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The steady laminar flow and heat transfer of an incompressible, electrically conducting, non-Newtonian
Bingham fluid in an eccentric annulus are studied in the presence of an external uniform magnetic field.
The inner cylinder is subject to a constant heat flux while the outer cylinder is adiabatic and, the viscous
and Joule dissipations are taken into consideration. The governing momentum and energy equations are
solved numerically using the finite difference approximations. The velocity, the temperature, the volumetric
flow rate and the average Nusselt number are computed for various values of the physical parameters.

NOMENCLATURE

B, magnetic field

Br Brinkman number

Cp specific heat

Dy, hydraulic diameter of the duct

d distance between centers of inner and outer cylinder
e eccentricity

= external magnetic force

Ha Hartmann number

J current density

k thermal conductivity

m Hall parameter

Nu, average Nusselt number

P pressure

Q volumetric flow rate

Q dimensionless volumetric flow rate

Ry radius of inner cylinder

Ry radius of outer cylinder

Re Reynolds number

Rep, magnetic Reynolds number

S radius ratio

z temperature

y dimensionless temperature

B dimensionless fluid bulk mean temperature
T dimensionless temperature at the inner wall
; - dimensionless average wall temperature

U axial velocity
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Uq average axial velocity
i dimensionless axial velocity
B0 % rectangular coordinates

Greek Symbols

B Hall factor

0 angle

¢, m bipolar coordinates

A(¢, An uniform step sizes in bipolar coordinates
(1, (2 values of ¢ at inner and outer surfaces of the annulus
I apparent viscosity

o plastic viscosity of Bingham fluid

7} dimensionless apparent viscosity

P density

o electric conductivity

T yield stress of Bingham fluid

™D dimensionless yield stress of Bingham fluid

1. INTRODUCTION

Many of the fluids used for industrial purposes are non-Newtonian such as pastes, slurries, polymer
solutions and melts, plastics, pulps and emulsions in every day chemical engineering practice. In
particular, many of these materials exhibit shear-thinning behavior and in addition possess a yield
stress below which the fluid either will not flow or will flow as an un-sheared plug (for low stress
values the material will not deform, but beyond some critical value it flows as an inelastic non-
Newtonian fluid). The Bingham model is one of the simplest models that describes materials with
yield stress 79 and most widely model for the above materials. It is characterized by linear relation
between shear stress and shear rate above the yield stress. The problem of the flow and heat
transfer of non-Newtonian fluids has important applications in the flow of drilling fluids and cement
slurries and in the design of coolant channels for power transformers, nuclear reactors, and the
design of compact heat exchangers. Many researchers have studied the flow of a Bingham fluid
in an eccentric annulus [4-6, 11-13]. Guckes [5] studied the flow of a power law and Bingham
fluids in an eccentric annulus numerically using a finite difference technique. Further results were
obtained for a power law fluid, Bingham material and Suterby fluids in a narrow eccentric annulus
by Uner et al. [12] approximately by slit approximation method. Luo and Peden [6] carried out an
analytical solution of power law and Bingham plastic fluids by representing the eccentric annulus
as an infinite number of concentric annuli with variable outer radii. The analysis of the flow of
a Bingham material in narrow eccentric annulus has been reported by Walton and Bittleston [13]
using a perturbation technique and also a finite element method. A variational technique has been
used for the evaluation of the characteristics of the flow of viscoplastic liquids in an eccentric
annulus by Fortova et al. [4]. An analytical solution for small eccentricities has been presented by
Szabo and Hassager [11] for Bingham fluids. They have verified the solution using a finite element
method.

The problem of non-Newtonian fluids flow and heat transfer in the presence of an external mag-
netic field is of great interest in many engineering applications such as aerospace technology, turbo-
machinery, MHD power generators, MHD pumps, heat exchangers, underground cables, electronics,
telecommunications, petroleum engineering and chemical engineering. Saranin [7] has examined
a model problem of the flow of an electrically conducting, Newtonian fluid situated between coaxial
cylinders heated to various temperatures and exposed to an external magnetic field with considera-
tion given to the thermoelectric effects. Neglecting the Hall current, the problem of MHD flow and
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heat transfer of a Casson fluid in an eccentric annulus has been studied by [2, 8] numerically using
a finite difference method.

In this paper, we study the effect of an external uniform magnetic field on the steady, laminar,
fully developed flow and heat transfer of an electrically conducting Bingham fluid in an eccentric
annulus. The Hall effect is considered while the induced magnetic field is neglected. The externally
applied magnetic field is directed perpendicular to the cylinders and a uniform heat flux is applied
to the inner cylinder while the outer cylinder is kept adiabatic. The momentum equation and the
energy equation including the viscous and Joule dissipation terms are solved numerically using the
method of finite differences. The influence of the model parameter, magnetic field and the Hall
current on the velocity and temperature fields are reported.

2. DESCRIPTION OF THE PROBLEM

The geometry of the problem is shown in Fig. 1. R; and Ry are the radii of the inner and outer
cylinders respectively and “d” is the distance between the centers. The two horizontal cylinders have
infinite extensions in the axial direction; z-direction. The annulus is characterized by two parameters
namely the eccentricity “e” and the radius ratio “S” defined, respectively, by e = d/(R2 — R1) and
S = Ry /Ry . The fluid is assumed to be incompressible, electrically conducting, non-Newtonian with
Bingham model. The fluid flows between the two cylinders in the axial direction with velocity u
by the action of a constant pressure gradient. The flow is assumed to be laminar, steady and
fully developed with uniform pressure over the cross section of the annulus. An external uniform
magnetic field By is applied in the direction perpendicular to the flow in the y-direction and is
assumed to be unaltered by considering very small magnetic Reynolds number (Re,, < 1) and then
neglecting the induced magnetic field [3, 9]. Since the current trend for the application of MHD is
towards a strong magnetic field, the influence of the electromagnetic force is noticeable [3]. Under
these conditions, the Hall current is important and it has a marked effect on the magnitude and
direction of the current density and consequently on the magnetic force term. Therefore, the Hall
effect is taken into consideration. The inner cylinder is subject to a uniform heat flux ¢” while the
outer cylinder is adiabatic. From the geometry of the problem, it is clear that for all quantities
are independent of the z-coordinate apart from the pressure gradient which is assumed to have
a constant value.
The fluid motion is governed by the Navier-Stokes equation in the z-direction,

s ) ou 0 ou
0= dz+%<u£>+5§<#6y)+f‘a’ (1)
By

y
A
A

Fig. 1. The geometry of the eccentric annulus
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where p is the apparent viscosity of Bingham fluid and is given by [5],

70

2 -2
o) fos
V&) +(®)
Here, p, is the plastic viscosity of the model and 7y is the yield value. f, is the z-component of the

electromagnetic Lorentz force given by J x B,, where J is the current density directed along the
z-direction and is defined by the generalized Ohm’s law (3, 9] in the form

(2)

K= po +

J=0’[VXBO—ﬂ(JXBO)] (3)

where o is the electric conductivity of the fluid and 3 is the Hall factor [9]. Equation (3) may be

solved in J to yield
oB2

1+ m2

JxBg=— (uk) (4)
where m is the Hall parameter and m = ofBj. Equation (4) tells that the current density J is
proportional to the velocity u which preserves the symmetry conditions between the upper and
lower halves of the annulus. Thus, the Navier-Stokes equation (1) reads

_ Op 0 ( Ou 0 ([ Ou oB2
0"‘5*&(“%)%—@,(1‘6@,)‘—*1+mz“- ©)
The energy equation with viscous and Joule dissipations is given by
Pt 57 = " \ 822 Oy? H\\ oz Ay 14+m?2’

where T is the temperature of the fluid. p, ¢, and k are, respectively, the density, the specific heat
capacity and the thermal conductivity of the fluid. The last two terms in the right-hand-side of the
above equation represent the viscous and Joule dissipations respectively.

The fluid motion is governed by the no-slip conditions at the inner and outer walls of the annulus
and the symmetry conditions between the upper and lower halves of the annulus. The heat flux at
the inner wall is given a constant value while its value is zero at the outer wall. These conditions
are expressed as,

Inner wall: u =0, k—T = constant,
on
oT
t 11: = _— =
Outer wa % =0, s 0, (7
Ou OT

Symmetry lines: =30s

on — on
where 6% denotes the normal derivative.

Under the conditions of thermally and hydrodynamically fully developed state of laminar flow
with heated surface kept at uniform heat flux both in the axial as well as peripheral directions, the
axial temperature gradient can be written as [10],

AU ®
0z PCpltly (R% — R%) ;

where u, is the average velocity over the cross-section of the annulus.
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Fig. 2. Bipolar coordinate system

Using the Cartesian coordinate system in describing an eccentric annular geometry can be very
cumbersome. Alternatively, the bipolar coordinate system shown in Fig. 2, that consists of two
orthogonal systems of circles ¢ and 7 is used which provides an excellent simplification [5]. Then,
Egs. (1) and (3) using the bipolar transformations take, respectively, the form

vw\2/ 08 [ Ou o ( ou\\ _8p  oBu

(2) () 5 45)) =t T 0
aT v\ /82T O°T w\2 [ [0u\? [Ou)? B2

TS =k(;;) (aTz*W)*“(a;) (a—’é> +(a—§§) - T (10)

where 1 = cosh{ — cosn and a; = R; sinh{; = Rysinh (3. Equation (2) becomes

B = po +

(11)

N ORIl

The boundary conditions (7) for the velocity become

u=0 at (=( and at (= (o,

3_71_0 at n=0 andat n=m.
and for the temperature, the boundary conditions (7) take the form,
oT  aiq %! 9F:- i
13
oT oT
57—7—0 at 77—0, 6_77—0 at ==t
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By introducing the following non-dimensional variables and parameters:

= u e T =
PR T P
~dz Lo
B2R?
Ha is the Hartmann number defined as Ha? = 2—-0-"2 i
HoDp,
(_92)2 R}
d o
Bris the Brinkman number, Br = ~ £ .
q/,Dh

Tp is the yield stress, 7p =

where Dp, is the hydraulic diameter = 2(Ry — R;), Egs. (9), (10) and (11), respectively, become

i = . 12 2 . 12
o = s o (%) () | o e, 0
ks Q is the volumetric flow rate given by
7psinh (2 2 i
l¢|\/
and
Q= 2/ /;2 Smh2 2 acdn: (17)

The boundary conditions (12) and (13) take, respectively, the non-dimensional form

=0 at (= and at ¢ = (s,

3 18
6u=0 at n=0 and at n=, (18)

an

and
or- sinh (o g o .
B_C_2(C0Shcl—c05n)(l_s) at (=¢, a_C_O at C—<2,

or -
— =0 at =0 andat n=m.
on

3. NUMERICAL SOLUTION

The flow is described by Eq. (14) which in conjunction with the definition of /i in Eq. (16) represents
a non-linear partial differential equation which has to be solved numerically under the boundary
conditions (18). Equation (15) with the boundary conditions (19) determine the temperature of
the fluid. The values of the velocity component #,0btained from the numerical solution of Eq. (14),
when substituted in the right hand-side of the non-homogeneous energy equation (15), make it too
difficult to solve analytically. Then Eqgs. (14) and (15) are solved numerically with the appropriate
boundary conditions using the method of finite differences.
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The annulus region is mapped by a grid of mesh points (¢; , 7;). A¢ and An represent the uniform
step lengths in the ¢ and n direction respectively. Using central differences [1], Eqs. (14) and (15)
take, respectively, the form of difference equations

An Oy i i i
Ac (uz_- i1t Byl z+1,a> = (/J’i,j—%ui»j—l + “i,j+%uiyj+1)

An o ac Ha? sinh?(, o
(AC( 1B )+ An (#zg—— + Bl ) +ACA”WT U j
% smh CzACA (20)
i
and
A AC = - A /o'y T
AZ (Lo + Tin) + A_1<7 (Tij-1+Tij) — 2 (-A—Z + A—g) T
S Ha? _, \ sinh?(, o\ 2 o\ 2
. Uj.j —Briij || 57 = .
B (((1 0% By maths) B (ac),-,ﬁ (an),-,j

(21)

The problem of considering the apparent viscosity can be solved using an iterative procedure.
The initial value for the viscosity is assumed at each grid point and then Eq. (20) with the differences
form of the boundary condition (18), are used to calculate the unknown velocity values. Making
use of these values, a new value of the apparent viscosity is obtained from the difference form of
Eq. (16). The process is repeated up till the criteria of convergence

Znew _ i],‘?l‘.i

1,J
;S New
Ui 5

u
T e

is satisfied. Then Eq. (21) with the difference form of the boundary condition (19) are used to
solve for the temperature distribution. The system of linear equations is solved by the Successive
Over-Relaxation method [1]. The convergence is achieved by taking 55 x 55 mesh points for both
hydrodynamic and thermal parts. The average Nusselt number Nu, at the inner wall is given by

Nuy, = =——m—— 22
.y (22)
where T, is the average temperature at the inner wall given in the form
= sinh (2 / 4 < 8
. = d 23
_ 7S Jo cosh(; —cosn G )

and T}, is the mean fluid temperature given as

o 2 smh2 C2 ¢ 7
iy dn.
/ /Cl cosh{ — cosn)? d¢dn 56

The above defined integrals in Egs. (17), (23) and (24) are evaluated numerically using Simpson’s
1/3 rule [1]. Then the average Nusselt number can be estimated from Eq. (22).




32 M.E. Sayed-Ahmed, H.A. Attia

4. RESULTS AND DISCUSSIONS

The distributions of the volumetric flow rate Q versus the eccentricity “e” are shown in Figs. 3, 4
and 5 (a,b,c) for S = 0.3, 0.5 and 0.7, respectively. The results are obtained for different values
of the Hartmann number Ha = 0, 1,2,3, the Hall parameter m = 0,1,2, and the yield value
7p = 0,0.05,0.1. The study of these ﬁgures shows that, the volumetric ﬂow rate Q increases with
increasing the eccentricity “e” for all values of Ha, m and 7p . However, increasing either Ha or 7p
reduces Q for every value of “e”. It is also clear from the figures that the magnetic field has a marked
effect on Q for larger values of “¢” and smaller values of m. This is expected as the increment in “e”
increases @ which, in turn, increases the damping magnetic force while i increasing m decreases the
damping magnetic force. Higher values of Ha reduce the influence of eccentricity on Q for all values
of 7p for m = 0 (neglecting the Hall current) and small value of radius ratio S. This effect becomes
more pronounced for Newtonian fluids (7p = 0.0). Increasing the value of the Hall parameter m
increases @ for all values of Ha and 7p. Higher values of m diminishes the effect of Hawhich
becomes more apparent for larger values of 7p. Figures 3-5 show that the increasing the radius
ratio S decreases Q for all values of Ha, m and 7p. The effect of the parameters Ha, m and rp
on @ decreases greatly with increasing the radius ratio S.

The distributions of the centre velocity . with 9, (where 9 is the polar angle of the central
circle and is given by ¥ = tan~!((sinh (; sinn)/(cosh Cl cosn — 1))) are shown in Figs. 6, 7 and 8
for e = 0.2, 0.4 and 0.6, respectively. The results are obtained for different values of the Hartmann
number Ha = 0, 1, 2, 3, the Hall parameter m = 0,1, 3, 7p = 0,0.05,0.1 for S = 0.3. It is clear from
these figures that, the velocity @. decreases with 1 for all values of 7p, m and Ha due to the effect
of eccentricity. It is also observed that, increasing Ha decreases the velocity @, for all values of 7p .
However, its effect is higher in the wide part of the annulus (near ¥ = 0) than that in the narrow
part (near ¥ = 180). The value of @, increases with increasing m. It is also observed that the effect
of Ha on 4. becomes more pronounced for smaller values of the Hall parameter m. Increasing the
eccentricity e increases the velocity in the wide part of the annulus and decreases it in the narrow
part. Increasing “e” more stops completely the flow in the narrow part and consequently increases
it more in the wide part.

Tables 1, 2 and 3 show the influence of the magnetic field and the Hall current on the average
Nusselt nurnber Nu, for different values of “e” terms for the cases of Newtonian (7p = 0) and
non-Newtonian fluids (7p = 0.05 and 0.1) and S = 0.3,0.5,0.7, respectively. The viscous and
Joule dissipation terms are neglected (Br = 0). For all values of Ha, increasing “e” increases the
volumetric flow rate Q due to increasing the velocity in the wide part of the annulus and decreases it
in the narrow part and consequently reduces the temperature and the average Nu, . Increasing Ha,
although it decreases Q, it increases Nu, as a result of increasing the Joule dissipation. It is found
that the effect of 7p on Nu, depends on the values of 7p and the Hall parameter m. Increasing 7p
decreases Nu, for all values of Ha, m, or S.

The effect of the Brinkman number Br on the average Nusselt number Nu, for S = 0.5 and 7p =
0.05 is shown in Table 4 (a,b) for m = 0 and 1 and Ha = 0, 1, 2, respectively. In this case, the viscous
and Joule dissipations are taken into consideration. It is found that increasing Br increases Nu, for
all values of e, m, and Ha.

5. CONCLUSIONS

In this paper, the steady MHD flow and heat transfer of an incompressible, electrically conducting,
non-Newtonian Bingham fluid in an eccentric annulus were studied. Numerical solutions for the
momentum equation and the energy equation including the viscous and Joule dissipations were
obtained. The effect of the Hall current m on the flow and heat transfer characteristics was studied.
Increasing the magnetic field decreases the velocity and the volumetric flow rate and its effect
becomes more pronounced for high values of eccentricity or small values of the yield stress 7p .
Higher values of the magnetic field reduce the influence of eccentricity on the volumetric flow rate.
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Fig. 8. The distribution of the center line velocity . with 6 for e = 0.6 and S = 0.3
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Table 1. Variation of the average Nusselt number Nu, with the parameters Ha, e, m, and 7p (S = 0.3)

(a)m=0
™D = 0.0 0.05 0.1
e Ha=0|Ha=1|Ha=2|Ha=3|Ha=0|Ha=1|Ha=2|Ha=3|Ha=0|Ha=1|{Ha=2|Ha=3
0.2 5.4877 | 5.5354 | 5.6564 | 5.8051 | 5.4843 | 5.5324 | 5.5636 | 5.7986 | 5.4521 | 5.5163 | 5.5602 | 5.7842
0.4 3.5044 | 3.552 | 3.6784 | 3.8487 | 3.4639 | 3.5080 | 3.6237 | 3.7812 | 3.4164 | 3.4558 | 3.5609 | 3.7122
0.6 2.4790 | 2.5047 | 2.5741 | 2.6695 | 2.4530 | 2.4858 | 2.5360 | 2.6172 | 2.4223 | 2.4411 | 2.4915 | 2.5595
0.8 1.8881 | 1.9001 | 1.9323 | 1.9757 | 1.8799 | 1.8906 | 1.9184 | 1.9548 | 1.8717 | 1.8808 | 1.9035 | 1.9332
(b)ym=1
D = 0.0 0.05 0.1
e Ha=1|Ha=2| Ha=3| Ha=1| Ha=2| Ha=3 | Ha=1| Ha=2 | Ha=3
0.2 5512 5.579 5.674 5.508 5.577 5.634 5.503 5.573 5.636
0.4 3.529 3.597 3.697 3.486 3.549 3.641 3.436 3.494 3.57T
0.6 2.492 2.529 2.585 2.465 2.497 2.545 2.432 2.459 2.499
0.8 1.894 1.911 1.937 1.885 1.900 1.923 1.876 1.889 1.907
(c)m=2
Tp = 0.0 0.05 0.1
e Ha=1'| Hi=2 | Ha=3 | Ha=1|Ha=2| Ha=3:| Ha=1'| Ha=2| Ha=3
0.2 5.493 5.507 5.523 5.493 5.512 5.518 5.492 5.510 5.514
0.4 3.509 3.524 3.547 3.473 3.499 3.541 3.424 3.448 3.487
0.6 2.482 2.489 2.502 2.458 2.471 2.493 2.426 2.438 2.456
0.8 1.889 1.893 1.899 1.882 1.888 1.898 1.874 1.879 1.887
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Table 2. Variation of the average Nusselt number Nu, with the parameters Ha, e, m, and 7p (S =0.5)

(aym=0
Tp = 0.0 0.05 0.1
e Ha=0|Ha=1Ha=2|Ha=3|Ha=0{Ha=1|Ha=2|Ha=3|Ha=0|Ha=1|Ha=2[Ha=3
0.2 3.217 | 3.254 | 3.358 | 3.511 | 3.105 | 3.146 | 3.244 | 3.387 | 3.089 | 3.143 | 3.242 | 3.373
0.4 1.552 | 1.573 | 1.6336 | 1.725 | 1.462 | 1.480 | 1.530 | 1.605 | 1.374 | 1.389 | 1.429 | 1.489
0.6 1.004 | 1.014 | 1.043 | 1.086 | 0.964 | 0.972 | 0.994 | 1.027 | 0.919 | 0.924 | 0.941 | 0.964
0.8 0.751 | 0.756 | 0.770 | 0.791 | 0.736 | 0.750 | 0.751 | 0.767 | 0.712 | 0.723 | 0.732 | 0.744
(b)ym=1
D = 0.0 0.05 0.1
e Ha=1|Ha=2|Ha=3 | Ha=1|Ha=2| Ha=3 | Ha=1| Ha=2 | Ha=3
0.2 3.235 3.289 3.375 3.124 3.1%6 3.258 3.118 3.167 3.245
0.4 1.563 1.594 1.643 1.471 1.497 1.538 1.382 1.403 1.435
0.6 1.009 1.024 1.048 0.968 0.980 0.998 0.921 0.930 0.944
0.8 0.753 0.761 0.773 0.738 0.744 0.753 0.722 0.735 0.733
)ym=2
D = 0.0 0.05 0.1
e Ha=1|Ha=2|Ha=3 | Ha=1|Ha=2|Ha=3 | Ha=1| Ha=2| Ha=3
0.2 3.220 3.232 3.250 3.112 3.135 3.169 3.103 3.13¢ 3.164
0.4 1.554 1.561 1.571 1.466 1.476 1.494 1.377 1.386 1.400
0.6 1.005 1.008 1.013 0.966 0.970 0.978 0.920 0.923 0.929
0.8 0.751 0.753 0.755 0.737 0.739 0.743 0.721 0.723 0.725
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Table 3. Variation of the average Nusselt number Nu, with the parameters Ha, e, m, and 7p (S = 0.7)
(a)m=0

Tp = 0.0 0.05 0.1
e Ha=0|Ha=1|Ha=2|Ha=3|Ha=0|Ha=1|Ha=2|Ha=3|Ha=0{Ha=1|{Ha=2|Ha=3
0.2 1.285 | 1.295 | 1.324 | 1.372 | 1.120 | 1.128 | 1.151 | 1.189 | 1.117 | 1.122 | 1.146 | 1.165
0.4 0.477 | 0.480 | 0.490 | 0.506 | 0.340 | 0.402 | 0.408 | 0.419 | 0.332 | 0.333 | 0.337 | 0.343
0.6 0.293 | 0.294 | 0.299 | 0.307 | 0.259 | 0.256 | 0.263 | 0.267 | 0.225 | 0.226 | 0.227 | 0.229
0.8 0.219 | 0.220 | 0.223 | 0.226 | 0.205 | 0.206 | 0.207 | 0.210 | 0.192 | 0.192 | 0.197 | 0.195
(b)m=1
ThH = 0.0 0.05 0.1.
E Ha=1:} Ha=2 |-Ha= 3 |{:Ha=1 |:iHa'= 2| Ha=3:.Ha=:1: :Har=2 |-Ha= 3
0.2 1.290 1.305 1.329 1.124 1.136 1.159 1.165 1.047 1.209
0.4 0.478 0.483 0.492 0.401 0.404 0.409 0.333 0.335 0.338
0.6 0.294 0.296 0.300 0.259 0.261 0.263 0.225 0.226 0.227
0.8 0.220 0:22% 0.223 0.205 0.206 0.208 0.192 0.193 0.194
(c)m=2
Tpis= 0.0 0.05 0.1
e Har=4 :ls'Ha =2t Ha = 3;|: Ha =1+ Ha=2|:Ha=3| Ha=14 Ha=2 i Ha=3
0.2 1.286 1.289 1.294 1.121 1.126 1.134 1.191 1167, 1.175
0.4 0.477 0.478 0.480 0.400 0.401 0.404 0.332 0.333 0.334
0.6 0.293 0.293 0.294 0.259 0.260 0.261 0.225 0.226 0.226
0.8 0.219 0.220 0.220 0.205 0.206 0.206 0.192 0.192 0.193
Table 4. The effect of the parameters Br, Ha, e, and m on the average Nusselt number Nu, for S = 0.5 and
7p = 0.05
(aym=0
Ha = 0 i ¢ 2
e Br=0 1e 2 Br=0 1 2 Br=0 1 2
0.2 3.105 | 3.129 | 3.152 | 3.146 | 3.165 | 3.188 | 3.244 | 3.265 | 3.286
0.4 1.462 | 1.481 | 1.501 | 1.480 | 1.498 | 1.518 | 1.530 | 1.548 | 1.566
0.6 0.964 | 0.984 | 1.004 | 0.972 | 0.991 | 1.010 | 0.994 | 1.011 | 1.029
0.8 0.736 | 0.758 | 0.782 | 0.750 | 0.761 | 0.784 | 0.751 | 0.770 | 0.790
(b)m=1
Ha = 0 & 2
e Br=10 1 2 Br =0 1 2 Br=20 1 2
0.2 3408 | 3.129 | 3.152 | 3.146 | 3.147.f 3.171 | 3.165 -|.3.198 | 3.220
0.4 1.462 | 1.481 | 1.501 | 1.480 | 1.490 | 1.510 | 1.498 | 1.516 | 1.534
0.6 0.964 | 0.984 | 1.004 | 0.972 | 0.987 | 1.007 | 0.991 | 0.998 | 1.017
0.8 0.736 | 0.758 | 0.782 | 0.750 | 0.760 | 0.783 | 0.761 | 0.764 | 0.786
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Increasing the magnetic field increases the average Nusselt number Nu, for an eccentric annulus.
Increasing the Hall parameter m increases both of the velocity and the volumetric flow rate and
decreases the average Nusselt number. The effect of the viscous and Joule dissipations on Nu, is
more pronounced for high values of eccentricity or small values of 7p . Also, the effect of the magnetic
field Ha on the flow and heat transfer characteristics is more pronounced for smaller values of the
Hall current m.
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