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The present paper focuses on the identification of delamination size and location in homogeneous and
composite laminates. The modal analysis methods are employed to calculate the data patterns. An aggre-
gated approach combining Haar wavelets, support vector machines (SVMs) and artificial neural networks
(ANNs) is used to solve identification problems. The usability and effectiveness of the proposed technique
are tested by several numerical experiments. The advantages of the proposed method lie in the ability to
make fast and accurate calculations.
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1. INTRODUCTION

Laminate is a type of material made of two or more layers joined by an adhesive. The layers can
be of the same material (laminated glass, plywood) or different (a sheet of glass sandwiched be-
tween plastic). Due to the advanced properties of combined materials, laminates and composites
are frequently used in the contemporary civil engineering and heavy machinery. However, cutting
laminates or severe conditions of performance (oscillating load, strain, stress, impact of foreign ob-
jects) can force the layers to stratify. This process is known as delamination. An early detection and
continuous monitoring of delamination for the growth and location help avoid significant financial
losses and emergency situations.
Nowadays monitoring is carried out using actuators or damage detection sensors based on piezo-

electric effect, acoustic emission, strain gauge force, temperature measurement, etc. [1–3]. Pressure,
strain and force can be measured quite precisely. Nevertheless, the techniques are not risk free: volt-
age unbalance degrades motor efficiency, causes rotor losses, increases temperature [4]; emerging
electrical field or resonance occasionally causes structural damage to the surface [3, 5].
Conventional techniques based on vibration analysis (e.g., Fast Fourier Transform) are not suf-

ficiently expedient to analyze signals with transitory characteristics. Such methods depend on the
machine load and require high-resolution data [6]. Despite these disadvantages, machine vibration is
still the best indicator of a structure’s overall technical condition [4, 6]. It can be used as one of the
first detectors, classifiers and reporters of emerging defects since each mechanical fault, including
delamination, generates vibrations in its own specific frequency domain [6].
The problem of high-resolution data can be overcome with the aid of wavelet analysis. The

latter is a space and time scaled representation of signals. In contrast to the harmonic orthogonal
functions, which change periodically over the entire range of arguments, wavelets have non-zero
values only on a limited part of the interval. They are applied for the signals of short duration and
finite energy functions, which are local in time and frequency. Hereof, the wavelet analysis consists
of multiplication of the signal, presented as a time function, with a wavelet function, and then the
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transform is computed for each analyzed segment. As a result, the function is represented in terms
of variations, localized on two independent variables - frequency and time position of pulse (time).
The information content, presented in the initial form of the signal, is not altered [7]. The choice
of the wavelet function in practical applications is based on trial and error since there is no known
unique wavelet that could satisfy all structural health monitoring (SHM) needs [8].

Following to the nature of the signal, wavelet transforms can be classified as discrete and con-
tinuous wavelet transforms. The former decomposes digital signals into wavelet and scaling coeffi-
cients; the latter divides a continuous-time function into wavelets derived from the mother wavelet
through its shifting and scaling. Recently, the wavelet analysis has been applied for structural
health and fault monitoring. At the beginning of the century, Quek, Wang et.al applied contin-
uous Gabor wavelet transform to the experimental data obtained by a piezoelectric sensor as a
local non-destructive method for crack localization in beams with about two per cent error. How-
ever, the disadvantage of the approach is the dependence of the wavelet scale on sampling rate,
filter frequency, length of the signal and edge effects [9]. Two years later, Gentile and Messina
used continuous Gaussian wavelet transform for theoretical advantages to noisy and clean discrete
vibrational data to detect open cracks in beams. The authors found out that certain boundary con-
ditions can reduce effectiveness of two-dimensional maps in order to detect the damaged location.
Moreover, they concluded that a fundamental mode shape is not more useful than higher modes,
or vice versa, for damage detection. A comprehensive research required damages minor than 50
per cent thickness reduction [10]. Cao and Qiao studied cracks in null-thickness interface made
of polymethyl methacrylate using a novel integrated biorthogonal spline wavelet transform that
combines the advantages of the stationary and continuous wavelet transforms. The method showed
robust results in identifying minor damage using a lower signal-to-noise ratio signal [11]. All the
above cited papers are focused on a crack as damage detection.

The aim of the present paper is to develop a complex approach to delamination length or local-
ization identification independent of boundary conditions. Haar wavelets have been chosen because
of their ability to perform discrete wavelet transform and efficient preprocessing for deformation
monitoring [8]. The technique has been supplied with machine learning methods for patterns clas-
sification and prediction.

For the last two decades, ANNs have frequently been used for finding a relationship between non-
linearly dependable parameters or making predictions. Therefore, ANNs are considered a powerful
tool for solving inverse problems [12]. However, ANNs require a large training data set, which is
not always available or may contain coincidental values. In the present paper, it is suggested that
the vibrating signal should first be filtered.

Recently, SVM has become one of the most intelligent classifiers with strong generalization abil-
ity [4]. The method is based on the statistical learning theory and is capable of processing a signal
with a small number of samples. Due to the latter feature, SVMs have broadly been used in many
practical applications: face recognition, time series forecasting, modeling of non-linear dynamic sys-
tems, etc. In the area of fault diagnosis, the application of SVM has not been extensively studied yet
and requires future development [13]. According to P. Konar and P. Chattopadhyay, SVM along
with advanced signal processing tools such as instantaneous power FFT, Park’s transformation,
bispectrum, wavelets will significantly improve the existing diagnostic systems [6].

In the present paper a new method for delamination identification in homogeneous and com-
posite beams using vibration-based damage detection methods and real-time measured structural
response signals i.e. mode shapes and modal frequencies is suggested. The limitations of the vi-
bration analysis are solved by Haar wavelets and machine learning techniques such as SVMs and
ANNs. Furthermore, the proposed compound approach is supposed to overcome the drawbacks of
non-destructive testing systems, such as electrostatic field, X-ray, etc, and make trustworthy cal-
culations. The novelty of the research consists in the utilization of SVMs for extraction of useful
patterns from the signal for delamination detection. The patterns selected by SVMs are used for
ANNs training. The paper is divided into six sections. Section two describes dynamic responses of
vibrating beams. In Section three Haar wavelets are introduced. Section four provides an overview
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of SVMs and selection of the most informative patterns from a data set. Section five describes the
complex procedure for delamination identification. Various numerical examples can be found in
section six.

2. DYNAMIC RESPONSE OF VIBRATING BEAMS WITH DELAMINATIONS

A vibrating system with n delaminations can be considered a combination of 3n+1 beam sections,
connected at delamination boundaries (see Fig. 1).

Fig. 1. A beam with n delaminations.

Each section is considered a classical Euler-Bernoulli beam with a constrained mode, rigid con-
nector and bending-extension coupling [14]. The governing equation for the intact beam sections is

Di
∂4wi

∂x4
+ ρiAi

∂2wi

∂t2
= 0, (1)

where i = 1, ..., 3n+1; wi(x, t) is the vertical displacement of the i-th beam section; ρi is the density
of material; Ai is the cross-sectional area; x is the axial coordinate, t is the time; Di is the bending
stiffness [14]. The formulas of Di for composite beams can be found in [15]. The solution of (1) is
sought in the form of:

wi(x, t) = Wi(x) sin(ωt), (2)

where ω is the natural frequency and Wi(x) is the mode shape of the i-th beam section. Substi-
tuting (2) into (1), taking into account xi = x/Li and eliminating a trivial solution of sin(ωt) = 0,
the solution of Eq. (1) is as follows

Wi(x) = Ci1 sin(kxi) + Ci2 cos(kxi) + Ci3 sinh(kxi) + Ci4 cosh(kxi), (3)

where

k4i =
ω2ρiAiL

4
i

Di
(4)

and Ci1, ..., Ci4 are the arbitrary integrating constants. Hereof, the solution for the beam as a whole
is a combination of the solutions of all the component beams enforced by the appropriate boundary
and continuity conditions.
The boundary conditions at the supports x = 0 and x = L are as follows. If the beam is clamped

at x = 0, then W1 = 0 and W
′

1 = 0; if simply supported, then W1 = 0 and W
′′

1 = 0; if free, then
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W
′′

1 = 0 and W
′′′

1 = 0; if guided, then W
′

1 = 0 and W
′′′

1 = 0. The analogous boundary conditions
can be established at x = L.
The continuity conditions are applied at the boundaries of delaminations. In view of simplicity,

consider the case x = a1. The continuity conditions for deflection, slope and shear force at x = a1
can be presented as:

W1 = W2,

W
′

1 = W
′

2,

D1W
′′′

1 = (D2 +D3)W
′′′

2 .

(5)

The continuity condition for the bending moments at the ends of delamination is presented as
follows [14]

M1 = M2 +M3 −
1

2
P3(h1 − h3),

Mi = −DiW
′′

i ,
(6)

where i = 1, 2, 3. The axial forces P2 and P3 are established from the compatibility between stretch-
ing/shortening of the delaminated layers and axial equilibrium, which yield

P3L2

EA1
− P2L2

EA2
=
(
W

′

1(a1)−W
′

4(a2)
) h1

2
,

P2 + P3 = 0,
(7)

where a1 denotes the coordinate of the cross-section between the section before delamination s1
and the section with delamination s2, whereas a2 is the coordinate between the beam section with
delamination s3 and the next intact section s4 (Fig. 1).

3. HAAR WAVELETS

In recent years, the wavelet transform has occasionally been implemented in structural health
monitoring. The advantage of the technique consists in the fact that the method does not require
the analysis of the complete structure and has the ability to reveal some hidden parts of data that
other signal analysis techniques fail to detect [17, 18]. In [19], it is demonstrated that the Haar
wavelets can be applied for numerical solution of differential equations.
The Haar wavelet family is a group of square waves [19]:

hi(x) =





1 for x ∈
[
k

m
,
2k + 1

2m

]
,

−1 for x ∈
[
2k + 1

2m
,
k + 1

m

]
,

0 elsewhere.

(8)

Integer m is the index of delay and it is equal to 2j ; j = 0, 1, ..., J indicates the level of the wavelet;
k = 0, 1, ...,m−1 is the translation parameter. Integer J determines the maximal level of resolution.
Index i is calculated according to formula i = m+k+1. The minimal value for i is i=2; in this case
m = 1, k = 0. The maximal value of i is i = 2M = 2J+1. Value i = 1 corresponds to the scaling
function for which h1(x) ≡ 1.
Proceeding from the definition above, any function y(x), which is square integrable in the interval

[0,1], can be expanded into a Haar series with an infinite number of terms:

y(x) =
∞∑

i=0

cihi(x), (9)
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where Haar coefficients are determined such that the integral square error ε is minimized

ε =

1∫

0

[
y(x)−

m∑

i=1

cihi(x)

]2
dx. (10)

Any Haar function hi(x) can be calculated in collocation points: xl = (l − 0.5)/2M , where
l = 1, 2, . . . , 2M . Matrix H(i, l) = hi(xl), which is associated with Haar wavelets, is obtained as
follows:

H(i, l) =

∣∣∣∣∣∣

h1(x1) . . . h1(x2M )

. . . . . . . . .

h2M (x1) . . . h2M (x2M )

∣∣∣∣∣∣
= H.

If function y(x) is a piece-wise constant or it can be approximated as a piece-wise constant, the
sum can be terminated as

y(xl) =
2M∑

i=1

cihi(x) = ct2Mh2M , (11)

where the coefficient vector is

ct2M = y∗2MH−1
2M×2M (12)

and

y∗2M = [y(1/4M )y(3/4M )...y((4M − 1)/4M ). (13)

Both matrices H and H−1 are calculated once and contain zeros; therefore, the Haar transform
works faster than Fourier transform.
The non-dimensional feature index vector of level l with 2M (2M = 2l+1) components can be

presented through the ith mode shape vectors W ∗D
i(2M) andW

∗0
i(2M) of the delaminated and the intact

beam, responsively, as follows

P l
i = (P l

i,1, ..., P
l
i,2M ) =

(
W ∗D

i(2M) −W ∗0
i(2M)

)
H−1

(2M×2M)∥∥∥
(
W ∗D

i(2M) −W ∗0
i(2M)

)
H−1

(2M×2M)

∥∥∥
, (14)

where ‖‖ is the Euclidean norm.
In the present study, the Haar wavelet transform is applied to the first mode shape of the intact

and delaminated beam. The choice of the mode shape was based on the results of Cao et al. [20].
The sensitivity analysis of the present Haar wavelet approach was carried out in [16].

4. INTEGRATION OF SUPPORT VECTOR MACHINES

If a system is linear, it is relatively easy to find the relationship between characteristic parameters.
Conversely, if a system is non-linear, the mapping task requires optimization. For that reason,
SVMs are used in the present research paper on vibrating beams with delaminations in order to
ease the task of ANNs on learning from the observed data.
SVM is a supervised learning algorithm for pattern classification and regression based on the

statistical learning theory [4]. In the cases where a small number of samples are available, the
method is capable of mapping non-linear functions quite efficiently. The main advantages of the
technique are the following: SVM seeks for the global optimized solution and avoids over-fitting.
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Such a powerful classification tool was developed by Vapnik in the mid 1990s; in recent years, it
has widely been used in real-world applications such as face recognition, time series forecasting,
biosequence analysis, text categorization, and fault detection because of their high accuracy. In the
field of damage diagnostics, the tool is still pioneering yet [6].
The main idea of SVMs is to classify data into two classes in the following way. First, SVM puts

a separating hyperplane between the data points in the feature space; then it orientates itself in
such a way that the margin is maximized; most of the data points of the same class are allocated on
the same side. As a result, generalization is performed with the least error, and the data is divided
into two classes (the latter concept can be extended to multi-class problems) [21]. The points that
form the margin are called support vectors; they define the classifier. The main concepts of SVMs
are presented graphically in Fig. 2.

Fig. 2. An optimal hyperplane.

Consider a sample training set (xi, yi), where xi ∈ R
n is the training data, yi ∈ {−1, 1} is the

class of labels for xi, ..., xN (N is the total number of samples). The hyperplane f(x) = 0 that
separates the data into two classes is a solution to the convex quadratic optimization problem:

minimize
1

2
||w||2,

subject to yi(w
Txi + b) ≥ 1, i = 1, ..., N ,

(15)

where w is the orientation vector and b is the location parameter, respectively. If data to be classified
is non-linearly separable, it is mapped using a non-linear transfer function onto a high-dimensional
feature space, where the linear classification is possible.
Once the algorithm is trained, it can be tested with new data patterns. For any new set of

data, SVM uses w and b to predict the class to which the set should belong [22]. A more detailed
description of SVMs can be found in [23].

5. DELAMINATION IDENTIFICATION IN BEAMS USING HAAR WAVELETS,
SVM AND ANN

In the present research paper on delamination detection in vibrating systems, a novel complex
approach has been developed. SVM along with advanced signal processing tools such as NNs and
Haar wavelets have been applied. The whole process is shown in Fig. 3. Initially, the first mode shape
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Fig. 3. The delamination detection system.

is normalized and converted into sixteen Haar coefficients (resolution J is equal to three) [16]. Then
the data is classified into two classes by SVM. The patterns that characterize small delaminations
or small distances are allocated into the first class; the other patterns are placed into the second
class. SVM is trained by the quadratic transfer function. Once the data is classified, it is used for
training two ANNs with different architecture. Generally, the number of hidden layers depends on
the number of parameters to be predicted; the number of neurons on each layer has been dictated
by the number of training patterns. The learning algorithm is Bayesian since it has come up with
precise results in the previous research [16]. Once the system is trained, it is ready for testing. When
a new mode shape is extracted, it is transformed into Haar coefficients, then processed by SVM
and fed into the appropriate ANN in order to calculate the location and/or size of delamination.
All the numerical calculations have been carried out in the Matlab environment.

6. NUMERICAL EXAMPLES

First, the suggested approach for delamination detection was applied to a homogeneous beam with
clamped ends. The system predicted the length of delamination which occurred in the midplane
of the beam. SVM divided 190 training patterns into two groups: large delamination and a small
one (less than ten percent). After the SVM classification, there were 154 patterns in the first
class and 36 patterns in the other one. Each training pattern contained six frequencies or 16
Haar coefficients. Table 1 shows the actual length of delamination, the lengths calculated by the
systems with or without SVM or Haar coefficients. Coefficient of multiple determination R2 =
1 −∑(nt − np)

2/
∑

(nt − nm)2 presents the closeness of fit. In the formula nt and np denote the
target and computed value, respectively; nm is the mean of the target values nt. Ideally, R

2 is equal
to 1. In Table 1, it is seen that the methods based on frequencies are more accurate than the ones
based on Haar wavelets. SVMs have not influenced the accuracy of the calculations.

Second, the proposed method was examined on a homogenous cantilever with two delaminations
in the midplane each ten percent large. The system predicted the distance from the left end of the
beam to the first delamination (D1) and the distance between two delaminations (D2). SVM divided
177 training patterns into two groups: 89 patterns were set into the first class in which at least one
of the distances was smaller than 12 percent; the remaining patterns were allocated into the other
class. The results of the predictions are provided in Table 2.
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Table 1. Delamination length prediction in a homogeneous beam with clamped ends.

Actual Using 6 Using frequencies Using 16 Haar Using SVM and

length frequencies and SVM coefficients Haar coefficients

0.0110 0.0094 0.0105 0.0188 0.0207

0.0380 0.0377 0.0379 0.0379 0.0383

0.0510 0.0506 0.0505 0.0510 0.0514

0.0860 0.0856 0.0855 0.0858 0.0869

0.1510 0.1507 0.1507 0.1568 0.1510

0.2030 0.2032 0.2033 0.2030 0.2027

0.2610 0.2609 0.2607 0.2611 0.2610

0.3260 0.3257 0.3257 0.3260 0.3260

0.3960 0.3957 0.3957 0.3959 0.3960

0.4830 0.4835 0.4833 0.4831 0.4830

R2 1.0000 1.0000 0.9996 0.9996

Table 2. Distance to the first delamination and between two delaminations in a homogenous cantilever.

Actual Using 6 Using frequencies Using 16 Haar Using SVM and

length frequencies and SVM coefficients Haar coefficients

D1 D2 D1 D2 D1 D2 D1 D2 D1 D2

0.0300 0.1100 0.0154 0.1984 0.0860 0.1057 0.0224 0.1731 0.0306 0.1739

0.0300 0.6700 0.1630 0.3774 0.1760 0.4849 0.0320 0.6823 0.0334 0.6475

0.1100 0.5900 0.0005 0.5028 0.2235 0.2914 0.1142 0.5555 0.1062 0.5298

0.1900 0.0700 0.1537 0.3944 0.3096 0.3075 0.1665 0.0717 0.1888 0.0541

0.1900 0.5100 0.1100 0.6463 0.1688 0.4414 0.1942 0.4949 0.1948 0.4976

0.2700 0.1100 0.2857 0.0708 0.2235 0.2914 0.2436 0.0778 0.2520 0.1017

0.3400 0.4300 0.4876 0.1915 0.2235 0.2914 0.3274 0.4394 0.3356 0.4415

0.4200 0.3100 0.4067 0.3350 0.3096 0.3075 0.4168 0.3134 0.4202 0.3109

0.4600 0.1500 0.3611 0.4194 0.3096 0.1572 0.5068 0.1279 0.4420 0.1505

R2 0.7042 0.1503 0.4874 0.4400 0.9815 0.9830 0.9916 0.9791

R2
mean 0.4273 0.4637 0.9823 0.9854

Third, the proposed method was examined on a composite beam: T300/934 graphite/epoxy
beam with a [00/900]2s stacking sequence. The dimensions of an 8-ply beam are 127 × 12.7 ×
1.016 mm3. The material properties for the lamina are E11 = 134 GPa; E22 = 10.3 GPa;
G12 = 5 GPa; ν12 = 0.33 and ρ = 1.48 × 103 kg/m3 [24, 25]. The system computed the length of
delamination located between the first and the second plies of the cantilever. Table 3 shows the
results of the predictions. They are quite similar to the first example. The simpler methods, without
using Haar wavelets, produced the most precise results.

Finally, a composite beam with simply supported ends and a growing delamination between the
first and the second plies was investigated. The system predicted the location of delamination from
the left end of the beam (L1) and the length of delamination (L2). The results are presented in
Table 4.

Negative R2 stands for the fact that no firm relationship between input and output data was
found, and the ANNs made irrelevant predictions. Comparing the coefficients, it is seen that the
aggregated approach of Haar wavelets and SVMs made the most accurate predictions.
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Table 3. Delamination length prediction in a composite cantilever.

Actual Using 6 Using frequencies Using 16 Haar Using SVM and

length frequencies and SVM coefficients Haar coefficients

0.0046 0.0046 0.0046 0.0045 0.0046

0.0094 0.0094 0.0094 0.0092 0.0094

0.0124 0.0124 0.0124 0.0126 0.0123

0.0184 0.0184 0.0184 0.0181 0.0183

0.0232 0.0232 0.0232 0.0233 0.0235

0.0274 0.0274 0.0274 0.0268 0.0267

0.0394 0.0394 0.0394 0.0394 0.0393

0.0556 0.0556 0.0556 0.0555 0.0557

0.0796 0.0796 0.0796 0.0797 0.0797

0.1129 0.1120 0.1120 0.1119 0.1114

R2 1.0000 1.0000 0.9999 0.9999

Table 4. Distance to the first delamination and length of the first delamination in a beam with simply
supported ends.

Actual Using 6 Using frequencies Using 16 Haar Using SVM and

length frequencies and SVM coefficients Haar coefficients

L1 L2 L1 L2 L1 L2 L1 L2 L1 L2

0.0010 0.0460 0.0348 0.0438 0.0411 0.0439 0.0439 0.0516 0.0041 0.0408

0.0080 0.0160 0.0393 0.0151 0.1625 0.0146 0.0493 0.0095 0.0070 0.0141

0.0150 0.0040 0.0455 0.0058 0.0473 0.0060 0.0128 0.0041 0.0140 0.0039

0.0150 0.0460 0.0592 0.0458 0.0402 0.0459 0.0054 0.0386 0.0142 0.0410

0.0290 0.0100 0.0731 0.0085 0.0570 0.0095 0.0428 0.0094 0.0340 0.0105

0.0290 0.0220 0.1450 0.0198 0.0517 0.0211 0.0210 0.0236 0.0287 0.0224

0.0360 0.0160 0.0730 0.0167 0.0543 0.0154 0.0421 0.0163 0.0343 0.0166

0.0360 0.0520 0.0381 0.0519 0.0365 0.0538 0.0336 0.0511 0.0348 0.0519

0.0710 0.0040 0.0599 0.0057 0.0580 0.0075 0.0732 0.0045 0.0709 0.0049

0.0780 0.0460 0.0326 0.0448 0.0405 0.0452 0.1650 0.0166 0.0759 0.0440

R2 -3.1307 0.9937 -4.2341 0.9916 -0.9847 0.6994 0.9921 0.9815

R2
mean -1.0685 -1.6213 -0.1427 0.9868

7. CONCLUDING REMARKS

The main objective of the present research paper was to develop a novel method for delamination
detection in homogeneous and composite beams. Since delamination influences significantly the
frequency domain of vibrating systems, the new approach was based on mode shapes. To make the
data more sensitive and qualitative, the first mode shape was normalized and converted into 16
Haar coefficients. The feature parameters were predicted by contemporary computational methods:
SVM, a tool for pattern recognition and classification, and ANN, a tool for establishing relationship
between the input and output data. SVMs were expected to select the most informative data
from the data set. The latter method divided the training patterns into two classes: patterns that
characterize small distances or delaminations, and the remaining patterns. According to the classes,
two ANNs of different architecture were created and trained by the corresponding class of patterns.
The proposed aggregated method was examined on four different physical models. The results
showed that if only one parameter is to be calculated, the computational method can be simple:
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frequency-based patterns and ANNs. In such cases, the use of SVMs do not influence the accuracy
of the predictions while the Haar wavelets reduce it. If two parameters are to be predicted, the
composite approach of Haar wavelets, SVMs and ANNs provide the most accurate values.
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