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This paper deals with the second-order CH of a heterogeneous material undergoing small displacements.
Typically, in this approach an RVE of a heterogeneous material is investigated. A given discretized mi-
crostructure is determined a priori, without focusing on details of specific discretization techniques. Ap-
plication of BNN as a tool for identification of characteristic length of a microstructure is discussed.
An indentation test was analyzed under plane strain constraints for generating pseudo-experimental pat-
terns by means of FEM. A single input of BNN was formulated due to the application of PCA. The BNN of
structure 1-16-1 with sigmoid hidden neurons was designed. The Bayesian inference approach was applied
to obtain pdf of the characteristic length. Numerical efficiency of the proposed approach is demonstrated
in the paper.

Keywords and acronyms: micro- and macrolevels, second order continuum, computational homog-
enization (CH), representative volume element (RVE), finite element method (FEM), Bayesian neural
network (BNN), probability density function (pdf), principal component analysis (PCA), indentation test

1. INTRODUCTION

New industrial structures are built using highly heterogeneous materials. Typical examples of such
materials are metal alloys, porous media, polycrystalline materials and composites. The size, shape,
physical properties and spatial distribution of microstructural constituents determine the macro-
scopic, overall behaviour of these multi-phase materials.

The characteristic length of a microstructure has to be determined to take into account higher
order effects, e.g. size effect. The characteristic length scale is an additional macroscopic parameter
of the constitutive model and cannot be derived by any homogenization method, cf. [6].

In the present paper an indentation test is analyzed, cf. [3], where the characteristic length of
heterogeneous material L is significant. The computational homogenization method (CH) is used to
determine overall properties of equivalent material [8]. The Bayesian neural network (BNN) model
is formulated, cf. [2], for the identification probability density function (pdf) of a characteristic
length size of the microstructure. The usefulness of neural networks for inverse problems has been
investigated by many authors, cf. references in [14].

In Section 2.1 a short description of computational homogenization method is given. Next, a de-
scription of the principal components analysis (PCA) and BNNs is presented. In Section 3 a nu-
merical example of indentation test of a heterogeneous material is discussed and the advantages of
this approach are demonstrated. In the end some final conclusions are expressed.
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2. SHORT DESCRIPTION OF THE APPLIED METHODS
2.1. Computational homogenization method

In the paper the well-known framework of linking material properties at two levels of description is
presented. The material is assumed to be heterogeneous in the microscale level, and homogeneous
in the macroscale level of observation. There are a number of strategies which are used in the
multiscale analysis. In the present paper a numerical approach, i.e. CH [8], is applied, see Fig. 1.
This micro-macro model does not lead to a closed form of overall constitutive equations. Instead,
the model determines the stress-strain relation at every point of interest at macroscale by detailed
modelling of microstructure attached to that point.
Following [4], the multiscale models are constructed using three main ingredients (Fig. 2):

1. Modelling of mechanical behaviour at microscale, i.e. a RVE is introduced.
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Fig. 2. Computing heterogeneous material response
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2. A downscaling rule which determines the local solution inside the RVE, for given macroscopic
deformation measures.

3. An upscaling rule giving the macroscopic stress measures, knowing the micromechanical stress
state.

More detailed description of CH can be found in 7, 8].

2.2. Principal Component Analysis

The principal component analysis (PCA) is a statistical technique to simplify random data sets [5].
PCA is a linear transformation that transforms the data to a new coordinate system such that
the projection of the data on the first axis of a new coordinate system (called the first principal
component) has the greatest variance, the second greatest variance on the second axis, etc. PCA is
used for dimensionality reduction of the input dataset.

In the considered case of identification of microstructure characteristic length L the data are
related to points of the position vector x at an equilibrium path. Measured components of the input
vector x are scaled by means of formula G = (a — E[a])/Ela]. The correlation matrix is then defined,

N
i 1
R, ~ 77 anxg = YV_XXT’ (1)
=l
where N is the number of experiments in the matrix X = [x1,X2,..., Xn].

Then, the eigenpairs of the correlation matrix (X, vi) are computed and put in order according
to A7 > Ao > ... > An. The principal component vectors are defined as

If the first PC vectors Y; corresponding to i = 1,...,K for K < N and Ag > Ak41 are preserved
then the input space, spread on Y;, can be reduced to Ry, cf. [5].

2.3. Bayesian approach

Bayesian inference has been successfully applied to neural networks (NNs) for the analysis of not
only classification but also regression problems [10]. This technique is based on the Bayes’ theorem
which relates posterior and prior probabilities of stochastic events, i.e. P(A | B) and P(B). Bayes’
theorem plays the key role of continuous probability density distribution p(B | A), called pdf for
short, as probability density function. In the case of BNN, pdf takes the form

p(D | w)p(w)

ptw D) = e 3)
w|D) =T (
where: w € RW — weight vector, D — output data set. In the considered application of BNN the
output set is composed of characteristic length of RVE, i.e. D= flyi B v}

The denominator of Eq. (3),

p(D) = [ oD w)plw)dw, ()

plays the role of normalization factor. It can be computed by means of the marginalization princi-
ple [1, 5], i.e. by integration in the parameter space RW over all the weight vector components w;
for i — 157 W :
The application of Bayes’ inference technique requires the above mentioned integration over
weights, which needs the marginalization principle of as a new paradigm of BNN. This changes the
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optimization paradigm of formulation of classical neural networks, mostly applied in engineering
applications, cf. [5]. The predicted pdf of a target output value ¢, is computed according to the
formula

P I XD = [ ple | w8)p(w,008 |4 dwdads )

where: a, 3 — hyperparameters of an assumed pdf of the random weight and target vectors, i.e.
w(a) and t(8), correspondingly.

Prediction of posterior distribution (5) needs the computation of integral over posterior pdf,
conditioned on data sets {X, D}, and assumed pdf p(w | &) and p(t | B). The integration is ana-
lytically intractable and needs special numerical methods. From among many methods listed in [9],
the approach basing on Markov chains and hybrid Monte Carlo Method, cf. [1, 11], is frequently
applied to reduce the cost of numerical integration.

Emphasizing the major advantage of the Bayesian approach, a statistical model is built which
gives predictions of micro-parameters in terms of the posterior weights distribution. In case of
identification of characteristic length,

(L) = / BNN(y,w) P(w | D) dw. (6)

(L) are expected parameters, BNN(y, w) is the neural network model and P(w | D) is the posterior
distribution of weights conditioned on the training data D (in what follows output data are only
written since input data x can be omitted in Eq. (5)).

3. NUMERICAL EXAMPLE
3.1. Multiscale finite element discretization of indentation test

Indentation experiments, which are used to determine the mechanical properties of small volumes
of a material, are difficult to interpret at a microscopic level. The response of the system is very
complicated due to large stresses generated in the vicinity of the indentor, which can create defects
or cracks, or cause a phase transformation to occur in the material.

Here the qualitative analysis of a metal matrix composite (aluminium matrix with silicon inclu-
sions) subject to indentation is discussed, see Fig. 3. Attention is focused on the size effect in because
of a weak scale separation in the vicinity of the indentor application. The indentor is idealized as
a rigid body while the target material is modelled as a deformable body. To simplify the problem,
symmetry conditions are recognised and plane strain conditions subject to small displacements and
strains are considered. The indentor is assumed to be wedge shaped with an angle of 15° (o = 75°)
and the contact between the indentor and the target material is assumed to be frictionless (effect of
friction is considered negligible for indentors with angles larger than 12°, cf. [3]). At the macrolevel,
QU34L4, finite elements [6, 12| are used since strain gradient effects will be captured. The finite
element mesh for the macroscale is shown in Fig. 4. The element size for the finest part of the mesh
is 0.0025 mm. The size of each element in the coarse domain is 0.16 mm.

The characteristic size of the RVE varies as L = 0.001, 0.002, and 0.004 mm, while the size of
the inclusion relative to the size of the RVE is kept constant at 0.4L. Discretization of the RVE
at the microscale, shown in Fig. 5, is undertaken using four-nodes quadrilateral finite elements
with reduced integration and hourglass control. For stabilization of the tangent stiffness matrix, the
Galerkin /least-squares approach was used [6, 13]. The RVE is subject to displacement type boundary
constraints. The matrix (aluminium) is assumed to be an elasto-plastic hardening material, whereas
the inclusion (silicon) is modelled as a stiffer elastic material (see Fig. 5).

In Fig. 6 a typical deformation of the macroscopic mesh is shown, where h is indentation depth
and s measures the contact surface. The distribution of macrostresses is shown in Fig. 7. Utilising
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Fig. 4. Discretization for indentation test of a half of deformable body. The entire mesh is shown on the left
with increasing magnification of the mesh in the vicinity of the indentor shown to the right

the second gradient of displacements regularizes the problem and so there are no singularities in the
strain or stress fields. Since the material at the microscopic level is considered elasto-plastic, the
equivalent material at the macroscopic level behaves inelastically.

The deformation of a typical RVE within the vicinity of the indentor is shown in Fig. 8(a). It can
be seen that the solution within the RVE strongly depends on higher order effects and therefore the
result is significantly dependent on the intrinsic size of the RVE. Fig. 8(b) shows the distribution
of equivalent plastic microstrain which depends on the history of the macrostrains and the gradient
of macrostrains at the integration point.

The indentation test is undertaken for three different sizes of the RVE and the matrix is modelled
either as an elastic or an elasto-plastic material. In addition, for comparison purposes, the inden-
tation test is also undertaken assuming (i) homogeneous aluminium (i.e. all matrix) and (ii) ho-
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Fig. 8. (a) Deformation and (b) distribution of equivalent plastic microstrain in a typical RVE in the
vicinity of indentor.
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Fig. 9. Equilibrium path for indentation test

mogeneous silicon material (i.e. all inclusion). The diagrams of all these analyses can be seen in
Fig. 9. They point out a distinct size effect since if the characteristic size of the RVE decreases with
respect to the size of indentor then the response becomes stiffer. Such a result demonstrates that
for problems in which there is a poor separation of scales, size effect is important and cannot be
ignored.

3.2. Identification of characteristic length of microstructure

The computer simulation of experiment was performed for different Young modulus of the matrix
and inclusion, E,, and E;, respectively. The corresponding Poisson ratios are v, = 0.33 and v; =
0.17. For the identification problem only elastic response for matrix and inclusion was assumed. To
simulate the pseudo-experiment, random parameters were adopted. The Gaussian normal pdf of
Young moduli for matrix and inclusion were assumed:

Ep ~ N(70,100) GPa,  E; ~ N(450,500) GPa, (7)

respectively.
Prior distribution of characteristic length size L was estimated by Gamma pdf assuming k = 2
and ¢ = 2 in the formula

T e*m/d’
It is noted that prior distribution expresses a knowledge about the characteristic length of the
microstructure without reference to any data and prior estimation opinion about what the true
relationship might be.

For each pseudo-experiment only three variables were measured (computed), i.e. indentation
depth h, force applied to indentor F' and length s, related to the contact surface, Fig. 3. Altogether
344 pseudo-experiments were analyzed performing 34 incremental steps each corresponding to the
following input vector,

for z>0. (8)

7 7 7 = - = A a & A0
x:[hl,hQa"')h35aF11F2a"'aF35a31752)"'7335] ) (9)

where: iLi, F and §; are pseudo-experiment measured values.
In Fig. 10 the histograms of Young moduli E,, and Ej; for the matrix and inclusion are presented.
The histogram of characteristic length L is shown in Fig. 11.
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3.2.1. PCA

For the pseudo-experiment under study, three eigenvalues of the correlation matrix were computed,
A1 = 0.055, A2 = 8.69e—06, A3 = 4.83e—6.

Because the first eigenvalue is significantly larger than others, only the first principal component is
taken into account. PCA is a minimization of reconstruction error which is given by

E.=E[|X-wiY]|]. (10)

After [5], the reconstruction error is given by the formula

P
B o= Z’\i (11)
=2

and is equal E, = 2.52e—5. It can be noted that taking into account only the first principal
component PCA significantly reduces the number of input data, and reconstruction error is small.

3.2.2. Linear regression

After using PCA the linear regression method is applied to identify the relation between the first
principal component £ = Y71 and characteristic size L of RVE, Fig. 12. Predicted (linear regression)
values of Lpredicted VS pseudo-experiment values used for the testing Lyesting are depicted in Fig. 13.
Looking at errors of the linear regression approximation, shown in Fig. 13, one can notice that the
mean square error is small. However, the maximum testing error is about 40%. This is the reason
why BNN approach was applied.
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Fig. 12. Linear approximation (Lave = 0.0014 mm)
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3.2.3. BNN

From among 344 pseudo-experiments 200 data were randomly selected and completed the training
set. The remaining 144 experiments were used for the testing. Then the software FBM [11] was used
for training a family of BNNs. After the cross-validation procedure was applied, cf. [5], the network
BNN: 1-16-1 with 16 sigmoidal hidden units and linear output was accepted. The input corresponds
to the first principal component ¢ and the output is the characteristic length size L.

Predicted values of characteristic length size of RVE and its 3o standard deviations (sigma bars)
are shown in Fig. 14, cf [2]. The predicted variations depend on data set, so the sigma bars are small
at points where the data set is dense.
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Fig. 14. Standard deviation for BNN (L,ye = 0.0014 mm)

In Fig. 15 we see estimated characteristic length L for training and testing data as well 10% and
90% quantile lines. Figure 16 depicts computed values Lpredicted versus measured Lyesting, median
and mean square errors and correlations for the testing and training data. It is worth noting that
the mean square testing error and maximum testing error are smaller than for linear regression.
The values of 10% and 90% quantiles reproduce uncertainty, with which we can compute the value
of characteristic length of RVE, which can be related to the experimental data set.

4. FINAL REMARKS

A computational homogenization concept for heterogeneous materials undergoing small deforma-
tions has been explored. We have applied the Bayesian approach for neural network training and
demonstrated the advantages of this approach to analyze an inverse problem.

The problem of identification of characteristic length scale has been discussed. The presented
approach demonstrates the advantages of the applied neural network and the data compression
algorithm. PCA enables us to reduce significantly the size of input vector to only one scalar input x .
The network BNN:1-16-1 gives not only mean values of the characteristic length of RVE L but also
its normal pdf for computing the standard deviation o, or sigma bars.
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