Computer Assisted Mechanics and Engineering Sciences, 14: 243-250, 2007.
Copyright © 2007 by Institute of Fundamental Technological Research, Polish Academy of Sciences

Neural network identification of building natural periods
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into training and testing sets
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The paper deals with an application of neural networks for computation of fundamental natural periods of
buildings with load-bearing walls. The identification problem is formulated as a relation between structural
and soil parameters and the fundamental period of building. The patterns are based on long-term tests
performed on actual structures. Various splitting up of the set of patterns into training and testing sets
are considered in the analysis. The carried out analysis leads to conclusion that, even in “the worst” case
of randomly selected testing patterns, the natural periods of vibrations of buildings are obtained with
accuracy quite satisfactory for engineering practice.

1. INTRODUCTION

Estimation of the periods of natural vibrations is usually necessary in the dynamic analysis of
buildings. The basic approach is related to full-scale measurements of dynamic characteristics of
structures. There are, of course, many problems associated with planning, carrying out and analysis
of measurements. But in many cases this experimentally supported analysis is superior to theoretical
methods, which require some well known problems and difficulties resolving to create a satisfactory
model of very complex structures as buildings are, in particular — prefabricated buildings. In
the paper, on the basis of the results from full-scale dynamic tests of actual structures, neural
networks are used for computation of the fundamental natural periods of vibrations of medium
height, residential, prefabricated buildings (five-story buildings) with load bearing concrete walls.
Back-Propagation Neural Networks (BPNNs) and networks with Radial Basis Functions (RBF) are
applied in the analysis. The paper is a continuation of the research originated in [3, 4].

2. RESULTS OF EXPERIMENTAL TESTS ON ANALYSED BUILDINGS

Measurements were carried out on thirteen typical residential, prefabricated, with load-bearing walls,
five-story buildings. Ten of the buildings were erected in large panel technology, three buildings —
in large block technology. Full-scale tests were performed many times during a period of a few
years [1, 5]. Vibrations of actual buildings were excited by explosions in nearby quarries, mining
tremors, wind gusts, rhythmic swinging of people on the upper floor, impact of weights falling
down onto the ground near the buildings. The tests included measurements of horizontal vibration
components in two mutually perpendicular directions, parallel to the transverse and longitudinal
axis of the buildings. In Fig. 1 the selected example of considered structures with the measurement
points is shown. Because of very small damping in the analysed buildings, the differences between
the free frequencies and the eigenfrequencies were considered negligible. In order to determine the
fundamental periods of vibrations various methods of records processing were used — especially
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Fig. 1. Plane and vertical section of the building WK-70

Table 1. Experimentally evaluated fundamental natural periods of analysed buildings

Building Direction | Pattern number | T) [sec| measured
1 2 3 4
transverse 1 0.256
DOMINO-68 (I
o QLD longitudinal 2 0.230
transverse 3 0.256
PRMINR:R ) longitudinal 4 0.230
transverse 5 0.253
F-T-67-SA
e S longitudinal 6 0.204
seq. T transverse T 0.175
T & * [Tongitudinal 8 0.185
eIt transverse 9 0.180
& Mongitudinal 10 0.169
iy transverse 11 0.157
WUF-GT 84 (II) ® " [Mongftudinal - -
seg. T1 transverse 12 0.180
& % Mongitudinal 13 0.177
transverse 14 0.172
Y 1
CAMBY/Y:AY) longitudinal 15 0.192
transverse 16 0.185
BY II
CAMBY/(V (1) longitudinal 17 0.213
transverse 18 0.227
G MBS AT longitudinal 19 0.233
G transverse 20 0.155
B & " [Tongitudinal 21 0.233
I transverse 22 0.155
58 1 Mongitudinal 23 0.233
e transverse = =
BSK (I1) " longitudinal - -
Sl transverse 24 0.156
& Mongitudinal % 0.233
transverse 26 0.270
i longitudinal 20 0.294
transverse 28 0.294
bl o longitudinal 29 0.263
transverse 30 0.256
e longitudinal 31 0.227
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FFT and spectral analysis. In column 4 of Table 1 the experimentally evaluated fundamental natural
periods of analysed buildings are collected.

3. APPLICATION OF NEURAL NETWORKS FOR BUILDING NATURAL PERIODS
IDENTIFICATION

In the paper neural networks are used for computation of the fundamental natural periods of
vibration of medium height (five-story) prefabricated, residential buildings with load-bearing walls.
The analysis is based on the results of measurements on actual buildings and the main problem
associated with neural network identification is a proper selection of input variables.

The identification problem is formulated as a relation between structural and soil parameters,
and the fundamental period of building. In the light of full-scale tests of the analysed buildings it
can be stated [5] that the soil-structure interaction plays an important role in vibrations of medium
height buildings. The foundation flexibility is expressed by the coefficient of an elastic uniform
vertical deflection of the subgrade C, . The next representative parameter is the building dimension
in the direction of vibrations b. Other parameters correspond to the equivalent bending stiffness
s =3, EI;/a and equivalent shear stiffness 7 = 35, GA;/a, where: E, G — elastic and shear moduli
respectively; I;, A; — moment of inertia and a cross-sectional area of the i-th wall in the building
plan, a — length of building. These parameters were taken as input vectors x of neural networks
and the building fundamental natural period 7} was the output t of the network [3],

x(4><1) — {Cza b; S, ’I"}, t= Tl . (1)

The sets of training and testing patterns were formulated on the basis of the results from full-
scale tests. P = 31 patterns from the experimental data were collected. The numbers of patterns
are placed in column 3 of Table 1. It is necessary to split up the patterns into training (learning)
and testing sets.

4. INFLUENCE OF SPLITTING UP OF THE PATTERNS INTO TRAINING AND TESTING
SETS ON THE RESULTS OBTAINED

The neural network is learned using a training set and the main goal of the learning process is to
memorize by the network the rules which constitute the relationship between the input and output
data. The learned network should have generalization properties, i.e. the network trained on the
learning set should well operate on other patterns. In order to verify the generalization properties
of the network it is tested on the set of testing patterns. Thus, the correct choice of testing patterns
is very important in the neural network analysis.

Having a very small set of patterns a network was designed applying a modification of the
multifold cross-validation procedure [2]. From the total number of P = 31 patterns, T' = 5 patterns
for testing set were randomly selected, whereas the remaining L = 26 patterns were assigned as
a learning set. This procedure was repeated one hundred times. BPNNs of structure 4-4-1 with
Resilient back-propagation learning method and sigmoid activation function corresponding to the
input and output (1) considered above were formulated for each one from the one hundred cases.
Stuttgart Neural Network Simulator (SNNS) package [6] was used. As a result one hundred pairs
of Mean Square Errors (MSE) for the training and testing processes were obtained and analysed,

14
MSE(V) = = 3 (tp — )", 2
p=1

bt

where: V = L, T — number of patterns in the training (L) and testing (T') sets, ¢, and z, — com-
puted on the basis of experimental data and neurally predicted values of p-th pattern, respectively.
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Fig. 2. Histograms for (a) MSE(L) and (b) MSE(T)

In Fig. 2, the histograms of Mean Square Error for training processes MSE(L) and for testing
processes MSE(T'), obtained during the multifold cross-validation process, are shown.

The average values of Mean Square Errors for the training and testing processes for various groups
of the sampling numbers are shown in Fig. 3. In Fig. 3a there are the errors for the five groups with
twenty successive random selections in every group. In Fig. 3b the errors for twenty, forty, sixty,
eighty and all (that is one hundred) successive random selections are presented, respectively.

Looking at these average errors presented in Fig. 3 it is visible that the average Mean Square
Error values for learning process are nearly the same regardless of the group of sampling. The
differences between the corresponding testing errors are little higher. The average values of the
total one hundred training and testing errors were: MSE(L) = 0.000075 and MSE(T) = 0.000327,
respectively.

Besides the network errors MSE(L) and MSE(T) the accuracy of the networks training and
testing was estimated also by relative errors (ep;, ep, eVay:) and standard error (ste),

ep; = ( i ?—’) -100% (3)
P
ep A= |epi|7 (4)
1 14
e‘/avr = V Zep7 (5)
p=1
1 P
ste = F I; (tp — Zp)2 5 (6)

where: V = L, T, P — number of the training, testing and all patterns, respectively.
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Fig. 3. Average values of Mean Square Errors (MSE) for various groups of the sampling numbers

The coefficient of a linear correlation r(P) is also computed for every set of all pairs {t,, 2p}.

The cases with training and testing errors nearest to average values of the total one hundred,
with the minimal Mean Square Error for training process, with the maximal Mean Square Error
for training process, with the minimal Mean Square Error for testing process and with the maximal
Mean Square Error for testing process are taken in detail under consideration from the one hundred
randomly selected pairs of training and testing sets.

The errors corresponding to the training and testing processes for the above mentioned BPNNs:
4-4-1 are shown in Table 2. In the last row of the Table 2 the results for “subjective” selection of
testing patterns are also presented. The “subjectively” selected testing patterns represent different
buildings and different directions. Therefore, from the engineering point of view, it is quite good
choice.

Figure 4 shows a comparison of Success Ratio SR for the prediction of fundamental natural
periods of prefabricated medium height buildings obtained using the analysed BPNNs for some
cases of randomly selected testing patterns — sampling number 26, 38, 23 and “subjective” selection.
The Success Ratio as the function SR(ep)[%] enables us to evaluate what percentage of patterns
(SR) gives the neural prediction with the error not greater than ep[%]. In sampling number 26
and 38 the values of training errors MSE(L) and testing errors MSE(T') are the nearest to average

values of the total one hundred cases whereas in sampling number 23 the testing error MSE(T) is
maximal.
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Table 2. Errors of natural building periods identification using BPNNs

Criterion Number of| Numbers of eVave
for selection sampling | testing patterns MEE (L) | MSE(T) P e o0
nearest to average values 26 4, 10, 24, 25, 27 | 0.00008 | 0.00029 |3.2| 4.8 |3.4|0.011{0.968
of training and testing errors 38 2, 12, 25, 26, 27 | 0.00007 | 0.00036 [2.9| 4.7 [3.2(0.011|0.966
minimal 68 1, 56,:94:23, 28 0.00003 | 0.00022 [2.3| 3.2 |2.4{0.008|0.982
training error 84 10, 11, 19, 20, 28| 0.00003 | 0.00034 {2.1| 6.0 |2.7|0.009|0.978

53 4,5,9, 27, 30 0.00013 | 0.00014 |4.3| 3.8 [4.2/0.011{0.960
81 1, 10, 14, 15, 27 | 0.00013 | 0.00013 [4.2| 3.2 |4.0/0.011|0.961
92 2,4,7,16,29 0.00013 | 0.00006 {3.9| 3.5 |3.8(0.011(0.965
16 19, 20, 24, 26, 29 0.00008 | 0.00002 {3.3| 2.3 |3.1/0.008(0.981
71 3, 4,20, 21,26 | 0.00005 | 0.00002 {2.7| 2.1 |2.6{0.007)|0.985
88 1, 4, 16, 21, 26 | 0.00006 | 0.00002 |3.2| 1.9 [3.0/0.007|0.983

23 [6,9,11,14,26 |0.00007 | 0.00122 |3.0|10.9 [4.3]0.016|0.927

maximal
training error

minimal
testing error

maximal

testing error
“subjectively” selected
testing patterns

- 5, 10, 16, 18, 27 | 0.00008 | 0.00032 [3.0| 5.8 |3.5/0.011|0.964

100
80 -
— 60
N
E‘ —— sampling 26
2 40 :
——— sampling 38
----- sampling 23
vl = "subjective selection
of testing patterns"
0+ ; .
0 ) 10 15
ep [%]
Fig. 4. Success Ratio SR vs. relative error ep for the BP neural prediction of fundamental natural periods
of buildings

Looking at the errors corresponding to the training and testing processes of the considered
BPNNs put together in Table 2 and SR (ep) in Fig. 4 it is clear that the accuracy of the considered
BPNNs of architecture 4-4-1 is satisfactory from the engineering point of view. The carried out
analysis leads to conclusion, that even in “the worst” case of randomly selected testing patterns
when the MSE(T) is maximal, the natural periods of vibrations of buildings are obtained with
accuracy quite satisfactory for engineering practice. It is necessary to pay attention to the fact that
at least 97% of patterns have relative errors not greater than 10% (cf. Fig. 4) in all cases of division
of patterns into training and testing sets.

Besides of BPNNs application the estimation of fundamental natural periods was performed by
another type of neural networks: neural networks of architecture 4-5-1 with Radial Basis Func-
tions (RBF). These computations employed the same cases of patterns selection as for BPNNs.



Neural network identification of building natural periods 249

Table 3. Errors of natural building periods identification using RBFs

Tttt MSE(L) | MSE(T) eVave e | #(P)
sampling L 1 )
2 0.00041 | 0.00036 | 7.2 | 6.9 | 7.1 | 0.020 | 0.876
38 0.00036 | 0.00034 | 6.7 | 6.0 | 6.6 | 0.019 | 0.890
23 0.00034 | 0.00108 | 6.7 | 14.0 | 7.9 | 0.021 | 0.864
subjectively” selected | ) 0534 | 0.00028 | 6.4 | 6.4 | 6.4 | 0.018 | 0.809
testing patterns

100
80 -
260
S
& L
ZE sampling 26
——— lsampling 38
o i sampling 23
— "subjective selection
of testing patterns"
O T T
0 5 10 13
ep [%]
Fig. 5. Success Ratio SR vs. relative error ep for the RBF neural prediction of fundamental natural periods
of buildings

All the RBF neural networks considered in the paper are trained by means of a SNNS computer
simulator [6]. The RBF hidden neurons are associated with Gaussian RB function and each of RBF
networks has linear output. The results achieved for some of the RBF networks are shown in Table 3
and in Fig. 5.

Comparing the errors for BPNNs from Table 2 with the errors for RBF networks from Table 3
as well as Success Ratio SR(ep) in Figs. 4 and 5, it is clear that the RBF networks give the worse
accuracy of the obtained results.

5. CONCLUSIONS

The carried out analysis leads to conclusion that the application of all proposed BPNNs enables us to
identify the natural periods of the buildings with accuracy quite satisfactory for engineering practice.
Even in “the worst” case of randomly selected testing patterns, when the MSE(T) is maximal,
the neurally predicted natural periods of vibrations of buildings are very close to experimentally
obtained. The RBF networks give the worse accuracy than BPNNs.
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