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The paper deals with application of Al tools in experimental modal analysis. The example of Stabilization
Diagram processing, that is an intermediate stage of modal parameter estimation procedure, was selected.
In order to automate decision-making carried out during Stabilization Diagram processing a set of tools
employing: fuzzy reasoning and artificial neural nets was applied. The application of these tools enabled to
ease and shorten execution time of Stabilization Diagram processing. Additionally, the result of processing
has become operator-independent.

1. INTRODUCTION

Soft Computing as a computational method of Artificial Intelligence is the most often being applied
in numerical analysis of structures and systems. In mechanical engineering the most intense use of
various numerical analysis techniques takes place in the so-called virtual prototyping [16] process
aiming at minimizing of time and cost effort involved in development of new products. Though
in practice virtual prototyping is gaining more and more importance, there is at least a couple of
reasons for application of testing in the product development. The most important one is verifica-
tion of numerical analyses’ results. Other reasons for use of testing in case of structural dynamics
investigation is discussed in [16].

Increasing complexity of engineering problems that are being solved during product development
causes higher and higher demands concerning testing. This in turn makes testing engineers to
perform more and more complex tests and use more and more sophisticated model identification
techniques. Usually, such the enhancement of experiments results in considerable increase of amount
of data to be analyzed. Additionally, the demanded testing and parameter estimation time should
be as short as short as possible and the most objective model identification results should be
delivered. The relevant way to accomplish the stated demands is to automate the procedure of
testing (including analysis of results). The following sections present formulation and report an
example of automation of a crucial part of system identification procedure in case of experimental
modal analysis.

2. EXPERIMENTAL MODAL ANALYSIS - BACKGROUND AND PROBLEMS OF
AUTOMATION

Structural dynamics properties of mechanical systems determine behaviour of these systems when
they are subjected to dynamic loads (forces and torques). When elastic range of deformation am-
plitude and discrete parameter spatial distribution of solids are concerned usually Finite Element
method [11] is used for modelling vibration of a system under consideration. Assumptions of lin-
earity (superposition principle), reciprocity and time invariance of modelled systems are typically
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made during analysis [4]. In such case the theory of linear vibration determines the following form
of the structural model of a dynamic system [11],

Mik(t) + Cx(t) + Kx(t) = £(2) (1)

where M — mass matrix, C — damping coefficient matrix, K — stiffness coefficient matrix, x, x, %
— vibration displacement, velocity and acceleration vectors, respectively, f — excitation force vec-
tor, ¢ — time variable.

The structural dynamics properties of a system described by Eq. (1) might be extracted by for-
mulating and solving of eigenproblem [11], what results in determination of the modal model which
is a set of n natural frequencies f, (or circular frequencies w,), modal damping coefficients ¢, , and
mode shapes 9, (r = 1,2,...,n). Modal displacements ¢, compose a set of independent generalized
coordinates that do not possess straight-forward physical interpretation. A set of equations (1) after
introduction of modal coordinates

x(t) = ¥7q(t) (2)

where: q is a modal displacement vector, ¥ — matrix of mode shapes, and applying appropriate
orthogonality conditions [11], takes the following form,

M,i(t) + Cqa(t) + Kqa(t) = TTE(t), (3)

where M, — modal mass matrix, C; — modal damping coefficient matrix, K, — modal stiffness
coefficient matrix.

Modal matrices are diagonal, thus the set (3) is a set of independent equations.

While the structural type of dynamic model, in form of Eq. (1) or Eq. (3) is usually applied
in numerical simulation of response to assumed excitation the description of modal parameters is
investigated for assumption of stationarity of input and output with the use of input/output type of
model. Application of Laplace or Fourier transform to Eq. (1) results in evaluation of the transfer or
frequency response functions symmetrical matrix H(s) or H(w) for N points (stations) of a system
under consideration,

Hij(w) Hig(w) -+ Hin(w)
Hy(w) Hog(w) -+ Hon(w

Bl o S ki (4)
Hyi(w) Hn2(w) -+ Hyn(w)

Each element H;; of matrix H(w) is a complex value dynamic compliance for circular frequency
value of w, input (excitation) and output (response) stations (locations) i and k. The dynamic
compliance might be expressed by the modal parameters in the following way [4],

Hik(w) = Z (Qﬂ/}riwrh kY Q:"b:z :k) , (5)

o Jw — Ar Jw— A}

where Q, — r-th scaling coefficient, A, — r-th eigenvalue, 1,; — element of r-th eigenvector (mode
shape) at station i, j = /=1, (.)* — complex conjugate.

The above formula became a base for experimental modal analysis, since the dynamic compliance
H;i(w) may be estimated with use of measurement results of excitation force and response signals at
stations 7 and k [4]. Usually, one column or row of H(w) matrix is estimated basing on experimental
data. Experimental modal analysis, as a system identification technique, is composed of general four
steps: formulation of experiment plan, experiment, parameter estimation and model validation. The
following steps of modal model identification differ from each other considerably. In the result the
experimental model analysis procedure is composed of a set of subprocedures corresponding to the
mentioned system identification four steps.
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Effective application of experimental modal analysis requires the concurrent use of a variety of
fast, reliable and objective tools. This may be achieved only by automation of the model identi-
fication procedure. The automation of experimental modal analysis should comprise automation
of

e calculations like: assessment of location of excitation point, processing of measurement records,
parameter estimation procedure,

e data and results management (including results’ reporting),
e visualization of data and results,

e analyses results quality assessment.

The last of the listed above steps is very complex and difficult to be achieved nowadays as it
usually requires physical interpretation of results which typically is based on a human operator
experience. For all the mentioned steps there exist a problem of automation of decision-making.
Decision-making is commonly understood as ‘selection of alternatives’ [5]. Decision-making bases
on some objective function that relates the alternatives and their selection outcome. The most
straightforward approach to decision-making is to formulate some deterministic objective function
and use optimization to make decisions. When formulation of an appropriate objective function is
difficult the probability of the decision outcome may be determined statistically and the decision-
making is carried out by means of the statistical hypotheses testing [12]. Nevertheless, when the
uncertainty of the decision-making is high instead of probability the membership functions are
evaluated and fuzzy reasoning is being applied [5]. Apart from possibility to apply the fuzzy sets
theory to decision-making in case of considerable uncertainty there is also possibility to use Artificial
Neural Networks [15] or combined neuro-fuzzy techniques, which enable introduction of learning or
adaptation of algorithms to specific data properties into decision-making.

Application of fuzzy-reasoning, artificial neural networks or classical comparison of some indicator
values with arbitrary selected threshold values might be classified as techniques of heuristic choice
which are used to introduce artificial intelligence into some analysis procedure.

Experimental model analysis is a multi-step procedure of system identification. The main problem
of automation of experimental modal analysis is decision-making which is typically carried out
subjectively by human operator. Within each step of the procedure decision-making mainly deals
with selection of the best results of an analyze performed in the step. Such a decision-making is
usually suitable for automation. The decision-making carried out between the subsequent steps is
more difficult as it is usually based on assessment of results of various analyses. In such case the
decision made often depends on data specific properties and it should correspond to the model
identification purpose.

Since the decision-making step in experimental modal analysis is still far from comprehensive
automation the current practice is to use the so-called autonomous parameter estimation procedures.
Selected examples of the following procedures of modal parameter estimation comprise:

e iterative application of ERA/DC algorithm [13] supported by Genetic Algorithm aided estima-
tion parameters selection followed by model consolidation [1, 2],

e iterative application of SMAC algorithm based on modal filtering idea [9] followed by model
consolidation [10],

e statistical frequency domain Maximum Likelihood algorithm consisting in application of LSCF
(Least Squares Complex Frequency) parameter estimation algorithm followed by the Maximum
Likelihood parameter estimation algorithm with automated pole selection procedure [17],

e three-step procedure imitating an experienced analyst action in range of: parameter estimation
planning, automated pole selection (stabilization diagram processing) and model consolidation
[6, 7] with use of statistical indicators or fuzzy reasoning.
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The authors understand the autonomous experimental modal analysis as a set of automatic
subprocedures that include internal decision-making routines. These decisions determine the way
of further execution of the autonomous procedure. The procedure is supervised by an operator
who interprets partial results of the procedure and decides about: interruption of the procedure,
repeating of some subprocedures, selection of algorithms to be used in further analysis.

The following description deals with the mentioned above three-step autonomous parameter
estimation procedure. From the point of view of objectivity of analysis, in practice, the crucial step
of the parameter estimation procedure is the stabilization diagram processing.

3. EXAMPLE ALGORITHMS OF PROCESSING OF STABILIZATION DIAGRAMS

The stabilization diagram is a tool that is commonly used in practice of experimental modal anal-
ysis. It is intended for system physical (true) poles selection. It presents the frequency location of
estimated system poles for models of increasing model order (left part of Fig. 1) or location of poles
for models of various order in frequency-damping coefficient (f—¢) plane (right part of Fig. 1).
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Fig. 1. Example of the stabilization diagram: two ways of presentation

The use of stabilization diagrams is a result of lack of effective algorithms of the tested system
model order estimation in case of real, complex objects. The differences between values of natural
frequency and damping coefficients of the poles belonging to models of the subsequent model order
are calculated and, if small enough, the poles belonging to the model of higher order are concerned
to be stabilised. The calculation proceeds from the lowest to the highest model order. Usually,
mode shapes are also used for poles’ stabilisation assessment. When a pole was found to stabilise
for a couple of model orders the pole is considered to be a physical pole, otherwise it is rejected
as a spurious (a computational) pole. Usage of the stabilization diagram is usually a subject of
complaints of testing engineers due to necessity of decision-making. Additionally, multiple possibility
of selection of poles from the diagram limits considerably parameter estimation objectivity. That
is why much detail research was done on the stabilization diagram processing. The formulated
algorithms of stabilization diagram processing are either heuristic or they base on the state-space
model of a dynamic system. The automated heuristic stabilization diagram processing algorithms
consist usually of two steps:

e decomposition of the diagram into clusters of poles corresponding to a single structural mode
e choice of the representative pole for each extracted cluster of poles.

The decomposition of the diagram, as a task of classification, is usually carried out with use
of: some statistic procedure [14], fuzzy clustering [18] or fuzzy reasoning [6]. Also classification
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algorithms that use Support Vector Machines [3] were used for the stabilization diagram processing.
The model-based methods instead of the physical pole direct selection usually consist in spurious
poles rejection with use of: pole-zero cancellation [14], truncation of balanced representation [14] or
backward normalisation [1].

The simplicity and effectiveness of use of the stabilization diagram caused its wide application
in practice. In principle, the poles selected from the stabilization diagram by a human operator
or by a heuristic autonomous algorithm are not proved to be the optimally chosen. Introduction
of more sophisticated model-based autonomous algorithms like the one reported in [17], that use
optimization, will allow in the future to get rid of such an inconsistent tool like the stabilization
diagram and decrease the uncertainty of physical poles selection related to its use. Nevertheless, at
the moment stabilization diagrams are widely used in practice of modal parameter estimation and
generally the heuristic algorithms of the stabilization diagram processing perform better than the
currently available model based ones. This proves relevancy of Al approach in case of considerable
uncertainty.

In this section there is presented one algorithm of decomposition of the diagram into lines of
poles followed by four algorithms of selection of the representative poles from a line of poles. The
difference between a line of poles and a cluster of poles consists in information about the model
order to which a pole belongs which is disregarded in case of a clusters of poles. The formulation of
the mentioned algorithms was preceded by analysis of properties of stabilization diagrams.

The first investigation dealt with determination if there exists some convergence of location
in f-§ coordinates of poles belonging to a single line of poles to the last pole (of this line) that
corresponds to the highest considered model order. In Fig. 2a an example of line of poles estimated
for simulated data is presented. For the presented line of poles the considered convergence does
exist. In such a case the only reasonable way of selection of the representative poles is just to collect
the poles corresponding to the model of the highest order for all the discriminated lines of poles.
However when real data is concerned this convergence usually does not exist like for a line shown
in Fig. 2b.
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Fig. 2. Example of a line of poles in f-£ plane: (a) — for simulated data, (b) — for real data
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Fig. 4. Representative poles (denoted by ‘+’) selected by an experienced human operator for lines of poles
of various length
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In Fig. 3 a histogram of the position of a pole in a line of poles that is the closest to the centre
of the cluster of poles in f—£ coordinates is presented for 125, lines of poles corresponding to true
experimental data. The histogram proves that generally there is no convergence of the lines of poles
to the limit location in f—{ coordinates.

When the fact that usually less accurate estimates of modal parameters are obtained for the low-
est values of model order is taken into consideration the histogram indicates that the representative
pole for a line should be looked for somewhere close to the middle of a line and further toward the
end, but rather not at the same end of a line of poles.

In Fig. 4 locations of a representative pole selected by an experienced analyst are showed for line
of poles of various length.

The initial investigation carried out by the authors led to determination of the following prop-
erties for 125 lines of poles extracted by an autonomous heuristic algorithm:

e majority of the extracted lines of poles are rather short — composed of 5-8 poles (compare
Fig. 4)

e if the assumed maximum model order does not exceed 40 the longest lines of poles are composed
of approximately 27-33 poles

e for approximately 70% of the considered lines of poles the natural frequency variation does not
exceed approximately 0.8 Hz and damping coefficient variation does not exceed approximately
0.8%

e the centre of a cluster of poles corresponding to a line of poles might be located close to any pole
of the line (except the poles lying in the first 10 % of the length of a line — compare Fig. 3), but
the most probable location of the centre is between 40% and 50% of a line length (this actually
corresponds well to part B of Fig. 2)

e the poles selected by an experienced analyst for a set of lines of poles of the same length are
located at various parts of a line (compare Fig. 4).

The presented comparison showed that it is very difficult to formulate the deterministic rule
of selection of poles from the stabilization diagram. That is why the authors chosen application
of heuristic type of algorithm that should be capable, at least partly, to work similar to human
operator.

The following algorithm of analysis was formulated (Fig. 5).

‘ i-th estimation of parameters 1

)

Stabilization Diagram SD

Discrimination
of lines of poles

Selection of the
representative poles

MODEL CONSOLIDATION

Fig. 5. Formulated algorithm of processing of the Stabilization Diagram corresponding to i-th parameter
estimation
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The first stage of the analysis is carried out by FRDA algorithm. To complete the second stage
four algorithms were formulated. All the described in this paper algorithms were implemented in
Matlab with use of Fuzzy Logic toolbox and Neural Network toolbox.

The first formulated FRDA algorithm, that carries out discrimination of lines of poles, was
originally described in [6]. It uses Mamdani type fuzzy reasoning [5] for extraction of lines of poles.
The algorithm starts from determination of the most similar poles out of model of the higher
order to each pole of the model of the current order. For similarity assessment, like during the
stabilization diagram formulation, differences of the natural frequency values and modal damping
values as well as MAC (a form of the scalar product between eigenvectors) [4] values are used.
Replacement of comparison with threshold values used during the stabilization diagram formulation
with membership functions and reasoning rules enables to balance importance of the used poles
similarity indicators. The used membership function are of triangular or trapezoidal type. As a result
of defuzzyfication the similar poles are indicated. Processing of all poles of one diagram leads to
determination of lines of the similar poles. A set of poles belonging to a single line composes
a cluster in the natural frequency-modal damping coordinates (f—-¢ plane) but FRDA algorithm
allows retaining information about the sequence of the poles in a line of similar poles of each
cluster.

The second step of the stabilization diagram processing (representative poles selection) is carried
out with the use of the following four algorithms.

The first of them — FRA algorithm uses fuzzy reasoning. Three indicators are used: distance
of each pole from the centre of the cluster in f-£ plane, location of each pole in the line of poles
corresponding to the cluster and, finally, the quality of stabilization of each pole (property presented
in the stabilization diagram by ‘s’, ‘v’, ‘d’, ‘f” and ‘0’ symbols). The formulated membership functions
(of Gaussian, sigmoid or triangular type) and reasoning rules used in the reported algorithm are
presented in Fig. 6.

The next two algorithms base on application of artificial neural nets (ANN). These algorithms
were preliminary reported in [8]. Figure 4 is a good justification of application of ANN as it shows
that it is extremely difficult to formulate a function that selects the representative pole like an
experienced human operator for a line o poles of some length. Generally, ANN are used to such
tasks as predictions, classifications, recognition and data grouping [15]. The reported algorithms
employ a backpropagation neural network. Architecture of such a type of the network allows for the
learning process with teacher, and that is why during teaching the information got from experienced
engineers, who can properly select poles from the stabilization diagram, may be used.

ANNT1 algorithm uses as input only information how long is a line of poles. The learning procedure
was carried out with use of 125 lines of poles extracted from stabilization diagrams formulated for
real object testing results. The larger part of data (116 lines) was used in the learning process, and
the remaining 9 lines were used in the algorithm verification process. The diagram of the algorithm
is showed in Fig. 7.

ANNT1 algorithm makes use of the backpropagation network of 1-50-1 structure and Tansig and
Purelin activation function. In Fig. 8 results of learning procedure are showed.

Because of small amount of input information for the used neural network, the learning process
proved to be slower, but the results of verification were generally acceptable.

The diagram of ANN2 algorithm is presented in Fig. 9.

The algorithms uses as input: vector of frequency values, vector of damping coefficient values
and stabilization quality indicators vector. During teaching step, additionally, information about
a pole selected by an experienced operator is used. Learning was carried out with the use of the
same data as in case of ANNT1 algorithm. The backpropagation network of 3-25-1 structure was used
with tansig and purelin activation functions. In Fig. 10 results of learning procedure are showed.

The results of verification of ANN2 algorithm were acceptable.

The last algorithm of selection of the representative pole — FCA algorithm, unlike the three
described above algorithms, uses as input a cluster of poles. It is a typical fuzzy clustering algorithm.
The diagram of the formulated algorithm is showed in Fig. 11.
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Fig. 12. Results of assessment of FCA algorithm effectiveness

The used cluster center determination method was proposed by Yager [19]. The advantage of that
method is the possibility to choose poles for any cluster of poles discriminated for a stabilization
diagram. The method does not require preparation of input data such as normalization or fixing
the length of input vector. In order to select the representative pole the cluster center is determined
with the use of the subtractive method. The subtractive clustering method assumes that each data
point (a pole) is a potential cluster center and calculates a measure of the likelihood that each data
point would define the cluster center, based on the density of surrounding data points. In Fig. 12
results of assessment of FCA algorithm effectiveness is presented.

In the next section examples of application of the formulated algorithms to simulation an mea-
surement data are reported.
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4. CASE STUDIES

The first case study deals with simulation of a model of 7 degree of freedom (DOF) lumped-
parameter system. The structure and parameters of the model are presented in Fig. 13.

Parameters:
my = 5 [kg] co1 = 12 [kg/s|
m2 = 1kg] c12 = 5[kg/s]
ms = 1 [kg] cs = 5[kg/s]
mas = 1[kg] cra = 5[kg/s]
ms = 4 [kg] cas = 5[kg/s]
me = 2 [kg] css = 5[kg/s]
mr = 2[kg] cas = 5[kg/s]
cs6 = 9[kg/s]
cs7 = 9[kg/s]

ko1 = 80000 [N /m)]
k12 = 15000 [N /m]
IC13 = 15000 [N/m]
k14 = 15000 [N/m]
k25 = 14800 [N/m]
kas = 15000 [N/m]
k45 = 15000 [N/m]
kse = 28000 [N /m]

i/ et

Fig. 13. Model of 7 degree of freedom system

o k01

Values of the structural parameters: masses m; , damping coefficients c;; and stiffness coefficients
kij were selected in such a way that two groups of the so-called close modes (modes of close natural
frequency values) are present in the modal model of the considered system. The study is intended
to investigate how the formulated FRDA algorithm of line of poles discrimination copes with dis-
crimination of close modes and to compare results of application of a set of the representative pole
selection algorithms.

The modal model corresponding to the considered system might be determined by solution of
the eigenvalue problem for a set of dynamic equation of motion (a model of structural type in
the form (1)) formulated for the considered system. On the other hand, for the set of dynamic
equations of motion an equivalent set of transfer functions might be determined (a set of FRFs in
the form (5)). Such a set is a base for modal model parameter estimation. In order to provide the
data of properties corresponding to experimental type of data the FRFs continuous with respect
to time and amplitude must be digitized. A comparison of amplitude plots of a continuous FRF
and a corresponding digitized FRF is presented in Fig. 14 for spectral resolution of 0.125 Hz that is
commonly used during modal experiments.

The differences between the presented plots are especially evident in frequency subranges com-
prising natural frequencies (resonances). What is important, these frequency subranges are actually
used during parameter estimation. It is one of the sources of differences of numerically determined
modal parameter values with respect to the estimated ones.

A set of 14 digitized FRFs for two references were used for estimation of modal parameters with
the use of Eigensystem Realization Algorithm (ERA) [4]. The resultant stabilization diagram is
presented in Fig. 15.

All the seven lines of poles were correctly discriminated on the diagram by the formulated FRDA
algorithm. Then, four algorithms of the representative poles selection were applied. The results of
parameter estimation are listed in Table 1 and compared with accurate parameter’s values obtained
by numerical eigenvalue problem solution for the considered system.
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Fig. 15. Stabilization diagram, discriminated 7 lines of poles indicated, representative poles denoted
by <-mc
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Table 1. Results of selection of the representative poles from the discriminated lines of poles: f,, — natural
frequency, &, — modal damping coefficient, No. — number of a pole in a line of poles

Accurate values FRDA - FRA FRDA - ANNI1 FRDA - ANN2 FRDA - FCA

fn[Hz] | €1 (%] | fn[Hz] | & [%] | No. | fn [Hz] | & [%] | No. | fn [Hz] | &n [%] | No. | fn [Hz] | &n [%] | No.
6.64 0.59 6.64 | 0.59 | 14 6:64. | 0:59 4 13 6.64 | 059 | 12 6.64 | 0.58 6
18.83 1.90 18.83 | 1.90 | 14 | 18.83 | 1.90 | 10 | 18.83 | 1.90 | 13 | 18.83 | 1.90 7
19.62 151 19.62 | 1.51 | 14 | 1962 | 1.5F ] 107]+:19.62 {| 1.51 |s1%-| 19.62 | 1.51 6
27.50 2.89 27.49 | 2.89 | 15 | 27.53 | 2.89 53 27475 2:91 9 | 2749 | 2.89 | 11
2%57 2.89 27.55 | 2.89 | 12 | 27.55 | 2.89 | 12 | 27.55 | 2.89 | 13 | 27.55 | 2.89
27.74 2.53 27.73 | 253 | 14 [£2773 | 2.53 ;| 13 | 27.73 | 2.53 | {3 | 27.73 | 2.53
34.43 3.50 34.41.}..3.50 | 14 -} 53d.41. {..3.60: 4 .13} 34.41+ | -3.50 .| A2 34.41. ] 3,48

N| oo

The presented comparison showed that the parameter estimation accuracy was very good, the
differences of natural frequency estimation did not exceed 0.03 Hz and the damping coefficient
estimation error was not higher than 0.02 %. Differences between mode shapes that result from
4 algorithms of the representative pole selection were negligible.

The tested representative pole selection algorithms generally selected different poles but in case
of the simulated data it did not produce substantial differences of the estimated modal parameters.

FRA algorithm selected poles of higher orders than the other three algorithms. The reason for
this was the high influence of quality of stabilization of poles on poles selection (the stabilization is
usually better for higher model order).

FCA algorithm takes into consideration only poles’ location in f-¢ plane. That is why, the
algorithm selected poles corresponding to modal models of low order. Such the poles are often only
rough approximations of actual poles and their location f-£ plane might considerably differ from
the location of physical poles.

Position of poles selected by ANN1 and ANN2 algorithms in lines of poles was close to the
position of poles selected by FRA algorithm, but the model order was usually slightly lower.

Concluding the first case study it might be said that in case of the closed modes the algorithm
of extraction of line of poles from the stabilization diagram proved to be effective. Additionally, the
differences of results of application of the four formulated algorithms of selection of the representative
pole from the line of poles were small and did not influence the parameter estimation accuracy.

The second case study deals with estimation of modal model for real object — a helicopter
airframe. The aim of the analysis was the comparison of the four algorithms of selection of the
representative poles from line of poles with results of the selection performed by experienced analyst.
In the real object case the accurate values of modal parameters are unknown. The stabilization
diagram obtained with use of ERA estimation method is showed in Fig. 16.

The presented diagram is less clear than that corresponding to simulation data (Fig. 15). On
the above stabilization diagram seven distinct separate lines of poles might be recognized. There is
also present a cluster of three lines of poles one on top of the others in the vicinity of frequency of
20 Hz. The cluster of lines corresponds to the local type of modes in which the end of tail boom with
vertical and horizontal stabilizers vibrate the most. As the local type of mode shapes they are not
well represented in the measurement data thus they are difficult to identify and properly interpret.

Comparison of results of the representative poles selection with use of the four formulated algo-
rithms is presented in Table 2.

The presented comparison showed that FRA algorithm of the representative pole selection from
a line of poles performed the best. For six out of ten selections the result of application of the
algorithm is the same as the choice made by the experienced analyst. Other choices did not produce
large differences in natural frequency estimation (difference less than 0.02Hz), the difference of
damping coefficient is also small (less than 0.08%), but one of the MAC values between mode shape
selected by the analyst and by the FRA is low (only 44%). The remaining three algorithms performed
worse. The differences of natural frequency value indicated by the analyst and by the algorithms
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Fig. 16. Stabilization diagram obtained for a helicopter airframe modal testing, discriminated 10 lines of
poles indicated, representative poles denoted by <-mc

Table 2. Results of modal model estimation for real data, bold face indicate the same selection as made by
an experienced analyst

Human Operator FRDA - FRA FRDA - ANN1
fo[Hz] | €0 [%)] | No. | fn[Hz] | &n [%] | No. | MAC %] | fn[Hz] | &0 [%] | No. | MAC [%)]
12.80 2.66 4 | 12.80 2.66 4 100 12.92 3:1b 7 78
14.13 0.81 | 15 | 14.15 0.75 11 97 14.13 0.91 10 95
14.60 1.18 4 | 14.59 1125 8 91 14.62 1.29 9 92
15.50 0.73 7| 1 }:16.51 0.73 9 99 15.50 0.72 15 98
16.96 0.36 6 | 16.96 0.36 6 100 16,94 | 0.45 8 87
17.40 0.58 4 | 17.39 0.65 3 44 17.40 0.58 4 100
20.12 1.44 4 ;:.20.12 1.44 4 100 20.15 1.51 5 93
20.13 3.53 4 4" 20.13 3.53 4 100 20.13 3.10 4 100
20.24 1.36 8 | 20.24 1.36 8 100 20.25 1,31 T 98

21.18 1.03 | 15 | 21.18 1.03 | 15 100 21.17 0.99 14 100

Human Operator FRDA - ANN2 FRDA - FCA

fn[Hz] | £2[%] | No. | fu[Hz] | £€n[%] | No. | MAC[%] | fn[Hz| | &€ [%] | No. | MAC[%]
12.80 2.66 4 | 12.92 3.15 7 78 12.87:{+2.43 1 75
14.13' | 0.81 {15 |- 1413 0.91 10 95 14.13:| - 0.75 | 13 99
14.60 1.18 4 | 14.59 1.25 8 92 14.61 AT <19 90
185:80:{::0.737| 211 | =15.49 0.69 | 16 98 15.50 | 0.73 4 98
16.96 | 0.36 6 | 16.94 | 0.38 | 10 87 16.96 | 0.36 4 90
17.40 | 0.58 4 | 17.39 | 0.65 3 100 17.40 | 0.5 4 100
20.12 1.44 4 | 20.15 1.51 5 93 20.30 1.43 3 84
20.13 3.53 4 | 20.20 2.48 5 98 20.13 3.53 3 51
20.24 1.36 8 | 20.24 1.36 8 100 20.24 1.36 8 100

21.18 1.03 s jd i1 B3 1.02 17 89 21.18 1.03 15 100
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were small and did not exceed 0.18 Hz — the value comparable with the modal experiment resolution
of 0.125 Hz. The difference between damping coefficient values were higher (up to 1.05%). It should
be noted that limited precision of modal damping coefficient estimation is a usual problem of modal
parameter estimation.

The differences between selected mode shapes were generally acceptable for majority of the

representative pole selections (MAC > 72%) except for two selections for relatively short lines of
poles (line No. 6 and No. 8).

5. FINAL CONCLUSIONS

In this paper there was presented a set of example algorithms of the stabilization diagram processing,
being a crucial part of modal parameter estimation procedure. These algorithms use fuzzy reasoning
results or artificial neural networks classification results. The presented algorithms are of heuristic
type so they are very sensitive to the assumed parameters of the procedures or to the selection of
data used during learning. There is always some uncertainty in results of application of such the
algorithms. To lower this uncertainty level it is advised to use always multi-criterion assessment and
decision-making in heuristic type autonomous parameter estimation procedures.

The application of the presented autonomous parameter estimation procedures proved to ease
considerably the modal model parameter estimation, as well as to shorten the modal model identifi-
cation time. Thanks to the use of large variety of indicators application of the formulated procedures
improves the identification results’ objectivity and thus also their credibility. The application of the
autonomous parameter estimation procedures should be nevertheless done with care. It is still not
likely that such the procedures will soon eliminate the professional testing engineers from experi-
mental modal analysis. An engineer should be very careful especially while applying autonomous
parameter estimation procedures during identification of modal model for control synthesis purpose
or whenever the accuracy of some modal parameter values estimation is crucial.
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