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The paper deals with the application of soft computing used in uncertainty analysis in the field of struc-
tural dynamics. Employing Genetic Algorithms, fuzzy sets theory as well as interval algebra authors show
quite useful extension of well known approaches of solving eigenproblems considering assumed model
uncertainties. During performed calculation, ranges of the first natural frequency of a simple FE model
are found and then compared to those ones obtained with Monte Carlo simulation. As input uncertain
parameters some of material properties are taken into account. The main objective of the work is to high-
light possible advantages of the application in terms of reducing computation time meant for uncertainty
analyses.

1. INTRODUCTION

Nowadays, uncertainty analyses have become an important field within structural dynamics. Differ-
ent kinds of existing uncertainties should be considered in order to get to know as much as possible
about all changes of dynamic behaviour of mechanical structures. Therefore, obtained ranges of
natural frequencies as well as eigenvectors in terms of assumed uncertainties are supposed to be of
engineers’ concern. Mainly, two kinds of uncertainties can be distinguished [7, 12]: irreducible (some-
times also called variabilities or aleatory or stochastic uncertainties) and reducible (also referred to
as epistemic or subjective uncertainties). The first type corresponds to the fact that successive items
of same product are not of the same characteristics. They differ one from another regarding mainly
geometric properties and other producing factors. It is so because manufacturing processes are not
ideal and can not offer customer an infinite product’s repeatibility. Product’s quality depends on
used tools and employed measurements techniques. As stated above this kind of uncertainty can not
be reduced since non-zero manufacturing tolerances appear and they can change when time passes.
The second group of uncertainties expresses a lack of knowledge of designers trying to launch a new
product. It can be a matter of unknown loading, ageing, material properties, used models etc. A col-
lection of possible product concepts can also be considered as subjective uncertainty. The important
thing is that this kind of uncertainty can be reduced as engineer collects all necessary data on prod-
uct characteristic. Moreover, subjective uncertainty may not even occur in some cases. Additionally,
one should know that there is one more source of differences in results and caused by errors imposed
by blunders, wrong models, incorrect descriptions of analyzed structures but these parameters are
out of scope of presented paper and are not referred to in the following.

As objects of uncertainty analyses FE models are often used [1, 2]. They enable engineers to assess
changes in both static and dynamic behaviour of mechanical structure with introduced uncertainties
of its geometrical and material characteristics and applied loads and constraints. As a computational
technique making possible to carry out uncertainty analyses a probabilistic Monte Carlo Simulation
(MCS) may be used [7, 16]. Although it is well known and widely applied MCS features some
disadvantages. Large number of simulation experiments is required to obtain reliable results for
practitioner engineer. Moreover, probability density functions should be known or correctly assumed.
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In this context, soft computing seems to be very interesting tool being able to deal with mentioned
above kind of analyses very effectively. Hence, the intention of this paper is to present possible
advantages of an application of this computing techniques considered as a combination of Genetic
Algorithms, fuzzy sets and interval algebra theories.

In present paper authors show and discuss results of uncertainty analysis obtained performing
an example of soft computing application. As a subject of analysis a simple mechanical structure
modelled with FEM has been considered. Subjective uncertainties have been taken into account i.e.
these ones related to material properties. Changes of the first natural frequency of the structure in
terms of given uncertainties are studied. All applied theories are also briefly described.

2. FUZZY SETS, FUzZZY FEM, FUzZzYy FEA

The theory of fuzzy sets was introduced by Zadeh in 1965 as an extension of classical set theory [3,
6, 12, 17]. In classical set theory, membership of element in a set is either 0 (not a member of
the set) or 1 (member of the set). Zadeh extended the Boolean membership values of a set to real
numbers between 0 and 1 by introducing fuzzy sets. Each element in a fuzzy set can be assigned by
a membership value between 0 and 1. For a fuzzy set Z, the membership function pz(z) for all z
contained within the domain X is defined as follows,

z = {(z, pz(x)) | (z € X) (pa(z) € 0,1])} (1)

Element z, for which uz(z) = 1, is definitely a member of the set Z. Element z, for which
pi(x) = 0, is definitely not a member of the set Z. Element , for which 0 < pz(z) < 1, is a member
of the set Z in a certain degree (Fig. 1).
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Fig. 1. An example of trapezoidal membership function

The shape of membership functions is derived from experimental data or expert knowledge.
Usually triangular, Gaussian and trapezoidal shapes are used for the membership functions.

Fuzzy sets allows for introducing fuzzy FEM (FFEM) [11]. This computational technique employs
fuzzy sets to express all given input uncertainties for analyses of FE models and as expected also
searches for assumed output parameters following fuzzy formulation. It should be also highlighted
that well-known a-cut strategy seems to be the most effective and suitable for FFEM applica-
tions [12] i.e. when fuzzy FEA (FFEA) are needed. The main idea of this strategy is shown in
Fig. 2.

Using the a-cut strategy all input fuzzy sets can be approximated by a number of intervals. For
these input intervals an interval analysis is then performed at each a-level using FEM. The output
intervals at each a-cut are assembled and result in fuzzy output. Fig. 2 shows this procedure for
input parameters characterized by trapezoidal membership functions. However, one can also consider
more specified case when only triangular shapes of membership functions are taken into account. In
that case interval analysis carried out for cut ay becomes a deterministic one. The following section
shows how to deal with uncertainty analysis when the a-cut strategy within FFEM has been chosen.
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Fig. 2. a-cut strategy for a case with two input trapezoidal fuzzy parameters [12]

3. INTERVAL ALGEBRA, INTERVAL FEM, INTERVAL FEA

As mentioned above problem of finding of output fuzzy parameters can be transformed into a num-
ber of tasks connected to interval computations dealing with successive degrees of membership.
Therefore, FFEM is now replaced by interval FEM (IFEM) and similarly FFEA becomes a set of
an interval FEA (IFEA) [11].

Essential assumptions and formulas concerning interval numbers and interval analysis can be
found in [13]. According to the definition, an interval scalar consists of a single continuous domain
in the domain of real numbers R. The domain of interval scalars is denoted by IR. The interval
scalar is denoted by a boldface variable x. A real closed interval scalar is defined as

x={zl@eR)(z<z2<F} o -~ = am-fa 7 (2)

where z, T are respectively the lower and upper bounds of interval scalar. The set scalar is denoted
by (z) and defined as:

@=J = (3)
) GRS [

The interval vector is denoted by {x} € IR". It describes the set of all vectors for which each
vector component x; belongs to its corresponding interval scalar x; ,

{x}={{z} ziex}. (4)

The interval matrix [X] € IR"*™ describes the set of all matrices for which each matrix component
x;; is contained within its corresponding interval scalar x;; ,

[X] = {[X] | zs; € %45} (5)

The set matrix ([X]) describes the set of all possible matrices for which each matrix component ;;
is contained within its corresponding set scalar (z;;):

(X)) = {[X] | 25 € (2ij) } (6)

The above interval algebra rules are applied within IFEA. Using them, let us consider then the
FEA as a black-box function f({z}) of non-deterministic model collected in a parameter vector {z}
and resulting in output vector {y}. The input parameter vector is contained within an interval
vector {x}. The IFEA procedure is numerically equivalent to looking for the following result set,

({vh) = {{y} | ({=} € {x}) ({v} = F{z})}- (7)
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Considerations are focused on calculating an interval vector that approximates the exact solution
set. This hypercubic approximation describes a range for each vector component.

Different numerical solution strategies to calculate a hypercubic approximation of the exact so-
lution set can be distinguished, e.g. the vertex analysis, the global optimisation approach and the
interval arithmetic approach [12]. The global optimisation strategy which is equivalent to calculat-
ing the smallest hypercube around the solution set in Eq. (7) is studied in the paper. Minimization
and maximization is performed independently on every element of the result vector {y}. The deter-
ministic FEA is necessary for the fitness function optimisation and the uncertain parameters {x}
are the design variables in this approach. The interval vector {x} determines the constraints for the
variables. After the optimisation the interval vector is obtained,

{y}:{}’l,)’%'n»)’n}T (8)
where

Yi = |¥i, E] 9)
with:

w= min fi() =L, (10)

@:{gg{ﬁ}ﬁ({x}) i=1,...,n. (11)

In the work, Genetic Algorithms are chosen to calculate the output interval vector boundaries
to estimate variability of selected natural frequency of the mechanical system.

4. GENETIC ALGORITHMS

Genetic Algorithms (GA) [5, 9] are stochastic global search method that mimics the metaphor
of natural biological evolution. GA operate on a population of potential solutions applying the
principle of survival of the fittest to produce better and better approximations to a solution. Unlike
classical methods, GA search feasible domain of decision variables, starting not from one point but
from certain population of points. GA do not use deterministic but probabilistic rules of choice that
imitate natural processes of evolution and adaptation. GA manage well with difficult optimisation
problems formulated for discontinuous, discrete fitness functions even those of very complicated
topology. The structure of the GA procedure is presented in Fig. 3.

Firstly, the following characteristics are determined: the side constraints describing mutual de-
pendencies and the ranges in which input parameters can vary as well as the size of used population,
number of generations, probabilities of performed crossover and mutation. Then GA procedure cre-
ates an initial population of members (individuals) considered as first solution proposals which
means that every member (actually a vector of the decision variables) corresponds to a point in
a search space and represents a feasible solution. Within every generation, evaluation of each mem-
ber performance based on a problem dependent fitness function is carried out. This process assigns
selection probabilities to each design (member). New generation is then created by selection of de-
signs for further processing and matching them into pairs. Crossover operator exchanges properties
of each pair with the crossover probability. Mutation operator mutates some properties of a design.
Having the next population GA may continue calculations within the loop. Constant improvement
of the solution can be observed while the generations pass. GA application finishes when the as-
sumed number of generations is achieved. Yielded results are considered as global optimum of the
optimization problem.

GA may be therefore used effectively as the optimization tool within the area of FFEA /IFEA [10].
Applying this methodology the bounds of various parameters describing both static and dynamic
properties of mechanical structures can be found.
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Fig. 3. The structure of GA

5. FORMULATION OF THE METHOD BASED ON FFEA

Theory presented in previous sections can be expressed by the scheme shown in Fig. 4. It repre-
sents whole computational procedure based on FFEA. This procedure can be disassembled and its
particular components can be then separately analysed.

Within the procedure 5 stages can be distinguished, each being responsible for particular scope of
tasks. At stage 1, the most general one, a need of uncertainty analysis is formulated and all uncertain
parameters are recognised and assumed. At this stage a decision about used analysis method is also
made up. Stage 2, as FFEM is chosen, covers processes of description of input uncertain parameters
using fuzzy set theory and preparing FEM model of an examined mechanical structure. At this stage
it is assumed that further computations are carried out applying a-cut strategy so as mentioned
previously FFEA is transformed to a set of related IFEA. Stage 3 means interval calculations
performed within successive IFEA for evaluated bounds of input uncertain parameters. GA are here
chosen as a tool being capable of finding extremes of output interval parameter. Stage 4 is referred
to as optimization procedures used for searching both minimal and maximal values of output data.
Finally, at stage 5 FEA are performed to give the results for objective function described for GA.
Considering above scheme the computation time of FFEA tppg4 equals

n Mp,min Mn,max

tFFEA=Z Z trea + Z trea (12)
=1 Py

i=1
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where tpgg means the time needed for one FEA. One should consider then that the grater number
of a-cuts in FFEA, generations and individuals assumed for GA causes larger computational effort
needed for performing all required FEA. Hence, the expectation of reducing required calculation
time grows significantly.

For structural dynamics, FEA can be denoted as two successive steps: global stiffness and mass
matrices evaluation (K and M, respectively) and solving eigenvalue problem. At this point an idea
appears that it is maybe possible to reduce number of full runs of FEA and perform only evaluation
of matrices K and M during optimization processes (denoted as KM in Fig. 5).

Stage 3 Stage 4 Stage 5

Stage 1 Stage 2

11
FEA 1.ml.min
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. WEAL
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Fig. 4. An application of FFEA-based procedure
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Fig. 5. Modification of FFEA-based procedure

In such case, the only necessity is to apply a methodology enabling us to find such matrices
K and M for which extremes of chosen natural frequency can be found. Therefore, only two full
FEA are required at the end of optimizing processes. Savings of computation time tgsyngs may
be expressed as

n My, min Mn,max
tsavinas =Y | D tee+ Y tmic —2tpea (13)
i=1 \ j=1 k=1

where t ;g denotes time needed for solving eigenvalue problem. In the following an example of such
soft computing application is presented.
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In case when uncertainties are expressed by intervals, eigenvalue problem may be solved by
computational technique proposed in [15]. Introducing input interval parameters causes the fact
that global stiffness and mass matrices also become interval ones, as follows,

K'=[KK], M'=[MM], (14)

where K, K, M and M mean the matrices with minimal and maximal values of their elements. All
possible global stiffness and mass matrices K and M considered within interval matrices K I and
M are supposed then to satisfy the conditions

K<K<K, M<M<M. (15)

K, K and K have to be real symmetric matrices. M, M and M have to be additionally real positive
definite. In this connection, eigenvalue problem formulated by the equation

Ku=AMu (16)
may be related to the following formula,

KTy = MM (17)
Interval vector A is described in such a way,

M= [A2], (18)

where )\ and ) are respectively the lower and the upper bounds of eigenvalues.
These two vectors may be found solving the following equations [15]:

Ku=MMy, Ku=\Mu. (19)

The approach presented above gives an idea to apply full FEA only for two cases expressed in
Eq. (19). It is then expected that optimization tool (GA) is capable of finding matrices K, K, M
and M in terms of assumed uncertain input interval parameters attached to all considered a-cuts.
As presented in case described later during optimisation of the values of global stiffness and mass
matrices one has opportunity to find two pairs of these matrices K*, M and K, M* which can
be considered as K, M and K, M, respectively. First pair may be found during minimizing values
of global stiffness matrix K and maximizing values of global mass matrix M done simultaneously,
as presented in Eq. (20). The second one can be obtained in the similar way, while maximizing
values of elements of K and minimizing values of elements of M, which is described in Eq. (21).

The problem can be then defined by the formulas

E!(K:_K_*,M:'M*):%Hx Zkij—zmij =Z@—Zm_fj» (20)
,J 2,7 2] 1,9

SRR BEL F) : max Zkij—zmij =Z@—Zm_fj> (21)
ij A iJ 4]

where

-l ®-[] w-fl. w-[m) 2

Finally, after finding K*, M* and K*, M*, two FEA connected to expressions (19) are performed
and lower and upper limits of eigenvalues (A* and A*) can be found,

_K_*.@* = A*M*ﬁ*> F*ﬂ* (2 X*M*H* (23)

The procedure is presented graphically in Fig. 6.
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Fig. 6. Examined application of soft computing

This application gives no conservative results because it does not loose any dependency between
elements of matrices K and M. It is so because pairs of matrices K* M* and K*, M* are found
simultaneously at two successive optimization procedures. The application have been implemented
in MATHWORKS/MATLAB and applied for a model of a simple mechanical structure. FEA have
been carried out using MSC/NASTRAN [14].

Presented above application should be considered as an example of soft computing within the
area of structural dynamics and some extensions of it may be proposed [8]. In general, some other
application having similar scheme (as presented in Fig. 5) may by introduced e.g. considering global
stiffness and mass matrices decomposition techniques [4] or even replacing GA with other optimiza-
tion tool. One can also take into account possible use of described approaches also for static FFEA
(considering only matrix K') but these kinds of analyses do not seem to be as difficult to deal with
as eigenvalue problems solutions existing in structural dynamics.

6. CASE STUDY

As a case example FE model of structure shown in Fig. 7 has been created using MSC.PATRAN.
It consists of 6 components and is fixed using three groups of displacements. Six kinds of materials
have been defined as well. There are 18 parameters defined as uncertain i.e. material properties such
a Young’s modulus, Poisson’s ratio and mass density. The changes of the first natural frequency of
the structure under introduced uncertainties are studied.
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Membership function in a form of triangle (Fig. 8) defines fuzzy uncertainties of chosen model
parameters. Fuzzy set theory is employed to describe the parameter uncertainties. It is assumed 10%
level of uncertainty of material parameters for a;-cut. It means that intervals concerning this level
are limited within the range of 0.9 to 1.1 of nominal values of material properties. as-cut is related
directly to nominal value of each uncertain parameter and represents deterministic case. Nominal
values of material properties are as follows: E = 2.1 - 10 [Pa], v = 0.3[-] and p = 7860 [kg/m3].
The task is to find the fuzzy output set of the first natural frequency f; .
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Fig. 7. A simple structure used for simulations Fig. 8. Fuzzy sets used for describing uncertain parameters

Simulations have covered searching minimal and maximal values of the first natural frequency f;
of given structure for each of five levels of the membership function assumed for FFEA. To obtain
the results the following techniques have been used:

e FFEA in the form presented in Fig. 4 — ranges of output parameter are found applying GA
operating directly on the results of FEA (denoted below as FFEA1),

e FFEA in the form presented in Fig. 6 — ranges of output parameter are found applying GA as
a tool for optimizing global stiffness and mass matrices (denoted below as FFEA2),

e FFEA with employed MCS to produce referential results (denoted below as FFEA3).

Obtained fuzzy output parameters are presented in Fig. 9. Solid line and circles describe fuzzy
output parameter evaluated by the first application of FFEA (direct optimization of natural fre-
quency). Dashed line and x-marks denotes the result yielded be the second FFEA (optimization of
global stiffness and mass matrices). Finally, dotted line with pluses represent the referential result
given by MCS.
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1 : . . . . :

0.75¢
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o )
(.le wn

- Freqency [Hz]

Fig. 9. Obtained results of carried out uncertainty analyses
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Table 1. Comparison of the results obtained within applications of FFEA

aq-cut ag-cub ag-cut ay-cut as-cut
MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | NOM
FFEA1 | 27.594 | 33.943 | 28.328 | 33.057 | 29.060 | 32.221 | 29.823 | 31.401 | 30.599
f [Hz] FFEA2 | 27.772 | 33.822 | 28.394 | 32.988 | 29.119 | 32.167 | 29.848 | 31.331 | 30.599
FFEA3 | 28.283 | 33.151 | 29.029 | 32.430 | 29.565 | 31.735 | 30.053 | 31.166 | 30.599

Parameter

Relative error of f; |FFEAL| —244| 239 | -241| 193 | -1.71| 153 | -077| 0.75 | -

(FFEA3 as reference)
(%] FFEA2| —1.81| 2.02 | -2.19| 1.72 | —1.51| 1.36 | =0.68 | 0.53 &

Relative error of f; — | FFEA1| —14.2 | 16.3 | -20.6 | 18.4 | —23.3| 224 | —20.7 | 21.1 =
related to the interval

length (FFEA3
as reference) [%]

FFEA2| -10.5| 13.8 | —18.7| 16.4 | —20.6| 199 | —18.4 | 14.8 =

Comparison of the results provided by FFEA applications is presented in Table 1.

Relative errors of f; are quite small i.e. all of them are placed within +£2.5% and as expected
the narrower interval the smaller relative error. Significant differences in results, however, appear
while relating them to the length of interval connected to particular a-cut. It is so because of small
but still existing conservatism of tested approaches as well as probably not enough large number of
performed iteration during MCS (10000 iterations at each a-cut). Advantageously, the results also
let us to conclude that no of global extremes existing within the domain of input parameters has
been skipped. MCS has been intentionally chosen to check this phenomenon since assuming uniform
probability density functions guaranties to cover uniformly input domain with generated samples.
Nevertheless, it is taken into account that the quality of results should be also checked for cases
with grater number of introduced uncertainties and more complicated FE models.

Convergence diagrams of applied GA are presented in Fig. 10. Figure on the left hand side is
related to direct optimization of the first natural frequency (FFEA1) whereas the second diagram
corresponds to the case in which global system matrices are optimized (FFEA2).

Solid lines represent changes of fitness function values and dashed lines set out the levels con-
cerning mean values of the input uncertain parameters. Circles indicate the final values of the fitness
function and are related to the individuals which are interpreted as the combinations of the input
parameters for which extremes appear. In case when FFEA2 is performed, for mentioned above com-

i@ Convergence of GA - optimizing frequency Convergence of GA - optimizing K and M
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; i - : j i
i 50 100 150 200 0 20 40 60 80 100 120
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Fig. 10. Convergences of GA used within FFEA
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binations of parameters the eigenvalue problem is then solved to obtain minimal or maximal value
of the first natural frequency of the structure (as presented in Fig. 6). During computations different
numbers of generations have been assumed and as observed, performing at least 80 generations at
each of two FFEA can give reliable results.

The minimal and maximal values of the fitness function defined for FFEA2 have been obtained
using formulas (24) and (25) where the sum of global stiffness matrix elements is divided by 1012
For analysed FE model, this allows for having elements of both matrix K and matrix M normalized
i.e. similar values (of the same order) of the sums of all elements of these matrices are achieved,

: ; : 1
min (fitness function) = min | 7o 2 kij — Zmij ) (24)
%) 2]
) 1
max (fitness function) = max | To5 Z kij — Zmij . (25)
] 2y

Comparison of calculation time required by used applications and their characteristics are shown
in Table 2. Hypothetically, for the same number of uncertain parameters one could also apply
some non-probabilistic approaches like: the vertex analysis [12] or its general form known as the
transformation method [6]. In these cases calculation time would equal at least 896532 seconds
(approximately 249 hours). However for these cases, applications of sensitivity analyses carried out
in order to reduce the number of uncertainties could be still the solution reducing computational
effort. Nevertheless, savings of calculation time in case of FFEA2 are clearly seen.

Table 2. Characteristics of used FFEA and required calculation time

Number of Total
Total number stiffness leulati
Application Characteristics of full FEA SRR SEaON
matrices time
runs :
evaluations [s]
25 individuals 68 400
FFEA1 (80% of individuals (20) are changed 20000 -
: (19 hours)
per one generation)
Different number of generations 50127
Sk v (as presented in Fig. 10) i 16¥0 (13.9 hours)
FFEA3 10 000 iterations per one a-cut 40000 - Laa0n
(38 hours)

For presented above considerations the following calculation times have been estimated and taken
into account: 3.42 seconds for one full FEA run and 3s for model global matrices assembling as used
within FFEA2. The conclusion is that the more complicated FE model and in turn larger size of
global stiffness and mass matrices the larger difference between mentioned computation times and
finally the grater observed time savings.

7. CONCLUDING REMARKS

The paper describes possible applications of soft computing in the area of structural dynamics. Using
simple example of FE model uncertainty analysis has been carried out. FFEA has been employed to
find the influence of considered model uncertainties on the change of the first natural frequency of
the mechanical structure. As input uncertain parameters material properties like Young’s modulus,
Poisson ratio, and density have been introduced. In the work three possible examples of FFEA
have been described and then applied i.e.: two of them considering GA as optimizing tool and the
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last one using MCS and giving referential results. Relative errors of FFEA1 and FFEA2 have been
presented and discussed. For all cases, a-cut strategy and interval algebra have been used.

Using an application of FFEA in which global stiffness and mass matrices are optimized (denoted
as FFEA2) one can see possible savings of calculation times. It can be so since under some conditions
full FEA can be replaced by the process of assembly of system global matrices. Requirements of
several applications in terms of computation time have been presented in order to show advantage
of FFEA2. Additionally, needed calculation time for selected non-probabilistic approaches has been
also estimated to have a bit wider overview on computational effort within the field of uncertainty
analyses. It should be also noted that neither the vertex nor the transformation method guarantee
receiving extremes of output parameter. Moreover, for described FE model the time required for
the solving of eigenvalue problem is very short, about 0.4 seconds so it is natural then to formulate
an expectation that the difference between computation times should be grater as complexity of
model grows.

Presented FFEA1 and FFEA2 yield results which are not very conservative because applied pro-
cedures do not cause loosing mutual dependency between elements of stiffness and mass matrices
during the search of optimum values. Additionally, as presented in previous section, these applica-
tions do not skip any of global extremes existing within the domain of input uncertain parameters.

The convergence diagrams prepared for FFEA1 and FFEA2 have been shown. Analysing obtained
shapes of convergence curves, one can assume that for presented case study 80 generations for each
optimization process carried out by GA should be enough to achieve reliable results. However, it
should be also noted that every time GA are employed the need to find the balance between the
number of generation and the number of individuals arises. Unfortunately, this problem seems to
be case dependent.
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