Computer Assisted Mechanics and Engineering Sciences, 14: 53-66, 2007.
Copyright © 2007 by Institute of Fundamental Technological Research, Polish Academy of Sciences

Forging preform shape optimization using surrogate models

Jalaja Repalle, Ramana V. Grandhi
209 RC, Department of Mechanical and Materials Engineering
3640 Colonel Glenn Hwy, Wright State University, Dayton, Ohio 45485

(Received February 22, 2005)

Forging of practical products from simple billet shapes is a complex and nonlinear process due to the
multi-disciplinary phenomenon of material flow and processing conditions. General forgings are usually
produced in a number of stages in order to avoid defects such as underfill, extra flash, voids, and folds.
In spite of advancements in analysis techniques, forging process simulations do not provide function
sensitivity information. Hence, the research focuses on exploring efficient non-gradient based preform
shape optimization methods. In this research, an attempt is made to develop a preform shape design
technique based on interpolative surrogate models, namely Kriging. These surrogate models yield insight
into the relationship between output responses and input variables and they facilitate the integration of
discipline-dependent analysis codes. Furthermore, error analysis and a comparison between Kriging and
other approximation models (response surface and multi-point approximations) are presented. A discussion
about what the results mean to a designer is provided. A case study of an automotive component preform
shape design is presented for demonstration.

Keywords: preform shape optimization, surrogate models, Kriging, response surface model, multi-point
approximation model

1. INTRODUCTION

This research begins by exploring the possible non-gradient techniques for preform shape design in
the hot forging process. A brief description of the various approximate and interpolative surrogate
model techniques is provided. The preform shape design methodology that uses an interpolative
surrogate model, namely Kriging, is developed. A comparison between interpolative and other ap-
proximation models is presented. The effectiveness of the proposed methodology is demonstrated
with applications to automotive components.

Forging is a manufacturing process that produces many complex industrial and military com-
ponents, as well as consumer goods. Metal forging processes offer potential savings in energy and
material — especially in medium and large production quantities — for which tool costs can be easily
amortized. Additionally, forged products exhibit better mechanical and metallurgical properties and
reliability than other products that are manufactured by casting and machining.

In forging, a simple cylindrical shape is plastically deformed by applying compressive forces
exerted by two or more dies [5]. The starting billet shape for most forging operations is simple:
a bar with a round, square, or rectangular cross-section. If the final component shape is complex
and intricate, the billet cannot be deformed to the final shape in a single operation. In order to
avoid problems like improper material flow, folds, excessive die forces, localized deformation, and
incomplete die fill, the workpiece is deformed through several intermediate stages of dies before the
final product-shaped die is used. These workpiece intermediate shapes are called preform shapes.
Generally, these preform shapes are designed through extensive empirical or trial-and-error meth-
ods. The preform shapes obtained through the physical build-and-test approaches are adequate for
delivering the final part, but may not be the optimal shapes for cost and quality. Consequently,
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the most significant objective of any forging engineer is to design robust preform shapes and se-
quences.

The developed optimized preform shapes produce sound forging products in shorter design cycle
times, thereby decreasing the total manufacturing cost. However, without knowledge of the influ-
ence of such variables as friction conditions, material properties, and process conditions on preform
design, it would not be possible to design the optimum preform, or to predict and prevent the
occurrence of defects. Therefore, the method of analysis should be capable of accurately determin-
ing not only the overall quantities involved in metal forging processes, such as forming loads, but
also stresses and strain distributions under various deformation process conditions. Today, sophisti-
cated Finite Element Method (FEM)-based software packages, such as DEFORM, SUPERFORGE,
and ABAQUS, provide localized information of the deformation process to assist the process de-
sign.

The preform shape optimization problem is characterized by continually changing contact bound-
ary conditions, large displacements, and nonlinear material behavior. Moreover, when the preform
shape optimization problem involves a complex geometry, the forging process analysis becomes
computationally more expensive due to frequent remeshing, smaller step sizes, and die penetra-
tion. Therefore, the total number of finite element analyses is one of the most important indexes
to assess the efficiency of shape optimization methods. Building approximations by utilizing the
available function information is the key in minimizing this computational cost. Another important
consideration is the gradient computation (also known as sensitivity information) of cost and con-
straint functions in which the derivations of nonlinear finite element equations are involved, which
is a difficult task when using commercial software packages, as none of the packages come with
function sensitivity information. Rather, non-gradient techniques bridge the gap between analysis
simulations and optimization with minimized computational cost.

Therefore, this paper focuses on non-gradient based optimization, which uses global surrogate
models. In the literature, several approximation-based response surface models are developed for
shape optimization. However, none concentrate on interpolative surrogate models for preform shape
optimization. Therefore, an attempt is made to develop a shape optimum technique based on an
interpolative surrogate model, namely Kriging. Furthermore, this research explores the applicability
of various surrogate models (response surface model and multi-point approximation) especially for
preform shape optimization in forging.

The selection of the surrogate model is a key issue in complex multidisciplinary preform shape
design optimization. Higher quality approximations increase the region of their validity and reduce
the repetitive cost of finite element analysis. There is a strong requirement for the designer to provide
the relative advantages and recommendations of various models. The comparison between Kriging
and other approximation models has been thoroughly explored in structural optimization [4, 10].
However, there is no literature presented for the application of interpolative surrogate models for
preform shape optimization in the forging manufacturing process. Hence, this research also focuses
on a comparison between various approximation and interpolative surrogate models that are utilized
for shape optimization. Recommendations are given about the choosing of the appropriate surrogate
models in order to increase the robustness in optimization and product quality. Relevant details of
the surrogate models are presented in the following section.

2. OVERVIEW OF SURROGATE MODELS

2.1. Response surface model

A Response Surface Model (RSM) [8] is a method of constructing global approximations by conduct-
ing experiments in a design space. A Design of Ezperiments (DOE) approach is used to construct

polynomial approximations of system performances that are obtained by using complex analysis
codes. RSM is used to obtain an empirical relationship between a specified process response y and
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a number of input shape parameters z; . RSM generates a polynomial to system response y via least
squares regression fitting [1, 2]. Since experimental random error is present in all experiments, the
response y(z) is written as follows,

y(z) = f(z) +e, (1)

where y(z) is the unknown function of interest, f(z) is a known polynomial function of the design
variables z;, and € is random error, which is assumed to be normally distributed with mean zero
and standard deviation o. The most widely used response surface approximation functions are low
order polynomials (i.e. linear, or quadratic). A quadratic polynomial is utilized further in this paper.
The general mathematical representation of the quadratic polynomial can be written as
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where B;, Bii, and B;; are regression coefficients for linear, quadratic, and cross-product terms,
respectively. The Analysis of Variance (ANOVA) [2] is done to test the significance of the coefficients
estimated in the response-fitted model.

2.2. Multi-point approximation

Multi-Point Approzimation (MPA) is constructed by combining weighting functions with local func-
tion approximations [11, 12]. With function and sensitivity (local design sensitivities that are com-
puted through the finite difference method) information available at a series of points, a local
approximation, Two-point Adaptive Non-linear Approzimation-2 (TANA-2) is built at each point.
All local approximations are then integrated into a multi-point approximation using a weighting
function selected such that the approximation reproduces function and gradient information at the
known data points. Mathematically, MPA in terms of local approximations can be represented as
follows,

K
F(z) =) Wi(z)Fx(z) ' 3)
k=1

where F‘(:L') is the unknown function value, Fk(z)is the k-th local approximation value, and Wy, is
a normalized weighting function.

Polynomial modeling methods produce smooth approximation models of response data that have
been contaminated with the random error found in typical physical experiments instead of computer
experiments. Many computer analysis codes are deterministic and are not sensitive to random errors.
In that case, the usual measures of uncertainty derived from least-squares residuals in approximation
models have no obvious meaning. Therefore, for simulation-based design techniques, interpolation
models are used to approximate the response data [9]. The interpolation model, Kriging, is consid-
ered further in this research. Unlike the other approximation models, the Kriging function passes
through all of the data points.

2.3. Kriging approach

Kriging is an interpolative surrogate model based on an exponentially weighted sum of the sample
data [6]. It is a statistically accurate and consistent method for interpolating deterministic computer
experiments. It postulates a combination of a global model plus deviations, as follows,

y(e) = f(z) + Z(), (4)
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where y(z) is an unknown function of interest, f(z) is a known function of design variables z; , and
Z(z) is a realization of a stochastic process with mean zero, standard deviation o, and a nonzero
covariance. While f(z) “globally” interpolates the design space, Z(z) creates “localized” deviations
so that the Kriging model interpolates the n sampled data points. In this case, f(z) is taken to be
a constant 8. Thus, y(z) can be rewritten as,

y=B+r"R(y - fB) (4)

where f is a column vector of length n filled with ones (because f(z) is taken as constant), T is the
correlation vector between an untried value z and sampled data points (z1, z2, ..., T,), and R is
the correlation function between untried z and sample point z;. Kriging is extremely flexible due
to the wide range of correlation functions R that may be chosen. Exponential, Gaussian, and cubic
correlation functions can be chosen depending upon the problem characteristics. Each correlation
function is explored in this paper and the appropriate one is utilized further in the preform shape
optimization problem.

3. PREFORM SHAPE DESIGN METHODOLOGY

The preform shape design is an important aspect for improving the product quality and for de-
creasing the production cost in forging. In this paper, the preform shape is defined using Bézier
curves. Thus, Bézier control points are considered as design variables. An optimization problem is
formulated to minimize production costs by minimizing the total forging energy. Constraints are
placed on underfill and on flash volume to ensure complete die fill with minimum material wastage.
Cost and constraint functions are obtained by using surrogate models. Thus, a high quality product
with no defects is produced while reducing the manufacturing costs.

Preform shape design methodology consists of the following steps: identifying and screening criti-
cal shape parameters, exploring the design space by DOE, constructing interpolative approximation
models, and performing design optimization.

The preform design methodology starts by identifying the critical design parameters that affect
the various forging process responses, such as forging energy, underfill, and flash volume. The forging
product quality and reliability depends on preform shape parameters, such as shape coordinates,
control points of Bézier curves, or geometry dimensions. Among all of the shape control parameters,
some of the parameters are critical. Factorial design techniques are used to screen the critical
parameters [7]. Among all of the factorial methods, the Central Composite Design (CCD) method
offers a satisfactory alternative to a full factorial design. A CCD contains an embedded factorial
or fractional factorial design with center points that are augmented with a group of “star points,”
which allow estimation of the curvature behavior of the system performance, and the quadratic
terms are efficiently estimated through the axial points. Hence, this method is used for selecting
the design points in this study. The total number of simulations required for the CCD method is
2k 4 2k + N, where k is the number of parameters and N is the number of center points.

The responses of the forging process, such as energy, underfill, and flash, are obtained at different
design points. An optimum correlation function and Kriging parameters are obtained by evaluating
different correlation functions. Then, an interpolation model, i.e. Kriging, is constructed with the
obtained responses at design points. Various other approximation models, such as RSM and MPA,
are also constructed by fitting to the same responses as in Kriging. The accuracy or the error
analysis of these surrogate models is performed. Then, preform shape optimization is performed by
using generated surrogate models. The optimum results largely depend on the choice of surrogate
models. An appropriate choice of surrogate models will make the design process more accurate and
applicable over a wider region of the design space. The comparison between the different surrogate
models for the system performance gives insight for choosing the appropriate model, and thereby
increases the efficiency of optimization.
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4. CASE STUDY

Preform shape optimization of a plane-strain rail section is considered as the case study. The rail
section consists of two cavities; one is deeper than the other. The complexity of the forging process
of the rail section increases with the height-to-width ratio of the cavity. In order to have practical
significance, the deeper cavity ratio is taken as 2.0, and the shallow cavity ratio as 1.0. A horizontal
symmetry is assumed; therefore, a half model and only the top die are considered for further analysis.
The three-dimensional rail section and the finite element model are shown in Fig. 1.

(a) (b)

Fig. 1. (a) Three-dimensional rail section; (b) Finite element model

4.1. Problem definition

The preform shape for the rail section’s bottom surface will remain horizontal and flat. Likewise, the
outer rim of the disc shape will remain a straight vertical line. The top surface is defined with a Bézier
curve. It is formed with five Bézier control points, as shown in Fig. 2. Among all ten coordinates
of the points, the vertical coordinates of points 2, 3, and 4 and the horizontal coordinate of point 4
are determined as critical design parameters through DOE screening methods [7]. The remaining
control points, 1 and 5, are fixed to their mean values. In order to avoid numerical singularities, the
design parameters are normalized over the range of [—1, 1] and are used for constructing surrogate
models.

A plane-strain rail section is forged using a mechanical press. A FEM software package, DEFORM
2D (3], is used to simulate the hot forging process and to predict the forging loads, metal flow, and
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Fig. 2. Preform shape definition
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deformation patterns. The rail section bottom die is considered stationary and flat, whereas the top
die is given at 80 mm/sec velocity. The process is assumed as isothermal and AISI 4340 steel is used
as the billet material. In hot forging, the initial billet is heated to 1000°C, and the forging dies are
usually heated to temperatures as high as 250-400°C to reduce the die chilling effect.

One of the other important criteria in the forging process is lubrication. A graphite-based lu-
bricant is used with a 0.3 shear friction factor between the die and the workpiece contact surfaces.
The distance between the top die and the bottom die (10 mm) is taken as the stopping criterion
for the simulation to provide corresponding stroke length/top die movement for different heights of
preform shapes.

It is important to minimize the total forging energy to reduce the manufacturing cost. Further-
more, the change in the preform shape significantly affects the required load and energy. Hence, the
forging energy is considered as the objective function to be minimized. The energy is obtained by
integrating the load-stroke curve, as shown in Fig. 3a. Constraints are placed on the underfill to
ensure complete die fill with no defects, and on the flash volume to minimize the material waste.
The underfill is the volume of the material obtained by considering the difference between the ac-
tual shape and the achieved shape of the initial preform (Fig. 3b). Flash is the excess material that
crosses the actual boundary shape (Fig. 3b). Surrogate models are used to construct these cost and
constraint functions in optimization.

(a) =
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Load (MN)
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Fig. 3. (a) Energy - typical load-stroke curve; (b) Constraints definition

4.2. Interpolative surrogate models construction

Surrogate models are constructed for forging process responses in terms of four critical shape pa-
rameters (y coordinates of 2-nd, 3-rd, and 4-th control points and the zcoordinate of 4-th control
point). By using CCD, 25 design points are generated for computer simulations. By performing
forging simulations at these design points, forging process responses, i.e. energy, underfill, and flash,
are obtained. Using this response data, an interpolative Kriging model is constructed.

The Kriging model is built using the 25 sample DOE points that are generated for the four
critical design parameters. The accuracy of the Kriging model depends on the correlation Rbetween
an untried value z and sampled data points (z1, Z2, ..., Z,). The selection of the correlation
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function greatly depends on the process response characteristics and determines the accuracy of
the model. Exponential, Gaussian, and cubic correlation functions are generally used to represent
correlations between the sample points in the construction of the Kriging model. All three correlation
functions are evaluated to obtain the best suited correlation function for this example.

Ezponential correlation function

An exponential correlation function R can be mathematically represented as

Ndu

R(zi,z;) = exp [— > 6k
=1

where Ny, is the number of design parameters (i.e., four), 6 are the unknown correlation Kriging
parameters, and mf and z¥ are the k-th components of sample points z; and zj. In the above
equation, the Kriging parameters 6, for each response are found by solving an unconstrained non-
linear optimization problem, and can be written as follows,

In(0?) + In(|R
Maximize - e );_ n(R))] over 6 >0 (7

2l :Bf ’2] (6)

where o2 is the estimated variance between the global model 8 and actual response §. The resulting
Kriging parameters 6 for each response and design parameters, (i.e. energy, underfill, and flash)
are summarized in Table 1. With these optimum parameters, an exponential correlation function R
is computed for each of the responses.

Table 1. Kriging optimum parameters (exponential correlation)

Response 01 00 03 024
Energy 0.1814 | 0.1873 | 0.7192 | 0.5711
Underfill 0.2993 | 0.1000 | 0.1000 | 0.1056
Flash volume | 0.1000 | 0.1000 | 0.2272 | 0.5593

Gaussian correlation functions

A Gaussian correlation function is mathematically defined as
R(d) = exp(—0|d|?) (8)

where d is the distance between the points, ¢ is the exponential coefficient, 0 < ¢ < 2, and 6 is
a Gaussian function 6 € (0,00). Taking ¢ = 1 recovers the exponential correlation function. As
q increases, the correlation function produces smoother realizations. The Gaussian function 6 is
assumed as two, which has to be decided by considering the response distribution. The quality of
the model differs with changes in g. Since g lies between 0 and 2, different values of ¢ (1.5, 1.8,
and 2.0) are considered.

Cubic correlation functions
Mathematically, a cubic correlation function is defined as
8(t=p) 5" (1=p)1-7) .3
Rd)=1- ——d°+ —7——|d 9
0= b e eyt ©

where p is the correlation between end point observations, <y is the correlation between endpoints
of the derivative process, and p = 0.125 and v = 0.503 are used in the cubic function.
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As explained in Section 2.3, Kriging models consist of two terms, one is a constant B and the
other one is a local deviation term. The corresponding constant terms are calculated for each model
and are tabulated in Table 2. Each model has distinct 8 values and therefore has different local
deviations. The § values for cubic correlation functions are significantly different from Gaussian and
exponential correlation functions for all of the responses.

Table 2. [ values for various correlation functions

Response/ | (Exponential) | (Gaussian) | (Gaussian) | (Gaussian) | Cubic
Correlations g.=1.0 g=1.5 q=1.8 q=2:0
Energy 0.4542 0.4537 0.4537 0.4536 0.4175
Underfill 0.4220 0.4216 0.4216 0.4215 0.3805
Flash volume 0.3133 0.3127 0.3126 0.3126 0.2479

The accuracy of the models with different correlation functions is checked through average error
and Root Mean Square Error (RMSE) values. Low values of average error and RMSE are considered
to be a measure of good fit. The resulting average error and RMSE values for each correlation
function are given in Table 3. Here, average error is defined as the ratio of the total sum of errors
to the number of sample points, and RMSE is defined as

RMSE = \/ iz (6 = 9 (*’: — 4 (10)

where n is the number of sample points, y; is the actual response, and §; is the predicted value.

Table 3. Kriging models comparison

Correlation Response
Energy Flash Volume Underfill
Avg. Err. | RMSE | Avg. Err. | RMSE | Avg. Err. | RMSE
Exponential 4.420 0.950 1.660 0.450 1.300 0.240
Gaussian ¢ = 1 4.420 0.951 1.660 0.450 1.300 0.242

Gaussian ¢ = 1.5 5.904 1.956 1.726 0.626 1.438 0.245
Gaussian ¢ = 1.8 5.922 1.958 1.776 0.625 1.440 0.245
Gaussian ¢ = 2.0 5.937 1.959 1.781 0.625 1.442 0.245
Cubic 6.184 1.990 1.696 0.594 1.346 0.255

For the energy model, Kriging with a Gaussian correlation for ¢ = 1 gives the same results as
Kriging with an exponential correlation. It is obvious theoretically, as ¢ = 1 represents the expo-
nential correlation function. Among all other Kriging models (Gaussian with ¢ = 1.5, 1.8, 2.0, and
cubic), the cubic correlation function give the least accuracy. Kriging with exponential correlation
gives a lesser RMSE compared to other models, which illustrates that the Kriging exponential is
the appropriate fit for response energy. For the flash volume, the exponential and cubic correlations
give a reasonable average error and RMSE. For all other Gaussian correlation functions, the average
error percentage increases as the g value increases. However, the RMSE is approximately the same
for all of the q values. Kriging with the exponential correlation function gives the minimum error
percentage of (1.3%) and RMSE of 0.24 for underfill volume. For all other Kriging models, the
RMSE has the same value, whereas the error percentage increases as ¢ increases.

In total, Kriging models with different correlation functions have distinct predictability. Their
accuracy differs from response to response. From the comparison, a Kriging model with an expo-
nential correlation function is recommended for the selected design problem and considered further
in the optimization problem. The developed interpolative Kriging model is further compared with
the other approximation models, RSM and MPA.



Forging preform shape optimization using surrogate models 61

4.3. Comparison of surrogate models

For the three forging responses — energy, underfill, and flash volume — interpolative Kriging models
are generated with exponential correlation functions, and these are compared with RSM and MPA
models.

The second-order quadratic RSM is used for energy, underfill, and flash volume. The RSM model
consists of one constant, four linear, four quadratic, and six interaction terms. The models are
generated for normalized response values.

MPA models use TANA-2 local approximations. If the distance between sampled design points
is less than 20% of the maximum distance, then local TANA-2 approximations are generated. This
distance condition avoids the effect of distant local approximation and facilitates the capture of vari-
ance locally. Using a total of 25 sample design points, 73 TANA-2 approximations are constructed.
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Fig. 4. Energy comparison: (a) actual vs. RSM; (b) actual vs. MPA; (c) actual vs. Kriging
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Fig. 5. Underfill comparison: (a) actual vs. RSM; (b) actual vs. MPA; (c) actual vs. Kriging

The gradients used in TANA-2 are obtained using the forward finite difference method. The finite
difference step size is taken as 0.1 in a normalized domain.

The responses — energy, underfill, and flash volume — are computed at the sample design points
using the three models, namely Kriging, RSM, and MPA, and plotted against the actual response,
as shown in Figs. 4, 5, and 6, respectively. From these figures, it can be seen that for all of the
responses, the RSM-predicted response is an average value compared to the MPA and Kriging
models. Among all of the RSM models, flash volume and underfill have lower error and fit better
than energy.

The MPA models for energy and underfill predict the responses accurately at sampled design
points because a maximum weight of 1 will be given to the TANA-2s constructed at that design
point. Hence, the predicted response exactly matches the actual response and fit is better than
the traditional polynomial RSM. However, the responses at the last design point don’t match the
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Fig. 6. Flash comparison: (a) actual vs. RSM; (b) actual vs. MPA; (c) actual vs. Kriging

actual response because there is no TANA-2 constructed at the last design point. Among all MPA
models, the flash model appears to be less accurate than the other two models and gives an erroneous
response at a total of four design points because the generation of local approximations has failed and
the TANA-2s couldn’t provide reasonable model parameters due to their non-optimal distribution
of sampling points.

Unlike the RSM and MPA approximations, Kriging interpolates the responses. Therefore, the
predicted Kriging response is the same as the actual response in all three cases, which can be
clearly seen in Figs. 4a—c (energy), in Figs. 5a—c (underfill), and in Figs. 6a—c (flash volume).
In particular, for these responses, the MPA provides better fit than RSM. Kriging interpola-
tion can capture a higher amount of non-linearity than RSM or MPA, and it follows the ex-
act path as the actual response. Therefore, it is recommended that the interpolative surrogate
model, i.e. Kriging, gives better fit than any other global approximation model. Then, optimization
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is performed using the Kriging model. Furthermore, the optimization results of all the models are
compared.

5. PREFORM SHAPE OPTIMIZATION

Using the surrogate models, the preform shape optimization problem can be formulated to minimize
the objective function by subjecting to constraint functions. The forging energy is considered as
objective, and underfill and flash are taken as constraints, as given below:

Objective:  Minimize: forging energy f(z;)
Subject to: 91(z;) < 5% (flash percentage < 5%
g2(z;) =0 (underfill = 0)

Design variables: z;,1=1,2,3,4

where z; are the four critical design points. They are y coordinates of the second, third, and fourth
control points, and the = coordinate of the fourth control point (Fig. 2).

For Kriging, the exponential correlation function is used. And, the computation of Kriging pa-
rameters 0 (Eq. (7)), along with nonlinear optimization, is incorporated in the shape optimization
algorithm. For the Kriging model, the optimization algorithm evaluates the Kriging parameters for
every iteration, which takes more time than the other two models, but gives effective results.

Table 4. Optimization results

Optimum design RSM MPA Kriging
Design point [73.1 34.1 14.5 —6.8] | [48.34 27.0 33.1 1.15] | [5.9 —25.8 33.4 35.0]
Objective function 8.9 x 104 6.8 x 10* 5.7 x 10*
Underfill No Underfill No Underfill No Underfill
Flash 4.8% 4.2% 2.5%
Strain variance 0.6080 0.5904 0.5575
Strain-rate variance 134.3456 134.8718 65.1148
Maximum strain 5.67 4.20 3.44
Minimum strain 0.12 0.14 0.03
Max strain-rate 90.32 88.68 73.63
Min strain-rate 0.003 0.006 0.036

Interestingly, all of the surrogate models give three different optimum preform shapes, though
all of them satisfy constraints. The optimum design variables, objective, constraint functions, and
simulation results for all of these models are summarized in Table 4. The optimum preform shapes are
generated using the optimum control points. RSM gives higher vertical distance for the first design
parameter (i.e. z1) than MPA and the Kriging optimum. The z coordinate of the third control
point (i.e. z2) has a positive value for both RSM and MPA. But Kriging gives negative distance,
which moves a lot of material towards the deep cavity. Yet, the fourth optimum design parameter
in Kriging is positive, whereas RSM and MPA optimums have negative and small positive values.
This positive number is driving the curve towards the right. The interaction of both a negative
x-coordinate and a high positive height gives a distinct optimum shape. Forging simulations are
performed using these three optimum shapes. The three optimum preform shapes and the resulting
final products from these preforms are shown in Fig. 7.

The preform shape from RSM has more material than the other preforms. Hence, it produces
the greatest flash percentage of 4.8%, and the flash forms on both sides (Fig. 7a). Therefore, the
required forging energy is greater compared to the other preforms, and the total energy required to
forge this preform is 89 000 Nmm. The MPA preform forging final shape is given in Fig. 7b. Less
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Fig. 7. Optimum preform shapes and final products: (a) RSM, (b) MPA, (c) Kriging

flash forms at the deep cavity side than the shorter cavity side. It gives 4.2% of the flash. In this
simulation, flash starts to form after the deep cavity is 80% filled, hence the energy required for this
forging is reduced to 68000 Nmm. Compared to RSM and MPA products, the Kriging optimum
preform gives the lowest flash percentage of 2.5, and it requires only 57000 Nmm energy. From
Table 4, it can be observed that the Kriging optimum gives the lowest strain-variance of the other
two optimum shapes, which illustrates that the Kriging preform provides optimized material flow,
thereby decreasing the probability of defects such as folds. The strain-rate variance for both the RSM
and MPA are approximately the same and higher than the Kriging optimum shape. The difference
between maximum, minimum values of strain, and strain-rate is least in Kriging than in the MPA
and RSM optimum results. In summary, all of the optimum preforms satisfy the constraints, but
the Kriging optimum preform has the advantages of less material waste and less energy utilization.

6. SUMMARY REMARKS

A new preform shape optimization method is explored by using an interpolative surrogate model,
Kriging. Additionally, various approximation models, namely RSM and MPA, are also investigated
for preform shape optimization. RSM is an approximation method in which the predicted response
is not exact to the actual response, even at sampled points. MPA couldn’t match the actual response
at some sample points; one possible reason is that there is no local approximation constructed as per
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the specified conditions. Kriging is an interpolative model that matches the response exactly to the
actual response. Due to the absence of correlation terms in RSM and MPA, they don’t give accurate
results. For some design points, local approximations in MPA or quadratic terms in RSM couldn’t
capture the non-linearity of the response. However, MPA gives better results than traditional RSM
approximation. In summary, Kriging is more accurate than all other models since it interpolates
the data and it consists of a correlation of the design points.

Additionally, exponential, Gaussian, and cubic correlation functions and their effects on model
accuracy are evaluated. All of the correlations behave well for all of the responses, but their error
percentage is different from response to response. Hence, no unique correlation holds good for all of
the responses. Depending on the information available, correlation functions have to be selected. All
of the methods give distinct optimum preform shapes. The Kriging optimum preform gives less flash
and requires less energy, and therefore is advantageous over other optimum preform shapes. However,
these results are completely problem-dependent. By changing sampling methods, the accuracy of
the surrogate models might be increased. This research provides a new application of interpolation
models for preform shape design and gives guidelines for the selection of various correlation functions
and surrogate models.
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