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This paper presents neural networks prediction of load capacity for eccentrically loaded reinforced concrete
(RC) columns. The direct modelling of the load capacity of RC columns by means of the finite element
method presents several difficulties, mainly in geometry representation and handling of several nonlinear-
ities. Properly trained neural network can provide a useful surrogate model for such columns. The paper
discusses architecture and training methods of the both multi-layer perceptron (MLP) and fuzzy weights
neural networks (FWNN) for this application. It also presents the performance analysis of the networks
trained on data from three independent databases available in the literature.
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1. INTRODUCTION

The analysis of reinforced concrete columns with Finite Element Method is not an easy task. First
of all, one have to overcome the difficulties related to building a geometric model and its discretiza-
tion. Further, the analysis requires some skills in selecting appropriate formulation, element type,
handling material and geometric nonlinearities. Finally, from the point of view of design purposes,
the results obtained must be further postprocessed to reduce the number of data and to allow their
meaningful interpretation.
This paper presents an analysis of the load capacity of eccentrically loaded reinforced concrete

columns with multi-layer perceptron (MLP) and fuzzy weight neural network (FWNN). The anal-
ysis of such columns under critical load is a complex problem and is mainly based on empirical
modeling. Most of the design recommendations have phenomenological origins which can be linked
with difficulties in building and handling theoretical models as well as with the need to build
formulas suitable for designing such structures. In practice, one has to account for many factors
influencing the performance of columns, which makes the problem complex. The author investi-
gates the idea of application of a neural network system for the prediction of columns critical load,
including such issues as the number of inputs, selection of training patterns, restrictions of the
value of load eccentricity.

2. PERFORMANCE OF REINFORCED CONCRETE COLUMNS

Columns are elements carrying compressive load from the upper parts of a structure onto the
lower part or the foundation [6–8]. They can be precast or made directly on construction site. The
column cross-section most of the time has the shape of square, rectangle, polygon, T-shape, I-shape
or circle. Two main categories of reinforced columns can be distinguished:
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– tied columns,

– spirally reinforced columns.

Experimental evidence proves that all elements carrying compressive load should be treated as
eccentrically loaded. This is the basis for the assumption present in the Polish Standards that
compressive force is applied with some initial eccentricity. There are several other factors influencing
the performance of a column, including:

• slenderness of the column;

• way of application of load force;

• way of supporting the column;

• column cross-section;

• distribution of reinforcement;

• material properties of concrete and reinforcement.

Handing all the input parameters in a consistent manner and producing suitable design formulas
is difficult in the analytical way. The application of neural network to this task allows us to hope
that the resulting formula, while empirical, will capture all the essential influences of the input
parameters. Obviously, the quality of neural network approximator depends strongly on the amount
and the quality of training data. On the other hand, the neural network framework can be convenient
in dealing with noised or inconsistent data.

3. EXPERIMENTAL ANALYSIS OF REINFORCED CONCRETE COLUMNS UNDER
COMPRESSIVE LOADING

In the presented research data from three independent sources were used. One is the Pacific Earth-
quake Engineering Research Center Structural Performance Database (PEER database) created
at Berkeley University [4]. This database is continuously updated and its additional advantage is
precise description of the gathered data.
The second data source is Chudyba’s Ph.D. dissertation [2]. The third one is a report published

by Cranston in 1972 [3]. Table 1 shows the number of available patterns and the number of patterns
excluded from the analysis on various grounds.

Table 1. Number of experimental test cases in the databases.

No. Database No of patterns No of excluded patterns

1 PEER 296 231

2 Chudyba 36 9

3 Cranston 336 0

To make a comparison of the results originating from different experiments possible, the data
cases present in the databases are normalized in respect to a cantilever column of the length Leqv

shown in Fig. 2. In the databases the following types of column supports are present:

• cantilever columns,

• double-curvature,
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• double-ended,

• flexible-base,

• hammerhead.

For each configuration the equivalent length Leqv is defined as the distance between the level of
transverse displacement measurement and the base level. For most of the columns the equivalent
length Leqv is equal to the nominal length L. In other words, the transverse column displacement
was measured at the same level at which the transverse force was applied.

3.1. PEER database

PEER database [4] was created in order to facilitate access to the data concerning structural
elements performance under the action of a seismic load. This database is a compliance of results
published by various researchers during the period of several years. For each test case the database
provides a reference to the original data source, data describing force-displacement relation for the
column endpoint, material specification, and column geometry description. The database consists
of 296 cases of rectangular cross-section, simply reinforced columns and 160 cases of columns of
various cross-sections with spiral reinforcement.

For each column the database provides geometrical parameters as indicated in Table 2. All the
gathered test cases can be divided into various categories using two criteria: a) column support
type, shown in Fig. 2, b) column reinforcement type.

Table 2. Geometric parameters.

Overall H or D Column depth

Column B Column width

Dimensions Area Cross-sectional area of column

L Length of equivalent cantilever

Total Bars Number of longitudinal reinforcing bars

Longitudinal Bar Dia. Diameter of longitudinal reinforcing bars

reinforcement Bar Dia. Corner Diameter of longitudinal corner bars

Bar Dia. Interm. Diameter of longitudinal intermediate bars

Reinf. Ratio Longitudinal reinforcement ratio

3.2. Chudyba’s database

Tests made by Chudyba [2] concerned 36 columns split into four series by nine elements. The
columns in each series were made of a different kind of concrete. One of the series was loaded
eccentrically (with eccentricity e = 2.5 cm), others were loaded axially. All the cross-sections were
square with dimensions 15x15 cm. In each series there were three types of columns of the height
of 60 cm, 120 cm, 180 cm, respectively. All the columns were reinforced with four reinforcement
bars placed at the corners. For each column length the reinforcement bars were of the diameter 10,
14 and 18 mm. Thus the reinforcement ratio was ρ1=1.40%, 2.74% and 4.52%, respectively. The
main reinforcement bars were made of steel A-III (34GS) and transverse bars of steel AO (6 mm
in diameter). All the columns were supported as shown in Fig. 2.
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3.3. Cranston’s database

The Cranston’s database is presented in the report [3]. In this report Cranston collected data cor-
responding to 381 test cases of square and circular columns. The columns were classified according
to the type of support as:

– pined columns, equivalent to case c) shown in Fig. 2

– columns as part of frame systems, equivalent to case d) shown in Fig. 2

– columns with both ends fixed, equivalent to case b) shown in Fig. 2.

4. FORMULATION OF FUZZY WEIGHTS NEURAL NETWORKS (FWNNS)

In this section a brief overview of the algorithm for formulation of a fuzzy NN is given. The detailed
description of this algorithm can be found in [1, 9], so here only the main points are highlighted.
The formulation of fuzzy NN is done in three stages as shown in Fig. 1. In Stage I the network

is trained on the assumed set of training MLP patterns. This results in the initial values of NN
weights

W
0 = {w0

i

∣∣ i = 1, . . . ,W}, (1)

where W – number of NN parameters (synaptic weights and biases). In Stage II the network is
trained as many times as the number of training patterns in Stage I, separately for each input
pattern in the training patterns set. After the training a set of weights is completed as the matrix

W = {Wi}(W×L) = [w
(p)
i

∣∣∣ i = 1, . . . ,W ; p = 1, . . . , L]. (2)

The matrix from Stage II is the basis for computation of the membership functions for each weight
of the NN. The particular way of calculating the membership functions depends on their assumed
shape.

Fig. 1. Schematic algorithm for a Fuzzy Weight Neural Network (FWNN) formulation.
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5. DATA PREPROCESSING – FORMULATION OF A HOMOGENISED EXPERIMENTAL
DATABASE

Table 3 shows the number of training and testing patterns selected from the databases described
above. In case of Chudyba’s database series III of tests was carried out for large eccentricity and
thus were excluded from testing in cases A, B, C, D and E.

Table 3. Number of learning (L) and testing (T ) patterns selected for the neural network analysis.

Case Database L T

A PEER 65 –
Chudyba – 27

B PEER 64 –

Chudyba – 27

C PEER 65 –

Chudyba – 27

D Cranston 296 –

PEER + Chudyba – 101

E Cranston 79 –

PEER + Chudyba – 92

PEER database practically does not contain data related to eccentric loading. The eccentricity
of load for particular test can be classified as spurious. From the PEER databases only the cases
for cross-section with four corner reinforcement bars and non-zero axial force F were selected.
Eventually, 65 and 27 test cases from PEER and Chudyba’s databases were selected, respectively.
Cranston’s database is the richest one. It contains both test cases for large eccentricity as well

as test cases for axial load. Neural simulations were thus performed both the whole database (cases
D) as well as after removing the cases of large eccentricity.

6. METHODOLOGY OF CRITICAL LOAD PREDICTION

The formulation of a neural network for critical load prediction of the reinforced columns requires
consideration of the following issues:

• geometric and material parameters,

• training, testing and validation patterns,

• network architecture and training method.

The main factor influencing the decisions related to the issues above is the amount and quality of
available data.
For the presented analysis six inputs and one output parameters were selected. The input and

output vectors have the form:

x = {B,H,L, ρ, fc, fy}, y = {F}, (3)

where B,H – cross-section dimensions, L – equivalent column length, ρ – percentage of reinforce-
ment, fc – compressive concrete strength, fy – yield stress for reinforcement steel, F – critical
force.
The input parameters were scaled to the range [0.1, 0.9] and output critical force was normalised

by the maximum value of the encountered critical force Fs. MLP with simple hidden layer was
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used. The training method was based on Levenberg-Marquardt algorithm. With the three distinct
databases it was decided that the best way of testing generalization properties of neural network
is to use one database exclusively for the purpose of validation.

6.1. Case A – training on PEER database, testing on Chudyba’s database

The data cases selected from PEER database (65 items) were randomly split into training patterns
L = 65 and validation patterns T = 10. The number of neurons in the hidden layer was set to
3 giving the architecture 6-3-1 and 25 free parameters. Selection of the network architecture was
based on the ground of equilibrating the training and validation results. The trained network was
then tested on 27 test patterns. The results are presented in the first row of Table 4.

6.2. Case B – training on modified PEER database, testing on Chudyba’s database

This case is a modification of case A in which the quality of training patterns was analyzed. On the
basis of leave-one-out method a training pattern with the worst validation error was pruned from
the training set. It has turned out that the pruned pattern is the one with minimal critical load.
The results obtained are presented in the second row of Table 4.

6.3. Case C – PCA analysis, training on PEER database, testing on Chudyba’s

database

The size of the input vector influences the size of network and the performance of the resulting
approximator. Generally, it is beneficial to reduce the size of input vector applaying the Principal
Component Analysis (PCA). The analysis of correlation matrix of input parameters gives the
following eigenvalues:

λ = {12.86, 12.27, 10.22, 7.99, 6.98, 4.40}. (4)

In terms of the contribution of each of the input parameters to the global data variance the results
are

m = {29.9, 27.3, 18.9, 11.6, 8.8, 3.5} %. (5)

Looking at the above results one cannot really justify pruning of the input vector, but skipping
the component of the smallest contribution, which is 3.5%, should not make the results drastically
worse.
The same simulations as in cases A and B repeated for the input vector with five elements

confirm the above statement – the errors are slightly worse but the correlation coefficients are
satisfactory. The results are shown in the third row of Table 4.

6.4. Case D – training on Cranston database, testing on merged PEER

and Chudyba’s databases

Cases A-C considered only axially loaded columns. It is obvious that this is merely idealization of
a real world situation where, inevitably, some eccentricity is likely to appear. Cranston’s database
is the biggest one among the three considered bases with 29% test cases. The load eccentricity
ranges from 0 mm to 229 mm. However, the quality of this database is not satisfactory, mainly due
to poor test cases description, especially with respect to load description.
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The same training strategy as in the previous case was applied. The difference was in the size
of the input vector, which was extended with eccentricity parameter

x = {B,H,L, ρ, e, fc, fy}. (6)

The corresponding neural network architecture was 7-3-1 with 28 free parameters. The results of
testing of this network are shown in the fourth row of Table 4.

Table 4. Summary of training and testing errors for the considered analysis cases.

Case
Critical force
[Fmin, Fmax] [kN]

L T
Statistical measures

St εL [kN] rL St εT [kN] rT

A 95–2176 65 27 141.42 0.930 45.23 0.853

B 160–2176 64 27 131.21 0.851 87.03 0.878

C 95–2176 65 27 163.78 0.823 199.01 0.881

D 61–2211 296 101 189.01 0.771 280.03 0.627

E 95–2211 79 92 133.17 0.891 162.91 0.917

6.5. Case E – training on modified Cranston’s database, testing on merged PEER

and Chudyba’s database

The results of case D were unsatisfactory because the neural network was trained on the whole
Cranston’s database, including also the test cases with large eccentricity. The critical force for large
eccentricity turned out to be much smaller than for other cases. What is more, the critical force
turns out to be very sensible to the eccentricity value, resulting in abrupt changes in force for the
change in eccentricity.

Fig. 2. Column test configuration in PEER database.
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Unfortunately, the number of test cases with large eccentricity was too small for the network
to accurately “recognize” and “learn” the relation of force to eccentricity for the whole range of
the latter. To remedy this, it was decided to prune the database with test cases of eccentricity
larger than 5 mm. The threshold value of 5 mm was taken arbitrarily assuming that it is close
to a spurious eccentricity of otherwise axially loaded columns. The resulting training set was thus
restricted to 79 training patterns. The analysis was carried out for the network of architecture 7-3-1
and the results are presented in the last row of Table 4.

7. APPLICATION OF FWNN

After analyzing the results of the cases mentioned above, two of them, namely A and E were
selected and the analysis with a fuzzy weights neural network (FWNN) was carried on them. The
FWNN analysis started from the configuration parameters (weights and biases) of the classical
MLP used in the previous analysis. These parameters were used to initialize the training process of
FWNN. The training process was continued further using the learning patterns (for case A L = 65
patterns and for case E L = 79 patterns). In the fuzzification of the neural network two types of
membership function were used, triangular and nonlinear ones.
Table 5 presents average relative errors, RMSE and correlation coefficients calculated for the

normalized output values ŷFWNN and ŷexp. The normalization means that the results are divided
by the maximal value in the experimental data. All values listed in Table 5 pertain to α = 1.0 cut.

Table 5. Learning and testing errors for FWNN for α = 1.0.

Case No. patterns avr ep [%] St ε r RMSE

A L = 65 27.12 111.83 0.949 0.0546

T = 27 7.33 60.39 0.852 0.0712

E L = 65 27.22 141.28 0.887 0.0922

T = 92 27.15 118.98 0.962 0.0877

The relation between experimental data and FWNN analysis results for α = 1.0 cut is shown
in Fig. 3. The points on the graphs cluster around the 20 % error cone around the diagonal, which
indicates that no gross error was made.

a) b)

Fig. 3. Comparison of NN simulation results versus experimental data for: a) case A, b) case E.
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Another visualization of the results can be done by constructing cumulative distribution function
curves (ogives) (Fig. 4) calculated for the difference between experimental data and FWNN analysis
results. The ogive curves allow one to easily find the probability such that the relative error of
subsequent calculations is smaller than the assumed value. In the analyzed cases the probability of
the error ep being smaller or equal 20 % is approximately 0.7.

Fig. 4. Cases A, E. Cumulative distribution function curves (ogives) for empirical and FWNN results for
the α-cut of α = 1.

In addition to the above, Figs. 5a, 5b show the histograms of relative errors of the neural analysis
and simulation data generated for cases A and E. From these figures it can be seen that the neural

a)

b)

Fig. 5. Cases A a) and E b) – histograms of relative error ep for the FWNN for α-cut of α = 1.0.
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prediction is relatively good (without distinguishing training and testing patterns) because most of
the data have relative average error smaller than 20%.
Figures 6a and 6b show a comparison of the critical load F for two α-cuts for α = 0.9, 0.75. It

can be seen in these figures that even for α = 0.75 the majority of the intervals are located in 20%
error cone.

a) b)

Fig. 6. Cases A a) and E b). Comparison of experimental data Fexp and FWNN results FFWNN for the
α-cuts for α = 0.9, 0.75.

8. ESTIMATION OF CRITICAL LOAD ACCORDING TO POLISH STANDARDS

The results obtained by the neural network approximator for columns described in Cranston’s and
Chudyba’s databases were compared with those values resulting from the Polish Standards design
recommendations. Figure 7a shows the comparison of the critical load obtained from FWNN anal-
ysis and the experimental values from Chudyba’s database. Figure 7b shows a similar comparison

a) b)

Fig. 7. Comparison of both the critical load calculated according to design recommendation [5] and calculated
by FWNN for α-cross-section 1.0 against the experimental results from a) Chudyba’s database, b) Cranston’s

database.
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but for Cranston’s database. Unfortunately, for this case the relative errors between values resulting
from the design recommendations and experimental ones are even five times greater than respective
errors for Chudyba’s database. This discrepancy is caused first of all by the values of parameters
taken for design recommendation calculations. In the case of Chudyba’s database the true aver-
age concrete strength is known. In the case of Cranston’s database we have only the computed
approximate values.

9. CONCLUSION

This paper presents results of application of neural network approximator to the problem of predic-
tion of the critical load for eccentrically loaded concrete columns. These results allow us to draw the
conclusions pertaining to both the formulation of a neural network and the quality of experimental
data used in the analyses.

• The total number of 674 patterns was used to formulate the neural network approximator. As-
suming 6-dimensional input space and uniform density regular hyper-grid, we get 6

√
674 ≈ 2.9

grid points per dimension on average. This is enough to capture linear or even quadratic be-
haviour in respect to each input variable but might not be enough to resolve a more complex
critical load ’landscape’. This concerns especially a finer resolution and higher accuracy require-
ments. On the other hand, the neural network was formulated for patterns taken from three
independent databases and such an approach can give more confidence in the NN generalization
properties.

• Having three different databases at hand, different configuration of selection of training and
testing patterns were applied. The main assumption was that patterns for training and, respec-
tively, testing are selected from a single database. Random selection of patterns from all three
databases would destroy their main advantage, which is their independence.

• The testing patterns were not used in the training phase so the testing results are an objective
measure for the network generalization properties.

• The best results were obtained for cases A and E. In both cases the correlation coefficients
between experimental and simulated values were in the range 0.850–0.900.
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