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This paper deals with the second-order CR of a heterogeneous material undergoing small displacements. 
Typically, in this approach an RVE of a heterogeneous material is investigated. A given discretized mi­
crostructure is determined a priori, without focusing on details of specific discretization techniques. Ap­
plication of BNN as a tool for identification of characteristic length of a microstructure is discussed. 
An indentation test was analyzed under plane strain constraints for generating pseudo-experimental pat­
terns by means of FEM. A single input of BNN was formulated due to the application of PCA. The BNN of 
structure 1-16-1 with sigmoid hidden neurons was designed. The Bayesian inference approach was applied 
to obtain pdf of the characteristic length. Numerical efficiency of the proposed approach is demonstrated 
in the paper. 
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1. INTRODUCTION 

New industrial structures are built using highly heterogeneous materials. Typical examples of such 
materials are metal alloys, porous media, polycrystalline materials and composites. The size, shape, 
physical properties and spatial distribution of microstructural constituents determine the macro­
scopic, overall behaviour of these multi-phase materials. 

The characteristic length of a microstructure has to be determined to take into account higher 
order effects, e.g. size effect. The characteristic length scale is an additional macroscopic parameter 
of the constitutive model and cannot be derived by any homogenization method, cf. [6]. 

In the present paper an indentation test is analyzed, cf. [3], where the characteristic length of 
heterogeneous material L is significant. The computational homogenization method (CH) is used to 
determine overall properties of equivalent material [8]. The Bayesian neural network (BNN) model 
is formulated, cf. [2], for the identification probability density function (pdf) of a characteristic 
length size of the microstructure. The usefulness of neural networks for inverse problems has been 
investigated by many authors, cf. references in [14]. 

In Section 2.1 a short description of computational homogenization method is given. Next, a de­
scription of the principal components analysis (PCA) and BNNs is presented. In Section 3 a nu­
merical example of indentation test of a heterogeneous material is discussed and the advantages of 
this approach are demonstrated. In the end some final conclusions are expressed. 
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