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This paper proposes an improvement of the artificial boundary node approach using the least square
method. The original artificial boundary node approach requires the selection of an offset by the user.
The success of the original method depends on the correct choice of the offset. However, the improved
version uses a least square line and the solution does not depend on a single offset. The solution is carried
on using at least two different offsets and final solution is obtained by replacing the offset as zero in the
least square equation. The improved version supplies good accuracy and stability in the boundary element
solution. Three different case studies are solved to validate proposed method in 2-D elasticity. All results
are compared with each others, conventional BEM, FEM, ANSYS and analytical results whenever possible.
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1. INTRODUCTION

The boundary integral equation is a statement of the exact solution to the given problem. Therefore,
the errors are due primarily to discretization and numerical integration. Accurate and stable solu-
tions can only be obtained if the integrations are sufficiently accurate. The kernel of the integration
becomes infinite when the field variable and source point coincide [1]. Some special treatments are
required for the solution of these types of singularities. Aliabadi et al. [2] developed a technique
based on series expansion of the kernel for the treatment of singularities in three dimensional prob-
lems. A transformation of variable technique has been proposed by Telles [10] for the integration
of singular integrals in two dimensions. Smith [9] presented a direct Gauss quadrature formula for
logarithmic singularities in two-dimensional isoparametric elements.

Singular integrals in the boundary element method can also be eliminated by locating the source
points on an artificial boundary. The name of this approach is called as artificial boundary or regular
boundary element [3]. If the source point is kept in original position at the boundary until source
point coinciding with field point, the method is called as artificial boundary node [5-7].

In the artificial boundary node approach, an offset must be used to carry the source point to
the outside of the boundary. Because of disturbing the original position of the source points, the
solutions always include some amount of errors. A series of offsets can be used instead of using
a single offset to reduce the amount of error and to obtain a solution when offset is equal to zero.
In this work, a method is proposed for this purpose using the least square method.

2. BOUNDARY INTEGRAL EQUATIONS WITH SINGULARITY

A typical boundary integral equation (BIE) can be expressed for elasticity as follows [3],

Cill; +7{ Fjiuds +f Fyvds —f GuT,ds — f GauTyds =U(zi,y),
I 5 R F

Ci; +f Flzuds+% Fyvds —f G12T; ds —f G2Tyds = V (s, ui),
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where u; and v; are the displacements at the source points, v and v are displacements, and T}, and
T, are tractions on the boundary (I'), and ¢; terms can be written as follows,

¢i = 1, for (z;,y;) inside the domain (£2)

¢i =0, for (z;,y;) outside 2, and

27

¢i = 5%, for (zi,y;) on the boundary (I') of the domain (£2), and o; is the boundary angle at
xivyi)' s

U(zi, i) and V(z;,y;) include the domain force integrals inside the domain, ie.,
Ulzi,y:) = / /n [XG11 + Y Ga;] dzdy,
Vizi,p) = //n [XGi2 + Y Gao) dzdy,

where X and Y are the body forces inside the domain (£2). F is fundamental traction and G is
fundamental displacement; i.e.,

1 1[or or Or or . Or
P =~ gti=ayr | (O 0+ ) ~ (-2 o agle] 2l
1 1 or Or

where I, and lg are directional cosines and § is Kronecker delta.  is the modulus of rigidity and p
is as follows,

p = v for plane strain problems and

P = 11 for plane stress problems;
v is the Poison’s ratio. G and F contain singular terms as — Inr and % When the source point and
field point coincide with each others, r becomes zero and — Inr and L become indefinite (Fig. 1).
The derivation and the application of the treatment of these type of singular integrals have been
given by a number of researchers |2, 4, 8-10].

Source point  (Singular pomt when r = 0)
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Fig. 1. Conventional boundary element source point
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In order to solve the boundary integral equation (1) numerically, the boundary are discretized
into a series of elements over which displacements and tractions are written in terms of their values
at a series of nodal points. The discretized form of Eq. (1) without any domain load (X =0,Y = 0)
can be written as follows,

ciu; + 2:; [}{‘e(Fll ds)ue + f;e (F21ds)ve — ?ic (G11ds)(Tz)e — f}e(Gzl ds)(Ty)e] =0,

s M (Fiads)ue + f} (Fizds)v, = ?{ (Grads)(Ta)e — 7{ (Gggds)(Ty)e] =)
e=1 e

e e [

where n is the number of elements in the model.

The type of the boundary element must be decided at this stage. After calculating elemental con-
stants, the boundary conditions can be applied and the solution can be carried out by using ordinary
Gauss elimination approach to find unknown displacements and tractions. The stress components
at the boundary points are calculated from computed boundary tractions and displacements by
simple differentiation using the shape functions. They can be written in the normal and tangential
directions at a point in the boundary as follows,

E p
ot = (1—p2)€t+ (1_an),

where E is the Young’s modulus and &; can be found by differentiating the computed displacement.
The relationships between normal and tangential components and x- and y-components can be
obtained by using the directional cosines of the boundary point.

3. ARTIFICIAL BOUNDARY NODE APPROACH

The artificial boundary node approach is another technique to avoid from singularity [5-7] (Fig. 2).
In this technique, source points stay at the original boundary until a source point coincides with
a field point (1). When a source point and field point coincide, the source point is taken to the
outside of the boundary. Therefore, all boundary integrals in terms of such source points become
non-singular, and the ¢; coefficients in BIEs have zero values. In this case, the first term disappears

r = offset

Artificial Source Point +————— @,

Boundary

Element Field pounts

Fig. 2. Artificial and real boundary source points
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due to ¢; = 0 at the outside of the domain in Eq. (1). Then the singularities of BIE vanish as seen
in the following equation,

fFHUds-i—f Fyivds — f G11Tyds — f GaT,ds = U(zi, u),
I r r r

f Fiouds +f Fyuds -—f G191, ds — f GaTyds = V(zi, yi).
p & ‘& iy Y&

4. IMPROVED ARTIFICIAL BOUNDARY NODE APPROACH

In the artificial boundary node approach, the singularities are avoided using offsets at source points
as mentioned. All results which are found by this method include some amount of errors because of
these offsets. The amounts of these errors are proportional with the amount of offsets used in solu-
tion. When offsets approach to zero, the results also approach to the accurate results. However, they
never reach to the accurate results in some cases. When very small offsets are used, the stress and
displacements becomes nearly constant because of the precision limits of calculations. The amount
of errors can be reduced by increasing the number elements in the discretization as shown in [5-7].

The artificial boundary node approach can be improved considering the effects of offsets in
the solutions. At any node in the boundary, different solutions can be obtained while a source
point is approaching to original location. Figure 3 shows the locations of a source point when
the offset is approaching zero. For larger offset values, the displacements and stresses diverges
from exact values and for small offsets, they become nearly constant. Between divergence limit
and constant value limit, the results show a nearly linear distribution. The limits of linear dis-
tribution interval may be determined by following offset values: For mid-nodes in an element,
Maz.Off = element length/10 and Min.Off = element length/100. For edge-nodes in an ele-
ment, Maz.Off = (length of preceding element + length of following element)/10 and Min.Off =
(length of preceding element + length of following element)/100.

These offsets are used in order to generalize the improved method and may be changed. But they
give acceptable results for many examples. So an extrapolation can be done to predict the corrected
values for stress and displacement when offset is equal to zero. Least square line can be used for
this purpose as follows,

Rst = ag + a1 * off, (6)
gy = n Y (offi Rsti) — 3 off; 3° Rst; )
= 5 A
n 3 off} = (X off:)
ap = Rst —ay off, (8)
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Fig. 3. Artificial source point while offset is approaching zero
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where n is the total number of different offsets used in the solution, off; is the value of offset for
i-th solution, Rst is any displacement or stress components obtained by artificial node approach,
Rst is the arithmetic mean of Rst; and off is the arithmetic mean of off; .

After the least square line is constructed, the corrected value of any displacement or stress
component can be obtained by replacing offset value as zero (i.e. off = 0). Other unknown quantities
such as tractions and strains can be found using corrected values.

5. CASE STUDIES AND DISCUSSION

Three different two-dimensional problems are analysed using improved method. Their results are
compared with conventional BEM, FEM, ANSYS and analytical solutions. They are discretized
into uniform boundary and finite elements with equal element lengths. Consequently, equal offsets
are used for different boundary elements in the artificial boundary node approach. The following
abbreviations are used in all examples.

ImpABN is the improved artificial boundary node approach. Three different offsets are used
(n=3),

ABNoff = le/100 shows artificial boundary node approach with offset of le/100 (le = length of
boundary element).

ABNoff = le/50 is used for artificial boundary node approach with offset of le/50.
ABNoff = le/10 denotes artificial boundary node approach with offset of le/10.

ConvBEM is the conventional boundary element method.

5.1. Thin Plate

In this example, a thin plate is clamped at one end and loaded with uniform horizontal traction at
the other end as shown in Fig. 4a. It is considered as plane stress problem. Aluminium is used as the
material of the plate (E = 70 GPa, v = 0.27). In the boundary and finite element discretizations,

0.7m 1000 N/m

e

(b)

(c)

Fig. 4. Thin plate: (a) geometry, (b) BEM discretization, (c) FEM discretization
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Fig. 5. Axial displacement variation at point B on the plate while offset is approaching zero
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Fig. 6. Axial stress variation at point B on the plate while offset is approaching zero
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Fig. 7. Axial displacement distribution along ABC line on the plate
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Fig. 8. Axial stress distribution along ABC line on the plate

4 quadratic elements are used (Figs. 4b,c). Figure 5 shows the axial displacement variation against
different offsets at point B on the plate. As offset is approaching to zero, the axial displacement
is approaching to the analytical solution. However, it can’t reach. After the offset value of 0.007
(i.e. le/100), the axial displacement becomes nearly constant. The axial stress, however, reaches the
analytical solution for small offsets (Fig. 6). The axial displacement distribution is shown in Fig. 7
along line ABC on the plate. The results of ABN get better as the offsets decreases (le/10, le/50,
le/100). ImpABN gives same results with ANSYS, analytical, FEM and ConvBEM results. Similar
improvements can be seen in Fig. 8 for axial stress distribution along the same line.

5.2. Cantilever beam

Cantilever beam problem is used as the second example. A vertical load is applied at the end of
the beam (Fig. 9a). The beam is assumed to be made of a steel alloy (E = 200 GPa, v = 0.3) and
solved as plane strain problem. In the boundary element discretization, 22 quadratic elements are
used (Fig. 9b). The beam is discretized into 10 quadratic finite elements (Fig. 9c).

Vertical displacement reaches analytical solution as the offset approaches zero at point B for the
beam (Fig. 10). Axial stress, on the other hand, can not reach analytical solution at the same point
(Fig. 11). After the offset = 1E—03 (le/100), the axial stress becomes nearly constant. Vertical
displacement and axial stress distributions are shown in Figs. 12 and 13 along line AB on the beam.
ImpABN gives same results with ANSYS, FEM, analytical and ConvBEM results.

0.1m / A
---_% !
%‘ -------- R ot > S £ S Bk e R 5 o Bk S

(a) (b)

(c)

Fig. 9. Cantilever beam: (a) geometry, (b) BEM discretization, (¢) FEM discretization
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Fig. 10. Vertical displacement variation at point B on the beam while offset is approaching zero
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Fig. 11. Axial stress variation at point A on the beam while offset is approaching zero
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Fig. 13. Axial stress distribution along AB line on the beam

5.3. Portal frame

The geometry and boundary conditions of frame is shown in Fig. 14a. The material is again steel
(E = 200GPa, v = 0.3). The frame is considered under plane strain conditions and discretized
into 66 quadratic boundary elements (Fig. 14b). In the finite element model, however, 32 quadratic
elements are used as shown in Fig. 14c. The vertical displacements and axial stresses of ABN can not
reach ANSYS results as offset approaches zero at point B on the frame. After the offset = 1E—03
(le/100), they become constant (Figs. 15 and 16). This constant distribution is corrected by ImpABN
as shown. ImpABN gives same results with ConvBEM in vertical displacement and axial stress
distributions along line ABC on the frame as shown in Figs. 17 and 18.
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Fig. 14. Portal frame: (a) geometry, (b) BEM discretization, (¢) FEM discretization
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Fig. 15. Vertical displacement variation at point B on the frame while offset is approaching zero
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Fig. 16. Axial stress variation at point B on the frame while offset is approaching zero
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Fig. 17. Vertical displacement distribution along ABC line on the frame
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Fig. 18. Axial stress distribution along ABC line on the frame

6. CONCLUSION

The artificial boundary node approach has been improved using the least square method. It was
shown that the accuracy and stability of the boundary element solutions can be increased using
the improved version of artificial boundary node approach. The accuracy of the improved method
depends on the total number of different offsets, n. It was selected as 3 in this work. High number
of offsets increases the accuracy of the method. But it causes more solution time.

One of the problems in the artificial boundary node approach is the selection of the right offset.
The improved artificial boundary node approach does not have such a problem. Due to the least
square line, there is no need to investigate for the right offset. It also supplies a solution without
singularity when the offset becomes zero.
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