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The finite element in time method (FET) is a fast and reliable implicit numerical method for obtaining
steady state solutions of the periodically forced dynamical systems with clearances. Delineation of the
stable and unstable solutions could help in predicting regular and chaotic motions of such dynamical
systems and transitions to either type of response. Stability of the FET solutions can be investigated via
the Floquet theory, without any special effort for calculating the monodromy matrix. The applicability of
the stability analysis is demonstrated through the study of two-degree-of-freedom systems with clearances.
Close agreement is found between obtained results and published findings of the harmonic balance method
and the piecewise full decoupling method.

1. INTRODUCTION

Gaps and clearances exist in many dynamical systems either by design or due to the manufacturing
tolerances and wear. Vibration of mechanical systems with clearances can result in relative mo-
tion across the clearance space and impacting between the components. The vibro-impacts cause
excessive levels of noise, large dynamic loads and large changes in the dynamic stiffness.

The characteristics of such systems include an abrupt variation of stiffness which can be assumed
as piecewise linear. Determination of the steady state response of piecewise linear dynamical systems
is essential in order to design against large-amplitude resonant motions. Exact solutions of piecewise
linear equations of motion are very rare and almost all of the methods for their solving are only
approximate [9, 11]. The most commonly used solution methods are the classical numerical time
integration (Runge-Kutta, etc.), the harmonic balance method [2, 3, 13], the incremental harmonic
balance method [8, 14] and the piecewise full decoupling method [6, 7).

An alternative approach is the finite element in time method (FET) [1, 4, 5, 12, 15] which is based
on a weak form of Hamilton principle. Similar to the standard finite element technique, the time
interval is divided into a finite number of time elements. The solution for all the spatial degrees of
freedom at all time steps within a given time interval is sought through a set of algebraic equations.
The conventional shape functions can be used in the time element because the time element does
not impose the periodic boundary conditions.

A complete characterization of the dynamic behavior of piecewise linear dynamical systems
requires, among other things, determination of stability of their steady state solutions. The stability
of steady state solutions obtained by FET is investigated considering the Floquet theory. The
monodromy matrix can be directly determined by applying a standard procedure of the static
condensation of time elements.

The objective of this paper is to analyze the stability of two-degree-of-freedom systems with
clearances by using the finite element in time method.
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2. PROBLEM FORMULATION

The mechanical model of a three-degree-of-freedom semi-definite system with clearances is shown in
Fig. 1. The model consists of three mass elements m; , ma, m3, two linear viscous dampers ¢; , ¢z,
and two piecewise linear stiffness elements ki h1(Z1), k2 ho(Z2).
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Fig. 1. Three-degree-of-freedom semi-definite system with clearances

With xT = [z1, 22, 23] and X7 = [z1 — 2o, To — 3] = [F1, Z2] being the absolute and relative
displacements, the equation of motion can be expressed as

Mx + Cx + Kh(x) = (1), (1)
where
m; 0 0 c1 0 k1 0
M= 0 ma 0 ) C= -1 C2 y K= —-kl k’z , (2)
0 0 mg 0 -—c 0 =k
h'(%) = [h(21), h(Z2)], - £7(t) = [F(2), Fa(t), Fs(t)]. 3)

By introducing the non-dimensional relative displacement q and the non-dimensional time 7 =
wyt as new independent variables, the equation of motion (1) is transformed into the non-dimensional
form

q"+2Zq +QNh(q) = f + £, cos(nT), (4)
where

a=i% wk=\/k1 (+=)  20=0, ®)

i, o) ©

el e

Furthermore, b is the characteristic length, 1 denotes a non-dimensional excitation frequency while
fo and f, are the amplitude vectors of mean and alternating load, respectively. The element of the
damping and stiffness matrices Z and €2 are found to be
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Fig. 2. The piecewise linear displacement function

The piecewise linear displacement function h(g;) for i = 1,2 that describes the clearance of
value 2b is defined as (Fig. 2)

G+l g <-1,
h(gi) = {0 -1<¢ <1, (11)
¢G—1 g >1

3. FINITE ELEMENT IN TIME METHOD

The equation of motion (4) derived in an explicit form can be approximately solved in an implicit
form by using a weak formulation based on weighted-integral statements. The Hamilton principle
is one such weak formulation which describes the motion of the mechanical system between the two
known non-dimensional times, 71 and T2, ’

T2
/T (0L +6W)dr = 6qu|: ) (12)

1

where 6L and §W are the Lagrangian and the nonconservative virtual work, respectively, while

= % denotes the vector of the generalized momenta.

Employing Eq. (4), the Hamilton weak principle (12) can be expressed in the following form,

T2
/ {éq'Tq’ + 697 [-Zq' — Qh(q) +fo +1f, cos(n7)] }dr = 5q” p|_7f1 ) (13)
T1

The basis of the finite element in time approximation is the division of the time interval 7 — 7
into a finite number n. of time elements, usually equally spaced for convenience. Similar to the
standard finite element technique, for each degree of freedom g;, a set of nodal displacements q;
is defined for each time element j (5 = 1(1)n.) as a nodal variable. The displacement q;(7) within
each time element is interpolated among their respective nodal variables by using the standard
shape functions, as

%(T) 7 Nj(T)qi ’ j=11)ne,

qj(r) = Ni(r)q;, j=1(1)n. (14)

where N is the matrix of shape functions. The Lagrange polynomials, for example, can be used as
shape functions,

M) =] —=, k=1()r, (15)

e
1#k

where 7 denotes the number of nodes at the time element j.
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When the assumed solutions (14) are substituted into Eq. (13), the following variational form
for time element 7, in terms of nodal displacements and momenta of all spatial degrees-of-freedom,
is obtained,

Tj+1
/ 6qj [N;"N; §; — NJZN; g; — N7Qh(q) + Njfo + NJ fa cos(nr)] dr = é6alp;,  (16)
Ty

where pf = [p(75), 0, ..., 0, p(7j+1)] is the vector containing r elements. Since 0q; is completely
arbitrary, the finite element approximation at the time element level is given by

A;q; +gi(q)+fi=p;, j=11)n, (17)
where
Ti+1 ’
A, = / [N} TN} — NTzZNY] dr, (18)
T
E Tl
g@) =~ [ NIfhq)dr (19)
i
Ti+1
f; = / [N?fo + NJTfa cos(nr)] dr. (20)

J

The global finite element equation is determined by assembling the finite element equations at
the time element level (17), as in the standard finite element modelling scheme, yielding

Agq+g(q) +f=0, (21)

where, with a summation notation representing the element assemblage operation

g =Yg, (22)
j=1

A = iAj, (23)
j=1

e@ = gi(@), (24)
j=1

e (1 nzefj. (25)
=t

For a periodic steady state response, the boundary terms on the right-side of Eq. (17) vanish,
as the periodic boundary condition requires both displacements and velocities to be identical at T
and T,

> p;=0. (26)

Thus, the global finite element equation (21) results in a set of nonlinear algebraic equations in the
unknown nodal displacement vector q. Using the Newton-Raphson numerical method, the nodal
displacement g may be expressed in an iteration procedure as

C_l(n+1) e c‘l(") 4 Aq(") (27)
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For a small increment AG™, Eq. (21) can be expanded into a Taylor series retaining only the
linear terms,

d™ + K™Ag™ =o, (28)
where
d™ = Ag™ +g™(g) +f, (29)
=1\ ()
K = A+ (M) . (30)
0q

The iteration procedure requires evaluation of the integral components of the vector d™ and
the tangent matrix K™ at each iteration step. The components of the matrix A and vector f are
constants and they need to be calculated only once. The components of the vector g™ depend on
the piecewise linear displacement functions (11), therefore, we have to return at time element level

E Tj+1 T
g@) =- [ Nih@dr (31)
7
. Ti4+1
% __ [Nt N (32)
0q; 75 77" 0q

A calculation of the above integrals requires a knowing of the zeroes of the function g¢;(7) — 1
within the interval [7;, 7j41]. Since g;(7) is approximated by polynomials, these zeroes can be easily
determined.

The iteration procedure defined by Egs. (22)-(23) will be terminated when the increment of
nodal displacement vector AG(™ converges towards zero.

4. STABILITY ANALYSIS

The stability of periodic solutions, based on the above iteration procedure, can be investigated by
using the Floquet theory, because nonlinearity is restricted to brief intervals of maximum amplitudes.
In order to determine the monodromy matrix which relates the final and initial perturbations of
solutions, a standard procedure of static condensation has to be applied. This procedure is based
on the elimination of the elemental degrees of freedom that are not involved in satisfying the inter-
element compatibility before the time element is assembled into the global system equations.

The incremental equation (28) at the time element level is represented by

d; +K; Aq; = p;, 3= H1)ne: (33)
The partitioned form of Eq. (33) may be written as
dp [ Kps Kpr ] [ Agg ] [ PB ]

+ 13 - o 34

[ ds ] y Kip Kpi || Adr | 0 |, 1

where B and I correspond the temporal nodes at the ends and in the interior of time element j,
respectively, while pgj = [-p(7j), P(7j+1)] denotes the vector of momenta at the boundary nodes.
Compare the lower part with the upper part of Eq. (34) to obtain

(dp — Kpr K} di) ;T (Ksp —Kpr K;; Kis) ;AaB; =ps; .- (35)

Considering the assemblage procedure, Eq. (35) of all time elements are further condensed by
imposing the compatibility conditions at the common node of the two elements, yielding the elimi-
nation of the common node. This procedure results into the global equation

d; Kii K2 ] { Aq ] [ “m ]
i & = ; 36
[ do } [ Ko Kz AQe P2 96)

where 1 and 2 denote the initial and final time nodes
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Let a periodic solution for the nodal displacement and the linear moment be denoted by
Qo and po, respectively. Then, perturbations 6q and §p are superimposed on §g and py, resulting

q = qo +4q, (37)
P = po + 6p.
Considering Egs. (36) and (37), we obtain the perturbation equation
[ Kin Kip ] [ 0q ] - [ —0p1 } (38)
| K21 Ko | | 0@ ép2 |’
which can be modified into the form suitable for stability analysis
[ 02 ] { o ]
=B : 39
| dp2 dp1 (39)
Hence, in view of Eq. (38), the monodromy matrix B takes the following form,
-K K -Ki;
B= 12 - 12_ . 40
[ Ko — KpKKin —KypKi! -

According to the Floquet theory, the stability of periodic solutions is determined by the spectral
radius of the monodromy matrix

p(B) = max |\, (41)
where ); are the eigenvalues of B. The steady state response is classified through

p(B) <1 as asymptotically stable, or (42)
p(B) > 1 as unstable. (43)

The limit case between stable and unstable solutions which defines the boundary of unstable region,
corresponds to p(B) = 1.

5. NUMERICAL RESULTS

The above procedure of stability analysis is applied to investigate the responses of a three-degree-
of-freedom semi-definite system with clearances under periodic excitation. The mechanical model is
adopted from [10] where its dynamic behavior was studied by using the harmonic balance method.
The model has the following non-dimensional parameters (;; = C12 = €21 = (22 = 0.05, w12 = wo; =
0.6 and wyy = 1.1 assuming that only hy(g1) is piecewise linear (Eq. (11)) while ha(ge) = qo.

The finite element in time method cannot solve problems with ideal clearance because the zero
stiffness implies the singularity of the tangent matrix K(™. In the finite element calculations, the
clearance is approximated by the trilinear system at which the slope of the second stage is 1% of
the slope of the first and third stages. Furthermore, the numerical procedure was performed with
ten four nodes time elements and with the response of the linear system as the starting vector q(®.
The third order interpolation polynomials are used as the shape functions.

As the results of the finite element incremental procedure and the stability analysis, the frequency
responses for different values of the mean and alternating loads, in terms of the non-dimensional
excitation frequency 7 and the steady state amplitude §; , are given in Figs. 3-5. The converged
solutions are obtained in maximum 100 iterations, usually only few steps.

The first loading case (Fig. 3) gives the unconverged or unstable solutions in the frequency range
n < 0.5 and 1.18 < n < 1.5. When the alternating load takes a half of previous value the range
of unconverged or unstable solutions becomes smaller (Fig. 4), while for the double value of mean
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Fig. 3. Frequency response of the 3-DOF semi-definite system with clearance for fo = [0.25,0.25]” and
f, = [0.5, O]T; o — stable, X — unstable or achieved after maximum of 100 iterations
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Fig. 4. Frequency response of the 3-DOF semi-definite system with clearance for f, = [0.25,0.25]7 and
f, = [0.25,0]7; o - stable, x — unstable or achieved after maximum of 100 iterations
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Fig. 5. Frequency response of the 3-DOF semi-definite system with clearance for fo = [0.5,0.25]7 and
fo =[0.25,0]7; o - stable, x — unstable or achieved after maximum of 100 iterations

load, only few such solutions are found (Fig. 5). This phenomenon is linked with the dominance of
primary resonance in the solution.

The frequency responses from Figs. 3-5 are in agreement with those in reference [10] as well as
with the solutions obtained by the piecewise full decoupling method [6, 7).

The finite element in time method is also applied to the same mechanical model but with two
clearances. This problem was not solved in [10]. The frequency response is computed for the third
loading case, only. Considering the response of linear system as the starting vector, the unconverged
or unstable solutions are found in the interval of non-dimensional frequencies 0.7 < 1 < 0.96 as
shown in Fig. 6. Using the previous stable solution as the starting vector, the unconverged solutions
are not found, any more. Only the unstable solutions are obtained in the range 0.77 < n < 0.94
(Fig. 7). It proves that the convergence of FET solutions depends on initial conditions.

Imposing small increments in the excitation frequency, the limit point between stable and un-
stable solutions can be determined. For the excitation frequency n = 0.772, the eigenvalues of the
monodromy matrix are

A2 = —0.0527 £ 0.9939j,  |A1,2| = 0.9953,

44
X34 = 0.0266 + 0.4267j, |3 4| = 0.4275. o

Le. the solution is asymptotically stable. The excitation frequency n = 0.773 generates the following
eigenvalues,

A1,2 = —0.0496 £ 0.9996j,  |A12| = 1.0008,

: (45)
A3,4 = 0.028 + 0.4247j, |A3,4] = 0.4256

(unstable solution).
In Fig. 8, the phase portraits and the Poincare’ sections illustrate these numerical results.
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Fig. 6. Frequency response of the 3-DOF semi-definite system with two clearances for fo = [0.5,0.25]7 and
f. = [0.25,0]T; o - stable, x — unstable or achieved after maximum of 100 iterations
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Fig. 7. Frequency response of the 3-DOF semi-definite system with two clearances for fo = [0.5,0.25]7 and
fo = [0.25,0]7; o - stable, x — unstable or achieved after maximum of 100 iterations
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Fig. 8. Phase portraits and Poincare’ sections showing the transition from stable to unstable response;
a) stable response for 7 = 0.772, b) unstable response for = 0.773

6. CONCLUDING REMARKS

The steady state motions of periodically forced two-degree-of-freedom systems with clearances are
studied with the finite element in time method. Based on Hamilton weak principle, the finite element
in time method gives accurate numerical results with only a few time elements and without signifi-
cant computational effort. The solutions often tend to the first harmonic responses while the range
of convergence for sub-periodic responses is very small. The convergence of frequency responses with
dominance of subharmonics can be improved by using the previous stable solution as the starting
vector.

The straightforward determination of the stability of periodic solution is the advantageous feature
of this method. The stability of periodic solution can be investigated considering small perturbations
of the solution. According to the Floquet theory, the stability of solutions is determined by the
eigenvalues of the monodromy matrix that relates the initial and final perturbations.
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