we have
IPs+ly — PG| < B(N, p) ¢ |lv — 9.

If we choose s so large that K (N, p) ¢*N < G < 1, then P! is a contraction, hence it has a unique
fixed point ¥* : P*t1y* = *. On the other hand, PsT1(Py*) = P(PsH1ly*) = Py*, i.e., Pyp* is
also a fixed point for P¥*1. These two fixed points must coincide, so

P’lp* 5 w*

and 1* is a fixed point for the operator P. This means that

zi(n,¥*) = Yi(n — N) for " A=LN

and z(n,*) is a periodic solution of problem (4)—(5).
Now applying inequality (15) to z(n,1*) and an arbitrary solution z(n,1) we have

lz(n,¥) = z(n,%*)|| < K(N,p)g"" || — 9|

for- Ns+1 < n < N(s+1). If we put Ki(N,p) = K(N,p)g~", then K(N,p)g*V =
K;(N,p) gtIN < K1 (N, p) g™ for Ns+1<n < N(s+1). Thus we have

lz(n, %) — z(n,9*)|| < Ki(N,p) ¢"[l% —¢*|| forall n€Z".

This shows that any solution z(n,1) exponentially tends to the periodic solution z(n,%*) as
n — +00. g
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5. AN ILLUSTRATIVE EXAMPLE

This is a nontrivial modification of the examples given in [26, 27].
Consider the impulsive Hopfield neural network with finite distributed delays

% = adie B b o (6 £0Fsanbiallel)
+ /1(1 — ) [0.1 tanh(z1(t — s)) + 0.3 tanh(z2(t — s))] ds + sin(27t),
Jo
%% — —25(£) + 0.3 tanh(z1 (£)) -+ 0.4 tanh(zs(2))
+ /1(1 — 5) [0.2tanh(z1(¢t — s)) + 0.3 tanh(z(t — 5))] ds + cos(2nt), >0, t #ty,
0
(Zi(tk +0) = Bikzi(tr), i=1,2, keZt,

where

tagr1 = k, tageo =k +0.3, tzpy3 =k +0.6, keZ,
Puu=2, Pr2=-01 P13=04, Bo1=-15Po2=07, [oz=—
Then
w=1, ap =ag =1, b1 = 0.5, b1o = 0.2, b9 =70.3, bog = 0.4,
c11(s) = 0.1(1 — s), c12(s) = 0.3(1 — s), c21(s) = 0.2(1 — ), c22(s) = 0.3(1 — s),
91(+) = g2(+) = tanh(-), g = =1,
di(t) = sin(2mt), da(t) = cos(2nt), By =13 By = 0.7, By =0.5.

For N > 4 the corresponding discrete-time system is

;

1(n+1) =ePzi(n)+(1—e?) {0.5 tanh(z1(n)) + 0.2 tanh(zz(n))

+ Z [C11(v) tanh(z1(n — v)) + Ci2(v) tanh(z2(n — v))] + sin(27rnac)} j

zo(n+1) =e hzy(n) + (1 —e){ 0.3tanh(z1(n)) 4 0.4 tanh(zo(n))

+ Z [Co1(v) tanh(z1(n — v)) + Caa(v) tanh(zz(n — v))] + cos(27mx)} E

n # n,

; a:i(nk—i—l):ﬁika:i(nk), i=1,2, keZt,
where
h = l/N, Cll(l/) = O.I(I)(U), Clz(U) = 0.3(19(1/), 021(11) = 0.2@(1/), 022(1/) = 0.3(1)(1/),

vh

(I)(I/):/ (1—s)ds =h—h%(v—1/2).
(v—1)h

We have

N

3 o) :/0 (1—d)dr 05,

=1
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Since

N
Ly bl + bar] + S 101 W) + [Caa ()] } = 05+ 0.3+ (0.1 +0.2)0.5=0.95 < 1 = ay,

v=lk

N
Ly { [bia] + [ba2| + D [[C12(v)| + [Caa(¥)]] p = 0.2+ 0.4+ (034 0.3)05=0.9 < 1 = aa,

=i

condition H4 is satisfied with A\; = Ao.= 1 and Theorem 3.1 holds. More precisely, if p € (1,p),
where  is given by Lemma 4.1, and ¢ € (p~!, 1), we can choose N so large that (pg)™V > (14-2p)(1+
0.7p)(1+0.5p). Thus, system (16) has a unique N-periodic solution, which is globally exponentially
stable.

6. CONCLUSIONS

In the present paper we introduced the discrete counterpart of a class of Hopfield neural networks
with periodic impulses and finite distributed delays. We derived a sufficient condition for the exis-
tence and global exponential stability of a unique periodic solution of the discrete system considered.
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