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The identification of the industrial processes is a complex problem, especially in the case of signals denois-
ing. The holistic approaches used for signal denoising processes are recently considered in various types
of applications in the domain of experimental simulations, feature extraction and identification. A new
signal filtering method based on the dynamic particles (DP) approach is presented. It employs physics
principles for the signal smoothing. The presented method was validated in the identification of two kinds
of input data sets: artificially generated data according to a given function y = f(z) and the data obtained
in laboratory mechanical tests of metals. The algorithm of the DP method and the results of calculations
are presented. The obtained results were compared with commonly used denoising techniques including
weighted average, neural networks and wavelet analysis. Moreover the assessment of the results’ quality
is introduced.

1. INTRODUCTION

The analysis of the experimental measurement data obtained in the identification process is often
difficult and sometimes the results in their rough version are useless, because of superimposed
noise. In most cases observed noise is a result of external factors like sensitivity of the industrial
measuring sensors. Properly performed analysis based on the denoising techniques allows extracting
the vital part of the measurements. Due to the denoising process, which is often very expensive
and time-consuming, the experimental data can be restored and used in further calculations [9].
Commonly used denoising methods have some advantages and disadvantages, but no one can be
treated as the unified denoising and smoothing method. The unification of such techniques shall
give a method, which can be applied for different types of measurement data saddled with a noise
of different type. Usually methods have to be reconfigured and adapted to the varying conditions
even if the analyzed data has the same form but with the different noise. The example of such data
can be seen in Fig. 1, where two similar plots can be found [5]. They contain results of a metal
compression tests performed with different velocities. Each of these curves is loaded with noise of
different frequencies though they describe the same type of tested material. Therefore denoising
methods should be designed to obtain similar results independently of the noise character and,
what is more important, independently of the curve shape. This would allow the application of the
method in the automated way performing denoising process that won’t require reconfiguration of
input parameters and additional user’s interaction.

The process of denoising of measurement curves can be treated in some cases as the problem of
data approximation. However, a lot of other objectives can be assumed for the filtering purposes e.g.
determination of rise and fall trends in economical data or data smoothing with simultaneous peak
preserving during processing of thermomagnetic coefficient plots. There are many of the algorithms,
which support such activities, but the most widely known and used can be enumerated as follows:

e polynomial approximations, weighted average,

e wavelet analysis [1], artificial neural networks [4],



354 L. Rauch, J. Kusiak

120 - M 126~
v
80 80 —
2 3
8 .
S 8
40 - 40 |
0 ' T ' T ’ 1 0 IR YR TR e g
0 4 8 12 0 4 8 12
stroke, mm stroke, mm

Fig. 1. Example of two different noised measurement data

e large family of convolution methods and frequency based filters [7],

huge set of representative methods and algorithms of estimation theory [6],

Kalman stochastic model processing (8],

dedicated filtering (used mainly in the image filtering processes) e.g. NL-means, neighborhood
models [2].

In case of polynomial approximation approach, the algorithms return well-fitting smoothed curves.
If the data contain thousands of measured points then the calculation time is very long and the
method appears inefficient. However, in case of off-line calculations the time is not a crucial pa-
rameter, hence the polynomial approximation approaches are widely used in practice. The weighted
average technique allows very fast and flexible data smoothing, but the assessment of obtained re-
sults is very difficult and based only on the user’s intuition. Thus, the main disadvantage of that
method is the problem of a stop criterion of the algorithm. Otherwise the results converge to the
straight line joining the beginning and the end of the noised curve. The wavelet analysis is similar
to the traditional Fourier method, but is more efficient in the analysis of physical situations, where
the signal contains discontinuities and sharp peaks. It allows application of denoising process on dif-
ferent levels of signal decomposition making the solution very precise and controllable. Wavelets are
mathematical functions that divide the data into different frequency components. Then the analysis
of each component is performed with a resolution matched to the frequency scale. The drawbacks of
the method are: the necessity of setting thresholds each time the input data is changing; choosing the
quantity of decomposition levels that can be dependent on the noise character. Approach based on
the artificial neural networks is also often used. Mainly the Generalized Regression Neural Networks
(GRNN) is applied. The results obtained using that technique are smoother than in other methods
e.g. wavelet analysis, but the application must also be configured for each calculated data curve.
Thus, the neural network approach is suitable for single calculations, but not for the automated
application of denoising process.
The main problems of the denoising process are:

e the definition of the stop criterion and the evaluation of the quality results,
e decrease of the computation time of the iterated algorithms run too long in most cases,

e the results are too simplified which makes the further analysis of the denoised data useless.
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The objectives of the paper can be divided into following topics:

e Presentation of the algorithm of the DP method as a proposition of unified denoising method
that can be applied automatically for different types of measurement data sets, independently
of the type of the superimposed noise with discussion on its advantages and disadvantages,

e The analysis of results of various signals using DP method — identification of most important
signals’ features, evaluation of obtained results,

e Interpretation of results and discussion on the prospectives of designed method in other domains
of science as bioengineering, civil engineering or economics.

2. DESCRIPTION OF THE DYNAMIC PARTICLES METHOD

The idea of the Dynamic Particles (DP) method is based on the definition of the particle [3]. The
particle can be treated as an object placed in the N-dimensional space. The paper presents the two-
dimensional DP method using the particles as two-dimensional vectors related to the measurement
data.
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Fig. 2. Example of particles acting with reverse forces F' on their neighbors

In case of registered noisy signal y = f(z) of one variable z (see Fig. 2), each peak can be
treated as a single dynamic particle. Thus, the whole measurement curve can be seen as a set of
connected particles in the 2D Euclidean space. The main idea of the denoising DP algorithm consists
in the appropriate move of each particle according to the calculated direction. It is assumed, that
the first and the last particles (the beginning and the end of the curve) remain fixed during the
running of the denoising algorithm. Every other particle (peak of the noise) is influenced by two
neighboring particles. The considered particle moves in the direction that is calculated with respect
to the position of two adjacent particles. The algorithm is running in the iterated manner where the
number of iterations depends on the complexity of the analyzed measurement data and superimposed
noise.

The main reverse force F' is the resultant of two force vectors from the left and right particle’s
neighbors i.e. Fy, and Fg. These force vectors are parallel to the opposite slopes of the peaks of
the left and right particles and their magnitudes are equal to the lengths of slopes (see Fig. 2). The
average force acting currently on the chosen particle can be treated as a particle’s potential V;.
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The gradient of this potential is mainly responsible for the movement of the particle in each step of
calculations. Thus, the differential equations of particles movement can be written as follows,

dv; <3
miﬁ; = —-VV;~ fc'Ui, (1)
dr; &= v;dt

where Uy = 0 and V;m; = 1. The magnitude of the force that causes the movement of considered
particle is reduced by the friction coefficient f. < 1. It has been found that according to the
Newtonian laws of motion if all pre-conditions would be fixed properly, the whole system will remain
stable and convergent to the expected results. The friction coefficient f. can be also modified with
the potential of each particle during the calculations of the algorithm, which has a great impact on
the final smoothness of the obtained results.

The reductions of the forces, and the reduction of the particles’ movements, are the main issues
of the stop criterion of the algorithm. If the force acting on the single particle is less than the
threshold defined at the beginning then the particle does not move. The whole algorithm reaches
the end of the run when all particles stop moving. However, the threshold responsible for the motion
of the particles defines also the smoothness of the expected results. If it is set as the small value,
then the algorithm is running till all forces on the curve reach the threshold and the differences
between positions of two adjacent particles are very low. Otherwise, the plot of new curve is sharper
sustaining all most important peaks. The value of this parameter can vary between 10~° and 10~20.
If its value is too small, then it has no more impact on the shape of the curve. Otherwise, if is too
high, the algorithm stops too early giving no effect of smoothing.

Very important issue is to normalize data before calculations, because the scales on each axis
of the curve have to be equal. Otherwise, any of them may have a stronger impact on the motion
of particles and the process will fail giving an inappropriate shape of the denoised curve. The
normalization of input data do not influence the density of the data on each axis, because the data
is re-scaled after the calculations to its primary range. However, the problem of the boundary points
has not been solved. They remain fixed during the calculations which may cause some problems
while the boundary points are superimposed by the noise of a higher value than other particles.

3. RESULTS AND DISCUSSION

The validation of described above DP denoising method was performed using two different types of
the input data:

e data set generated according to a given equation. The generated data were the values of a chosen
function y = f(z) for the values of z € [—a, +a], with step s. Next, each calculated point y = f(z)
of the plot was superimposed by a noise with the random value from the range [—r, +r]. The r
parameter was set independently for each function, allowing the original generated function to
stay unchanged. Thus the expected results returned by the denoising procedure should match
the source curve,

e experimental data sets of variables measured in real conditions:

— load vs. stroke curves measured in the compression tests of the steel samples,

— thermomagnetic material properties curves obtained during the heat treatment of the mag-
netic samples,

— financial series based on the timeline — Euro-USD exchange rates.
As an example of the first data set the sinus function was chosen within the range [0, 27|. Then, each

calculated value of the sin(z) was noised with random numbers within the range of [—0.1,0.1]. The
expected results of the denoising process should be simply the sinus curve itself. Therefore, working
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on the generated data the coefficient of the denoising quality can be evaluated by calculating the
differences between the source curve, noised input and denoised output as follows,

- calc_diﬁ(Sc, Nz) (2)
" calc_diff (S, D,)’

where D, is denoising quality coefficient; S. — source curve; N; — noised input; D, — denoised
output. The calc_diff function used in Eq. (2) is defined as the modified standard deviation

cale _diff = H %:Td’f (3)

where d; is the Euclidean distance between corresponding particles on both curves (various measures
of distance, dependent on chosen metrics, can be applied) and n is the number of points (particles).
The denoising quality coefficient D, should be greater than 1. The higher value means the better
denoising result. Additional parameter that would allow evaluation of denoise quality is correlation
coefficient, which illustrates how the trends of the data are similar for both plots. The results
obtained from the calculations performed on the generated data are shown in Fig. 3.

The value of the denoising quality coefficient (Eq. (2)) is equal 5.8854 which indicates that in
case of generated function y = sin(z), the denoised results match to the source curve almost six
times better than the noised input (Table 1).

The second analyzed data set consisted of the industrial measurements of compression tests of
steel samples. The dimensions of the cubic sample were 35 x 25 x 20 mm. The registered plots of the
loads versus press stroke are very noisy (Fig. 4) [10]. Therefore, the DP method was used to filter
these plots.

The filtering (denoising) process of the curve, when its source shape is unknown, is much more
difficult than in case of denoising of known function presented above. The main problem is connected
with the evaluation of the denoising quality, while there is no explicit method of the quality esti-
mation. Thus, only the values of the correlation between noised and denoised data can be counted
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Fig. 3. Comparison of the source and noised curves (a) and denoised output (b)

Table 1. The standard deviations of the analyzed y = sin(z) noised curve

Modified standard

deviation
source curve — noised input calc_ diff (S. — N;) 0.0565
source curve — denoised output calc_ diff (S. — D,) 0.0096

denoise quality D, 5.8854
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Fig. 4. The results of the DP denoising process of the compression test curves

Table 2. Comparison of denoising results obtained using different methods for load vs. stroke curves

Temperature | Stroke velocity Correlation coefficient
oG gt DP WA ANN
800 0.1 0.999762 0.999836 0.999821
950 0.1 0.999472 0.999453 0.999520
950 1 0.999521 0.999677 0.999744
950 10 0.999156 0.999825 0.998939
1100 10 0.999213 0.999586 0.999623
1150 0.1 0.986145 0.979595 0.976195
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Fig. 5. The results of denoising process for the magnetic material data (a) and currency exchange rate (b)
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for, and then compared with the results of other methods, for example: artificial neural networks or
wavelet analysis.

The following wavelets families: Coiflet5, BiorSplines3.9 available in the Matlab6.5 environment;
were chosen in the work to the filtering process. Also, the filtering using the different types of neural
networks was performed. The Multilayer Perceptron Networks, generalized regression (GRNN) and
RBF (Radial Basis Function) neural networks were tested. The data set of available input data was
divided into three independent subsets as required in the ANN approach: learning (50%), verification
(25%) and testing (25%).

The obtained results were compared with these of the DP method (Table 2). The DP results
seem to be very close to these of the wavelet analysis. Both methods are characterized by a high
accuracy. They also do not generalize the results as it is observed during the ANN denoising. The
obtained results of the DP denoising process of the compression test curves (load vs. stroke) are
presented in the Fig. 4.

The DP method was also tested using the data obtained during the tests of the heat treatment
of the magnetic materials [9]. The registered curves are characterized by the noise of different types
and frequencies at different stages of a performed test. The objective of the denoising process was
to maintain the characteristic peaks (see Fig. 5) for each tested material that is very important in
the description of the materials’ magnetic properties. Another input data set was related to the
finances, i.e. the exchange rate between Euro and USD vs. time [11]. Results of denoising process
with the higher smoothing coefficient represent the increasing and decreasing trends of the plot
allowing the prediction of exchange rates (Fig. 5).

4. CONCLUSIONS

New holistic method for the experimental data denoising process based on the Dynamic Particles
(DP) has been presented. The main advantage of this approach is the possibility of automated ap-
plication (without reconfiguration) for the data influenced by the noise of different type and varying
frequencies. Obtained results from the performed calculations are characterized by high accuracy
and fidelity. The DP method appears very promising for other applications. The advantage of the
developed DP denoising method over other commonly used techniques is its simple implementation,
lack of the necessity of reconfiguration for the different data sets, fast performance, reliability and
accuracy in case of various applications.

The further development of this technique should focus on the formulation of the filtering quality
criterion. The next step should be expansion of presented DP method for the data of more than
two dimensions. Main objectives that should be achieved in this issue are:

e the selection and implementation of the proper algorithm for searching for nearest neighbours
in the space of higher dimension,

e the selection of the best type of the object space and its metrics avoiding the effect of sparse
data in higher dimension.
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