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This paper is devoted to the application of the evolutionary algorithms and artificial neural networks to
uncertain optimization problems in which some parameters are described by fuzzy numbers. The special
method of global optimization: Two-Stages Fuzzy Strategy (TSFS) for structures in uncertain conditions is
proposed. As the first stage of the TSFS the fuzzy evolutionary algorithm is used. As the second stage the
local optimization method with neuro-computing is proposed. The presented approach is applied in the
identification problems of mechanical structures, in which material parameters and loadings are uncertain.
To solve the direct problem the fuzzy boundary element method (FBEM) is used. Several numerical tests
and examples are presented. ,

1. INTRODUCTION

In the majority engineering cases it is not possible to determinate exactly all parameters of the
system. It is necessary to introduce some uncertain parameters which describe granular character
of data [15].

The representation of uncertain values may have different forms. It depends on the physical
meaning of the problem. One of the possibilities is to model numbers as "soft numbers" called fuzzy
numbers [9, 10, 14, 15]. There are many kinds of fuzzy numbers depending on the level of the fuzzy:
(i) interval numbers, (ii) trapezoid numbers, (iii) L-R numbers and many others.

The evolutionary algorithms [1, 16], as the global optimization technique for searching uncer-
tain values, can be applied in finding the fuzzy models [2]|, fuzzy controllers [11], fuzzy rules [8]
and others [9, 13-15]. In such algorithms, the chromosome consists of uncertain genes, which are
represented by fuzzy numbers. Therefore, the evolutionary operators are modified for fuzzy types
of data.

The artificial neural networks, as the tool of approximation can works with the uncertain values.

In the paper the new conception of connection FEA and neural network is presented. The Two-
Stages Fuzzy Strategy (TSFS) as the optimization method is shown. The main idea of creating
the TSFS is the coupling of the advantages of FEA and gradient optimization methods aided by
neuro-computing.

The TSFES is applied to the identification problems of mechanical structure.

2. THE FUZZY EVOLUTIONARY ALGORITHM

The paper concerns the fuzzy evolutionary algorithm (FEA) with fuzzy operators and fuzzy repre-
sentation of the data is presented. The chromosomes contain fuzzy genes. Each gene decides about
the heredity of one or a few characteristics. The individuals can be modified by means of the fuzzy
operators. The evolutionary operators generate new chromosomes. The next step is the operator of
the selection. It creates a new generation, which contains better chromosomes. All steps are repeated



318 P. Orantek

i Evolutionary Algorithm |
Initiation i
Environment | |
[ Reproductions
1 Succesion
Evaluation :
Operations

Fig. 1. The flow chart of the evolutionary algorithm

until the stop condition is fulfilled (Fig. 1). In the fuzzy evolutionary algorithm an individual ex-
presses a fuzzy solution. In each generation the fuzzy evolutionary algorithm contains a population
of fuzzy solutions. Each solution is evaluated, and as the result a fuzzy value of the fitness function
is obtained. The next generation is constructed on the basis of better fuzzy chromosomes of the
previous generation. In this case the special types of fuzzy relations are defined. Also the fuzzy
types of operators are constructed. Two types of fuzzy mutations can change the selected values of
the fuzzy chromosome. Two kinds of crossovers are applied to exchange the selected values between
fuzzy chromosomes. As the result of fuzzy operators, fuzzy chromosomes are obtained. One can
observe that the next population in the fuzzy evolutionary algorithm is better than the previous
one.

2.1. The fuzzy representation of the data
2.1.1. The fuzzy gene

In most cases the evolutionary algorithm has the genes as the real values. The fuzzy algorithm
works on the fuzzy data, so the gene should be modified to fuzzy representation. The fuzzy values
are particular cases of the fuzzy sets, which are convex and have the continuous membership func-
tions [10]. Some basic arithmetic operators are defined for that representation of the fuzzy values.
They do not assure result as the fuzzy value. Other form of the fuzzy values is the L-R form. In this
case only the addition and subtraction are defined as the exact solution. Multiplication and division
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Fig. 2. The fuzzy value and corresponded intervals
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Fig. 4. The gene in the fuzzy evolutionary algorithm

have the approximate character. Also the fuzzy value z can be considered as the set of the interval
values, which are stretched on the adequate levels (a-cuts) of the fuzzy value. The number of the
a-cuts can be arbitrary. Figure 2 shows an example of the replacement of the fuzzy value using the
5 interval values.

This approach gives some advantages. For each a-cut the very good known interval arithmetic
operators are used. It is possible to obtain different forms of the fuzzy values (Fig. 3) due to
generation of a few a-cuts and corresponded them interval values [z, E].

The forms can be symmetric or not symmetric. They describe some characteristic forms of the
fuzzy values, and permit to build a new form of the fuzzy value too. Finally, each gene z is expressed
as the real value: the central value cv(z) (Fig. 4) and a set of parameters a;(z) and b;j(z) which
define distances between cv(x) and the boundaries of the intervals (Fig. 4) [19]. It is possible to
introduce the constraints on the cv(z) and non-symmetric constraints on the widths of the intervals
using the central value cv(z). The constraints on the central value cv(z) and the fuzzy parameters
a;(z) and b;(z) are defined as follows,

™2 (z) < cv(z) < ™ (z) (1)
a™(z) < ai(z) < af™(2) (2)
b (z) < bi(z) < B () (3)

where indexes ‘min’ and ‘max’ mean the maximum and minimum values.
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2.1.2. Convention of description system of fuzzy values

The special convention for description system of fuzzy values is assumed. The system contains the
parameters: [a1(z), ..., acm(Z), cv(z),bem(x), ..., b1(z)]. The value in the middle is the central value
cv(z) of the fuzzy value z. The rest of the values mark the fuzzy parameters of the fuzzy value z
(Fig. 4). By introduction of the special trapezoid description system the nonsymmetrical constraints
imposed for fuzzy values can be assumed. This system is independent of the number of the a-cuts.

The system has the form: [ar(z), ay(z), cv(z),by(z), br,(z)]. The middle value means the central
value cv(z). The rest values mark 4 selected fuzzy parameters (Fig. 5). The trapezoid description
- system for construction the fuzzy values is applied. The fuzzy values can consist of different number
of a-cuts. The different number of a-cuts limits the different sense of the fuzzy parameters. For one
a-cut, ar(z) and by (z) are taken into consideration (Fig. 6). In the case of two a-cuts, the first is
described by ar(z) and br(z), the second by ay(z) and by(z). If the number of a-cuts is bigger
than three, the next intervals are uniformly located (from the bottom to the top) (Fig. 6).

a(x),, b(x),

%
é

a(;)z b(x),

cv.(x) "
Fig. 5. The graphical interpretation of the Fig. 6. The graphical interpretation of generating the
description system of the trapezoidal fuzzy value different number of intervals on basis the trapezoidal system

2.1.3. The fuzzy chromosome

The main difference between the fuzzy evolutionary algorithm and the real coded evolutionary
algorithm consists in the representation of the data. The chromosome consists of fuzzy genes and
can be considered as the fuzzy vector and is considered as potential fuzzy solution of the problem.

2.2. The fuzzy evolutionary operators
2.2.1. The fuzzy mutation

Two new types of the mutation operators in the presented algorithm are applied. In both cases the
modified gene ch? is randomly selected from the chromosome ch = [ch', ch?,... ch?, ..., ch™]. In
the first type of the mutation (mutation I) the central value cv(ch?) of the j-th fuzzy value ch? is
modified. The operator is expressed by the following equation,

cv(ch?™) = cv(ch?) + G, (4)

where G, — random value (with Gaussian distribution) from the range given by Eq. (1), j =1,...,n,
is the number of the gene.



Fuzzy evolutionary algorithms and neural networks in optimization 321

The second type of the mutation operators (mutation II) concentrates/deconcentrates the fuzzy
value ch?. The mutation changes the distances a;(ch?) or b;(ch?) by the following equation,

ai(ch’*) = a;(ch?) + Gq, (5)

bi(ch?*) = bi(ch?) + Gy, (6)
where G, i Gy — random values (with Gaussian distribution) from the ranges given by Egs.
(2) and (3).

This operator is considered as symmetric (a;(ch?) and b;(ch?) are changed using by means of the
same value), and non-symmetric ones. The operator can change only the selected a-cut. Therefore,
two types of the mutation operator is introduced, both can work together or independently.

2.2.2. The fuzzy crossover

The fuzzy arithmetic crossover operator is proposed in the fuzzy evolutionary algorithm. The
crossover creates two children individuals ch] and chj on the basis of the two parent chromosomes
chq and chs .

The selected parameters of the j-th genes of the children chromosomes are expressed by the
following equations,

cv(ch?*) = Acv(ch?) + (1 — N)ev(chd), . (7)
cv(chd®) = Aev(chy) + (1 — A)ev(ch?), (8)
ai(chd*) = Xai(ch?) + (1 — Nai(chl), (9)
ai(ch}’) = Aai(chy) + (1= Nai(ch]), (10)
bi(chl®) = Abi(ch]) + (L — A)bi(ch3), (11)
bi(chf") = Abi(ch) + (1 = A)bi(chi), (12)

where A € [0,1] is a random value with the uniform distribution. The crossover operator like the
mutation can change only the selected a-cuts.

2.2.3. The fuzzy selection

The last modified operator for the fuzzy values is the selection operator. This operator is constructed
on the basis of the well known tournament selection. In this selection the fitness function values
f are compared, and the better chromosome wins more often. Therefore the special strategy of
comparison of two fuzzy values is proposed. The explanation of the proposed method is presented
in the following example.

At the beginning consider two real values (fitness functions): eval; = f(chy) and evaly = f(chz).
In the real value case the better one wins if the random condition is true: 8 < Brand , where 3 — the
random value with uniform distribution, B,4n¢ — the win parameter, which takes the value close to 1
(for example Brand = 0.95). It is easy to observe that the better individual wins more often, but it
is not certain. In this work this approach is developed for the fuzzy case. Consider two fuzzy values
evaly = f(chi1) and evaly = f(chz). Both values have the same number of a-cuts. The minimization
problem is considered. At the beginning the following condition is checked,

cv(evaly) = cv(evaly). (13)

If the condition (13) is fulfilled, the width condition (a; and b;) is checked for each a-cut. The fuzzy
value, which has the bigger width (for example: eval;), takes the value 8; = 0.4 and other fuzzy
value takes value By = 0.6 (values 1 and f3; play the role parameter § for the real value case). If
both widths are identical, 81 and 2 take the value 0.5. This way promotes more concentrate values.
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If the condition (13) is not fulfilled, there are two possibilities. Consider one of the possibilities:
cv(evaly) < cv(evaly). (14)

In the second possibility the way is similar, but values eval; and evaly are treated on the contrary.

Therefore, if the condition (14) is fulfilled, win parameters take the next values. Parameter j3;
takes a value close to 1 (in this work 1 is equal to 0.95), parameter (37 takes a value close to 0 (in
this work 2 is equal to 0.05, 81 + B2 = 1). Next, the conditions are checked,

cv(evaly) — ai(evaly) < cv(evaly) + b;i(evaly), (15)
cv(evaly) — a;(evaly) < cv(evaly), (16)
cv(evalp) — a;(evaly) < cv(evalr) — ai(evaly), (17)
cv(evals) < cv(evaly) + b;(evaly), (18)
cv(evaly) + bi(evaly) < cv(evaly) + bi(evaly). (19)

In the case of fulfilling each condition (15)-(19), the parameter (; is decreasing by AB; and the
parameter (32 is increasing by AfBs . In this paper both parameters take the values: 8; = f2 = 0.05.
It is possible to observe that if no one condition is fulfilled, both intervals do not have the common
part. Fulfillment of the conditions corresponds to increasing the common part of both intervals.
This process is repeated for all a-cuts. The selection based on conditions (15)-(19) generates
bigger probability of the survival of a much better adapted individual.
In the proposed method the starting values of parameters and increasing and decreasing values
are arbitrary. It is possible that for other values the algorithm can work better.

2.2.4. The fuzzy fitness function

One of the most important step of the evolutionary algorithm is the evaluation of the fitness function.
If the design variables are the real numbers, the fitness function result is also real value. In the case
of the fuzzy evolutionary algorithm, the problem of evaluating the fitness function can be more
complicated. A few ways of the estimation of the results in this case are possible.

If the fitness function is the explicit function of fuzzy design parameters, its value can be com-
puted taking into account the extension principle. Unfortunately, in many cases the fitness function
evaluation can be done after solving the fuzzy boundary-value problem. The fuzzy boundary-value
problems can be solved by means of the boundary element method FBEM [6, 18] or the finite
element method FFEM |[7].

The key problem is to solve the fuzzy algebraic equations which are obtained after the numerical
discretization of the boundary-value problem using the FBEM or the FFEM. There are a few
approaches to overcome these difficulties.

One of the more general approaches is based on the a-cuts and the interval representation of the
solutions. More detail description of this idea can be found in [18].

3. THE MULTILEVEL ARTIFICIAL NEURAL NETWORK
3.1. The artificial neural network

Consider two types of the artificial neural networks (Fig. 7), with sigmoid (MLP) and radial (RBF)
active functions. The fitness function is modeled close to the optimum by the parabolic function for
each design variable, therefore one hidden layer in the network (MLP) is sufficient. In the case of
the network (RBF) one “hidden” layer (basis functions) is always assumed.

The number of neurons in the input layer is equal to the number of design variables of the fitness
function. In the output layer there is only one neuron, its output value plays the role of the fitness
function.
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Fig. 7. The schema of neural network

The number of neurons in hidden layer depends on the degreé of difficulty of the function.

The output values of neurons in the input layer take the values of design variables (in both cases
MLP and RBF). The output value of neurons (McCulloch and Pitts model with sigmoid active
function) in the hidden layer in this case network (MLP) is expressed by [4]

1

ek = f(sik) = = (20)
where
N;_
Sik = Z €i—1nWi—1njk + WWik (21)
n=1 i

and where e — output values of neurons in previous layers, w — weights.
The output value of neurons in the hidden layer in the case of the network (RBF) is expressed
by

ey == f(u;) = e 0-5% (22)
where
i Cik = ti 4
’U,,':Z< zo.i k) (23)
n=1 k

and where t; — the centre of i-th radial function, o; — width of i-th radial function.
The output value of the neuron in the output layer in network (MLP) is computed like in the
previous, the hidden layer, however in the network (RBF) as follows,

N
e =Y Wiewi+Wo. : (24)

ne=l

3.2. The sensitivity of the neural networks

'The sensitivity of the output signal ez; of the (MLP) network in the some z-th input value e, is
expressed by
I
dest e dsin, dein, dsan, deot

= : 25
de,Oz im1 deOz dslnl delnl d321 ( )
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Taking into account Egs. (20) and (21) in formula (25), one obtains

T i B
dezn =21: Woslm € 71 Wing1e” (26)
deg; 2 \(T+em) (+em))”

The sensitivity of the output signal eg; of the (RBF) network in the some z-th input value eg,
is expressed by

I
dea; _ Zl dsin, dein, ds2,, dea: . (27)
deo; - - deg, dsin, dein, dso1

Taking into account Egs. (22), (23) and (24) in formula (27) one obtains

I n

deg; - 1 n1) %oz —to;
- T Y 7 ning 2

o ;( w™ exp | —zu o702 (28)

The formulas (26) and (28) will be used in local gradient method, which is presented in next
section.

3.3. The multilevel artificial neural network

The special multilevel artificial neural network (Figs. 8 and 9) is used as the approximation method
of the fuzzy problem. Each level corresponds with a selected parameter of the fuzzy number and is
modeled as a MLP or RBF network.

Number of levels of multilevel neural network depends on the number of a-cuts of the fuzzy
number and is equal to 1+ 2¢m, where ¢m — the number of a-cuts.

The central level of the multilevel neural network corresponds with the central value of the fuzzy
number (red color, Fig. 9). The other levels correspond with the fuzzy parameters of the fuzzy
number (the blue levels corresponds with the parameters a;, the green levels correspond with the
parameters b;) (Fig. 9). All levels can be connected with each others (Fig. 8).

The sensitivities of the output signals of presented multilevel network is expressed by Eq. (26)
for (MLP) and Eq. (28) for (RBF). If all levels are connected with each others, then formulas are
extended. The sums concern all levels of network.

Fig. 8. The scheme of connecting multilevel artificial Fig. 9. The scheme of levels in multilevel artificial
neural network neural network
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4. THE LOCAL OPTIMIZATION METHODS

The proposed local optimization method is a combination of the classical gradient method (the
steepest descent method) and the multilevel MLP or multilevel RBF network. In the first step of
the algorithm a set (cloud) of fuzzy points in the function domain is generated.

In order to perform the optimization process the network is constructed. The multilevel MLP
has architecture: (2/10/1), multilevel RBF: (2/8/1). The number of levels of the neural network
depends on the number of a-cuts of the fuzzy number, and is equal to 1 + 2¢m, where ¢cm — the
number of a-cuts.

The starting number of training vectors is equal to 3m, where m — the number of fuzzy design
variables of the minimizing function.

In each iteration of the optimization algorithm a few steps are performed (Fig. 10).

1l

Building the ANN
Ij!
Credi
thelaninlgn\g/ectors ]
(it

Learning the ANN

U

Loca optimization

1l

Verification the optimum

Fig. 10. The schema of local optimization method

In the first step the set of training vectors of the network is created. In the first iteration the
set is created on basis of the cloud of points. The coordinates of points (central value and fuzzy
parameters) play the role of the input values of the network, the fuzzy fitness values in points play
the role of output value of the network.

In the second step the network is trained.

In the next, third step, the optimization process is carried out. The gradient method (the steepest
descent method) of optimization is used. The network as the fitness function approximation is used.
The gradient formula (26) or (28) is employed in computation. The special kind of the fuzzy gradient
is introduced. For all edges of fuzzy values the real sensitivities are calculated. Each parameter can
be modified on the basis of this information. If the fuzzyfication degree is fixed, only the central
value is modified.

For a point, which is a result of optimization (found in step 3), the actual fitness function is
computed.

In the last step the stop condition is checked. In the case, in which the condition is true, the point
is treated as the result of the optimization process. If this condition is false, this point is added to
the training vector set and the next iteration is carried out (go to step 1).

This method was tested numerically and results were satisfactory.
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5. THE TWO STAGE FUZZY STRATEGY

The main idea of the creating the two-stage fuzzy strategy (TSFS) is the coupling of the advantages
of evolutionary and gradient optimization methods aided by neuro-computing. The fuzzy evolu-
tionary algorithms can find the global optimum, but it is very time consuming. The fuzzy gradient
methods can find the optimum precisely, but they need information about the sensitivity of the
objective function.

The TSFS in first stage uses some properties of the fuzzy evolutionary algorithms (FEA).

These algorithms are procedures to search the optimum in the feasible space of solutions.

The FEA generates clusters of fuzzy points. The clusters are positioned closely to the optimum.
There is a great possibility that the optimum is the global optimum. There is a risk that the points
are located close to the more than one optimum. In this case the second stage (local method) can
work unstably. It can be solved in a few ways.

One of the possibilities is to introduce the parameter which describes the maximum size of the
cluster. The parameter can be expressed by the radius of the region in domain. The center of the
region is equal to the best solution of the FEA. All points which are inside the region, belong to
the cloud of points. This approach is characterized by a variable number of training vectors. In this
case an alternative parameter is introduced. The parameter defines the maximum number of the
points in the cloud.

In the second stage of the TSF'S several best points in this region are selected. Then, these points
play the role of the cloud and, as previously shown, the local method begins. This method is based
on the gradient method, but the sensitivity analysis is evaluated by the neuro-computing.

Therefore, the TSFS combines the advantages of the previous described methods, and avoids
their disadvantages. The crucial problem is the moment of the transition from the first stage to the
second one. Some experience allows taking parameters of the TSFS, for which the TSFS can find
the optimum earlier than the FEA, which is used separately.

In the general case the moment of transition can depend on some parameters of the first stage:
(i) — the changes of the fitness function of the best chromosome, (ii) — the size of the clusters of
chromosomes, (iii) — the diversification of the population and many others.

6. EXAMPLE OF IDENTIFICATION

The aim of the identification problem is to find the parameters which define the circular defect: z,
y and r (Fig. 11). The plate is loaded by the fuzzy continuous traction field q (Fig. 11). The actual
fuzzy parameters of the defect are z = [0.10;0.05;3.00;0.05; 0.10], y = [0.10;0.05; 3.00; 0.05; 0.10],
r = [0.10;0.05; 2.00; 0.05; 0.10] (the number of a-cuts, cm = 2 is assumed).

& Sensor points

Fig. 11. The plate with the circular defect
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The chromosome takes the form: ch = [chl, ch2, ch3] = [z,y,r], where z, y, r — are the fuzzy
values.

The material parameter F also as the fuzzy values is assumed. The 21 sensor points the 21
points on the boundary are selected (Fig. 11). The traction q is described using the trapezoid
value with parallel arms (Fig. 5), therefore each a-cut is determinate as the identical interval ¢ =
[99.8;100.2] (kN). The Young modules for each a-cut as the interval [2e+11 — 2% ; 2e+11 + 2%)] are
assumed.

In the previous works (the real-coded problem) the minimizing problem was expressed as the
minimizing of the displacement functional

= ; x) — a(x))? 5 (x — x*
=3 /F (lu(x) - )26 (x - x') dr (20)

where @ — the measured displacements in the sensor point x¢, u — the computed displacements in
the same point for z, y and r generated by the optimization algorithm, n — the number of sensor
points, § — the Dirac function. The formula (29) can be expressed in a more simple form

f= Z(Ui - ) (80)

where: 4; — the measured displacement, u; — the displacements computed for the structure with the
defects generated by the evolutionary algorithm. -

In the case of the fuzzy identification problem, the edges of the intervals fc € [fc; fc| are computed
as follows,

f = min (jui — il ; |7 — ) o

) (32)

fol = 3 max lus— il R s
i

The central value of the result, as the mean value of all edges of a-cuts is computed.

The two-stage strategy is applied. In the first stage, the region of the global optimum is finding
by means FEA. The following values of the fuzzy evolutionary algorithm parameters have been
assumed: population size: 40, number of generations: 50. The best 27 individuals in the whole opti-
mization process as the points of the cloud were applied. The number of fitness function evaluations
was equal to 644.

In the second stage the presented local optimization method found the optimum with use of 162
(MLP) or 87 (RBF) iterations.

In order to evaluate the efficiency of the two-stage strategy only the fuzzy evolutionary algorithm
for the identification problem was used. In this case the number of fitness function computations is
equal to 1435 and it is bigger than the two-stage strategy is used.

The results of identification are presented in Tables 1 and 2. The results at the beginning and
after selected stages are presented in Figs. 12-14.

Table 1. The coordinates of the optimum Table 2. The coordinates of the optimum
(after 1st stage) (after 2nd stage)
ay as Ccv bg bl ay a9 Ccv b2 b1

0.10 | 0.05 | 3.00 | 0.05 | 0.10
0.10 | 0.05 | 3.00 | 0.05 | 0.10
0.10 | 0.05 | 2.00 | 0.05 | 0.10
0.00 | 0.00 | 0.00 | 0.00 | 0.00

0.04 | 0.03 | 2.97 | 0.02 | 0.04
0.05 | 0.03 | 2.99 | 0.03 | 0.03
0.08 | 0.02 | 1.96 | 0.01 | 0.02
0.88 | 0.43 | 2.42 | 0.73 | 0.96

- e 8T ]
- o T O
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Fig. 12. The results in 1st generation of FEA

Fig. 14. The results after 2 stage of TSFS
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7. CONCLUSIONS

An effective Two-Stages Fuzzy Strategy (TSFS) based on the fuzzy evolutionary algorithm and
multilevel artificial neural networks has been presented.This approach can be applied in the opti-
mization problems and identification of defects in mechanical structures.

The application of evolutionary algorithms allows avoiding local minimum.

The optimum can be found in less number of iterations due to applied the multilevel neural
network for local approximation of the fitness function. In the some tests the time was decreased
even to 50%.

The future task is testing the influence of the parameters on the sensitivity of the algorithm: the
parameters of the fuzzy evolutionary algorithm (number of individuals, probability of the operators),
control parameters [5] of the selection (probability of the comparison of two fuzzy numbers).

In the general case the uncertain conditions have the granular form [3]. The models based on
random variables can be used instead of the fuzzy approach presented in this paper.

The granular evolutionary algorithm can be created as a general method for all described models.
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