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One of the main problems of the digital world is information security. Every second, people
process millions of pieces of information that must be protected from unauthorized ac-
cess. Cryptographic protocols that define the communication plan and the cryptographic
techniques used to secure the messages come to the rescue. These protocols should also
be regularly verified regarding their ability to protect systems from exposure to threats
from the computer network. Bearing in mind the need to secure communication, verify the
correct operation of security methods and process large amounts of numerical data, we de-
cided to deal with the issues of modeling the execution of cryptographic protocols and their
verification based on the CMMTree model. In this article, we present a tool that verifies
a protocol’s security. The tool allows for modelling a protocol and verifying that the path
in the execution tree represents an attack on that protocol. The tool implements a spe-
cially defined hierarchy of protocol classes and a predicate that determines whether a node
can be attached to a tree. We conducted a number of tests on well-known cryptographic
protocols, which confirmed the correctness and effectiveness of our tool. The tool found
the attack on the protocols or built an execution tree for them.
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1. Introduction

We can distinguish two significant aspects of the digital world. The first is
information security. Users of various devices with Internet access send billions of
bytes of data daily when communicating with other users or devices, shopping
online or using electronic banking. The information exchanged can be simple
messages without any value and messages containing valuable data such as au-
thentication or sensitive user data. Each message sent this way is exposed to
dishonest network users who aim to intercept data using various methods and
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then use them. A dishonest user who attacks computer networks, users or ap-
plications is referred to as an Intruder. Due to the fraudulent activity of the
Intruder, it is necessary to secure each processed information against unautho-
rized interception.

Information security, therefore, involves securing data against unauthorized
access, use, disclosure, disruption or modification. Information sent during com-
munication is secured using cryptographic protocols that define the communica-
tion plan and the cryptographic techniques used to secure the messages. Cryp-
tographic protocols pursue various information security goals, including mutual
or unilateral user authentication, reconciliation and distribution of session keys,
and information exchange. Thus, the security of a cryptographic protocol is re-
lated to its purpose and cryptographic techniques that make it impossible to
break it. The secure cryptographic protocol means that an Intruder will not
compromise it; for example, he will fail to authenticate as an honest user to
another protocol user.

Over the past few decades, many cryptographic protocols have emerged.
These protocols pursued mentioned security goals. The most characteristic exam-
ple of a cryptographic protocol is the Needham–Schroeder Public-Key (NSPK)
protocol from [27], which pursued the purpose of mutual authentication. The
Kerberos protocol from [28] ensures authentication and authorisation on a com-
puter network using a key distribution centre. The DNP3 standard also includes
solutions related to securing communication, and DNP3 contains a set of proto-
cols used between components in process automation systems. Another example
of security protocol is the Amelia protocol from [34]. This protocol ensures mu-
tual user authentication and also protects users against false links.

Constantly appearing new threats to security make it necessary to verify the
protocols. We must check if they provide an adequate level of security. Also,
over the past few decades, various research teams dealt with the issue of proto-
col security, their modelling and verification. We can find the most interesting
approaches in the works [3, 4, 10, 15, 31]. These studies often require the use of
specialised tools and techniques to analyse risks and simulate potential attacks
designed to breach the security of a protocol.

The second important aspect of the digital world is number processing. Each
issue or information is ultimately after encoding a sequence of numbers. The
numbers processing requires using coding tools to trivialise this non-trivial prob-
lem. During data processing, we often process their value and want to reduce the
data to their value. After reducing data to a number, the data must be values.

Piątkowski in [29] proposed the Conditional Multiway Mapped Tree
(CMMTree). The CMMTree enables the modelling and analysing problems de-
scribed by the processed data. This model is not for data storage, and the imple-
mentation of CMMTree makes it possible to examine the paths of associations
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of multi-path trees. We must remember the problem of encoding the input data,
which arises before processing data. In this method, the authors use data en-
coding for numbers in the initial stage. They observed different types of data
problems in the initial stage of processing, and they solved these problems by
data dumping into “black boxes” of various data types.

Also, like all computer-based research, modelling and testing cryptographic
protocols always require proper encoding of the input data. In this article, we
decided to deal with the issues of modelling the execution of cryptographic proto-
cols using the CMMTree model. We implemented a tool, including the CMMTree.
We can model the protocol and check if there is a path representing the attack
on it in the execution tree. We use the ProToc language from [13] to describe
a protocol. We saved the protocol as a set of objects of a hierarchy of classes
defined by us. Also, we accept the possibility that types may arise along the
way that are combinations of existing types. Thanks to this, we can generate
something that is almost trivial. We can represent a whole series of objects by
a set of their addresses, which means they can be input into a tool that allows
one data type. This paper’s main contribution is the adaptation of CMMTree to
the verification of cryptographic protocols.

Our main contribution is the implementation of the tool for automated se-
curity protocols verification realized with the following:

• adaptation of CMMTree to the verification of cryptographic protocols,
• preparation of a proper set of classes,
• supplementation the ProToc language specification with a set of initial

knowledge,
• research conducted on the set of well-known security protocols using a de-

veloped tool.
The CMMTree builds a protocol execution tree. Then, it finds paths repre-

senting possible protocol attack(s). We check whether there is such a protocol
course (composed of interleaving several executions) during which the Intruder
can, for example, authenticate himself as another user or steal confidential data.
We do not consider and evaluate the strength and unbreakability of crypto-
graphic techniques such as ciphers or hash functions used in the protocol. If the
Intruder intercepted a ciphertext, he can use other tools and try to break it using
various methods.

The rest of the article is organised as follows. In Sec. 2, we discuss related
works. Section 3 presents the process of modelling the cryptographic protocol.
Here are described the subsequent stages related to preparing the protocol spec-
ification, loading it, creating protocol executions and preparing these executions
to create a tree. Sections 4 and 5 include our experimental results and conclu-
sions.
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2. Related works

We can model the cryptographic protocol in several ways. One of them is
the so-called specification languages. Such languages are formal definitions used
to describe the system. It is worth mentioning here about such languages as
CAPSL [24], HLPSL [8], ProToc [13], or SDL [14]. Each mentioned specification
language can present a protocol as a sequence of steps using its security aspects.

CAPSL language allows for expressing protocol properties, assumptions and
goals. This language does not specify user knowledge changes during the protocol
execution. The HLPSL language is role-based. This language specifies changes in
users’ knowledge during the protocol execution. The user’s role defines the abili-
ties of knowledge changes. Unfortunately, the protocol specification in HLPSL is
very complex. ProToc language allows the presentation of external and internal
actions performed during the protocol execution. Also, this language specifies
user knowledge changes during the protocol execution. The protocol specifica-
tion is affordable and not too complex, like in the HLPSL language. SDL lan-
guage allows the specification and description of distributed systems. Similarly,
as HLPSL or ProToc, this language can specify activities performed during the
protocol execution, but the protocol specification in HLPSL is very complex too.
The main advantage of HLPSL, ProToc and SDL languages is their ability to
specify the knowledge flow during the protocol execution. The main disadvan-
tage of HLPSL and SDL languages is the specification complexity. The ProToc
language can specify the same information in a few specification lines.

Another way of modelling protocols is CSP (Communicating Sequential Pro-
cesses) [30]. In this approach, processes represent all actions performed under
the cryptographic protocol. Petri Nets [6] were also used to model the proto-
cols. In this case, agents with assigned roles were used to model the protocol. In
turn, the roles relate to the previously defined knowledge-dependent behaviour.
Both methods allow specifying activities performed during protocol execution.
Unfortunately, protocol specifications in these methods are complex.

Trees are one of the most important abstract data types. They are used to
represent arithmetic expressions [1, 19, 36], to manage the order of function calls
[19], to represent knowledge and numerical prediction [37], in the sort, and search
algorithms [2, 19, 25] and for modelling attacks on the cryptographic protocols
too [18, 23]. In [18, 23], the authors suggested a general formal definition and
semantic of the attack tree and its extension into attack–defense trees, including
interactions between an attacker and a defender of a system.

Most often, to implement trees, we use the generic programming paradigm,
and this paradigm makes it possible to create reusable software. This approach
aims to obtain the most general and useful algorithm or data structure [12,
16, 33]. The work of Siek and Lumsdaine [33] is worth mentioning, the au-
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thors compared languages supporting generic programming. They selected the
following programming languages for the research: C++, SML, Haskell, Eiffel,
Java, and C#, each with a subset of the Boost Graph Library. The authors
concluded that none of the studied programming languages is ideal for generic
programming.

It is also worth paying attention to the problems of analysing complex trees,
several or tens of millions of elements and relations. The techniques of visual-
isation of large trees, as well as tree boosting, can be indicated here. We can
identify the techniques of visualisation of large trees [21], and also tree boost-
ing techniques for such analysis. The visualisation method suggested by Liang
et al. in [21] provided adaptability to any enclosure-shaped containers. The sec-
ond mentioned technique has found its application in machine learning in which
it is necessary to analyse a large number of decision trees, and this process is
time-consuming [22].

2.1. Motivations

Bearing in mind problems with communications security, we decided to pre-
pare a tool for automatic cryptographic protocol verification using CMMTree.
These protocols should be constantly verified because intrusion techniques con-
tinuously evolve. Methods and tools used for verification should be lightweight
and fast so that the verification takes place in a short time with an appropri-
ate load on the computing units. Preparing our tool, we first compared existing
specification languages and chose ProToc because it can specify each protocol’s
features and is more lightweight than HLPSL or SDL language. Next, we consid-
ered different approaches to cryptographic protocol modelling and verification.
We found that the approach proposed by Siedlecka-Lamch et al. in [31, 32] al-
lows descriptions of each activity users perform during step execution, and also
it is a lightweight method that is significant in the case of security analysis. We
decided to implement mentioned approach as a predicate for CMMTree.

3. Cryptographic protocol modelling

This section will outline the following steps in cryptographic protocols mod-
elling.

3.1. Preparation of the protocol specification

Modelling a cryptographic protocol is a very complex and difficult process.
We must consider many actions that are carried out during the protocol execu-
tion. These are internal and external actions, such as:
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• generating confidential information for the current session,
• message encryption and sending by the sender,
• receiving and decrypting messages by the recipient,
• knowledge acquisition [35].
Confidential information includes nonces1), timestamps and keys. In most

well-known cryptographic protocols, generating one object occurs once for each
honest user appearing in a single protocol session.

Encryption and decryption depend on the protocol structure and cryptogra-
phy used in it. For asymmetric cryptography, we use a private and public key
pair. We use the public key for encryption, while the private key is used for de-
cryption. Private keys must not be sent in ciphertext or plaintext to avoid their
interception. For symmetric cryptography, we share a symmetric key between
two users. The users often agree upon the shared key before the session, using
a trusted server. Some protocols are intended to establish a new session key (for
example, the Wide-Mouth Frog protocol from [7]). During the execution of these
protocols, the key is generated and then sent in a ciphertext.

Messages sent during the execution of the protocol may have different forms.
They can be sent as plaintext, without encryption, or in an encrypted form, i.e.,
a ciphertext. Also, messages can be sent in a concatenated form that connects
the ciphertext and plaintexts.

During the protocol modelling, we must check the user’s decryption capabil-
ities. The decryption process affects the ability of users to acquire knowledge.
From each message, the user reads all objects sent as plaintexts. Also, he reads
all message elements that can be extracted from the ciphertext while decrypt-
ing it. Sometimes, the user cannot decrypt the ciphertext, and the sender en-
crypts the ciphertext with a cryptographic key unknown to the recipient. In this
case, the recipient acquires knowledge of the entire ciphertext. The process of
acquiring knowledge has been extensively described in [35].

It is also worth noting that each protocol will have a set of publicly avail-
able objects. These will include user IDs and public keys. Also, each user will
have initial knowledge. Users’ initial knowledge includes their private, public and
symmetric keys shared with other users. To model the protocol, we use the Pro-
Toc language [13]. We must indicate the objects needed to complete each step
according to its structure.

We will show the issues in modelling cryptographic protocols on the example
of the well-known Needham–Schroeder protocol [27]. We use the NSPK protocol
as an example because this protocol is very suitable for presenting and testing
solutions for cryptographic protocol analysis. The syntax for this protocol in
Alice and Bob notation is as follows:

1)Nonce (N number used once) – large pseudo-random numbers.
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α1 A → B : 〈NA · i(A)〉K+
B
,

α2 B → A : 〈NA ·NB〉K+
A
, (1)

α3 A → B : 〈NB〉K+
B
.

Let us analyse the first step of this protocol. The sender is Alice (A) and
the recipient is Bob (B). Alice wants to send Bob the following ciphertext 〈NA ·
i(A)〉K+

B
, so she needs the following objects: NA, i(A) and K+

B
2). The mentioned

objects will be included in the set of needs of the first step. Identifier i(A) is
in the set of publicly available objects, just like the K+

B key. Nonce NA must
instead be generated. Now, Alice can compose the ciphertext and send it to Bob.
Alice’s knowledge collection at this stage has grown by NA.

After receiving the ciphertext, Bob can decrypt it because he has the private
keyK−B in his knowledge. He reads objects i(A) and NA from it. Bob’s knowledge
collection thus increased by NA.

We should consider other steps in the same way.
According to the structure of the ProToc language described in [13], we can

prepare a specification of Needham–Schroeder protocols’ steps. The protocol
specification in Alice and Bob notation is presented in Table 1. We divided
specification into the four data sets and the information column step.

Table 1. NSPK protocol specification.

Step Users Needs Generated Message
1. A, B i(A), K+

B , NA NA 〈K+
B , i(A)|NA〉

2. B, A NA, NB , K+
A NB 〈K+

A , NA|NB〉
3. A, B NB , K+

B – 〈K+
B , NB〉

Using this specification, we get to know the following:
• sender and recipient at each step (Users column),
• set of objects from which the message is composed (Needs column),
• set of objects that must be generated (Generated column),
• sent message (Message column).
We supplemented the protocol specification in the ProToc language with

a set of initial knowledge. This action was dictated by the need to standardise
the storage of such information and the preparation of our predicate. For the
NSPK protocol, initial users’ knowledge contains four elements: A’s and B’s
identifiers and public keys.

2)Designation K+
B means the public key of Bob.
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3.2. Loading the protocol

When the file with protocol specification is ready, we can proceed with the
protocol loading into the tool. During this, the tool validates the protocol. First,
our tool checks the correctness of the definition saved in the file. In addition, the
tool checks whether the objects appear in the appropriate sections. For exam-
ple, an identifier object cannot appear in generated entities, and Identifiers are
publicly available and do not need to be generated. Afterwards, a set of objects
(of the designed class hierarchy) mapped a correctly defined and loaded pro-
tocol.

The protocol is a vector of steps, i.e., objects composed of indicators vectors.
As mentioned earlier, the protocol step consists of four sets of information – four
vectors. Each of these sets is a general vector-type content pointer, and each
object in the vector contains properties specific to a particular data type. There-
fore, the step has the Users, needs, generated objects and message vectors. The
first vector can contain only Player type objects, i.e., objects representing pro-
tocol participants. Objects of this type cannot appear in other vectors. Also, the
first vector can only contain two entities representing the sender and receiver in
a given step. Only nonces and keys can appear in the third vector. The last vector
contains one object representing the message sent during protocol execution.

The structures loaded from the file are mapped to appropriate objects by the
designed class hierarchy. Figure 1 shows the division of loaded structures into
objects for the Needham–Schroeder protocol.

Fig. 1. The division of loaded structures into objects for the Needham–Schroeder protocol.

It is possible to observe five basic types of data here. As mentioned, there
are always two Player objects in the first vector. The second vector contains
the objects needed to compose a message. In the case of the first step of the
Needham–Schroeder protocol, these are objects of type: identifier, nonce and
asymmetric key. The third vector for the first and second steps contains one
nonce object. The last vector includes a vector of Message type objects, and the
message type has objects of the asymmetric ciphertext type.

3.3. Protocol executions

Then, we process a correctly loaded protocol. To learn the specifics and capa-
bilities of the cryptographic protocol, we should generate all its possible execu-
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tions. Executions are scenarios according to which the protocol can be executed,
and they differ in two elements. First is the order in which users appear as the
sender and recipient. The protocol can be started by Alice, as well as by Bob.
Also, when considering the protocol, we should consider a dishonest user called
an Intruder.

The Intruder is a user whose goal is to break the protocol and capture the con-
fidential information of honest users. The Intruder’s activities depend on the used
model. These can be the following models: Dolev–Yao [11], lazy Intruder [17, 26],
limited Dolev–Yao model [20] and limited lazy Intruder [20].

In the Dolev–Yao model, an Intruder can unlimitedly control the network.
The Intruder has access to all transmitted messages, which may be intercepted,
blocked, processed and sent by him contrary to the protocol. It is worth noting
that the Intruder will only have access to the information contained in the ci-
phertext if he knows the appropriate decryption key. We can compare the lazy
Intruder model to malware. For this model, the Intruder can only send the en-
tire message without the option of modifying them. This solution limits the
constructed space to messages that an honest user sends. Also, we can indicate
models of limited Dolev–Yao and limited lazy Intruder. In both cases, the In-
truder’s capabilities are limited to using messages sent directly to him (when
he impersonates an honest user). We assumed that an Intruder does not gen-
erate nonce during protocol execution, and the Intruder has a pool of nonces
(generated by him before the start of protocol execution).

The second element that distinguishes the executions is the objects used
by the Intruder when he communicates with honest users. During the execu-
tion of the protocol, the Intruder can act as a regular user and impersonate
other users. When the Intruder is a regular user, he uses his identity, nonces
and keys during communication. In the second case, the Intruder uses the iden-
tity of the impersonating user, his nonce and keys. Also, he can use his nonces
and keys.

Knowing the set of protocol participants (Alice, Bob, Trudy3)) and the set of
confidential information of these users, we can generate a set of all possible pro-
tocol executions. This operation is performed based on a function that produces
non-repetitive variations for users and cryptographic objects. The tool modifies
protocol steps according to the generated variations for users and objects.

Table 2 presents a set of executions for the Needham–Schroeder protocol.
We divided the table symmetrically into two parts. The first one captures the
communication between Alice (A) and Bob (B). In contrast, the second cap-
tures the communication between Bob and Alice. Both parts consider Trudy’s
occurrence (T ).

3)Intruder in Alice and Bob notation.
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Table 2. The summary of NSPK protocol executions.

No. Parts Parameters No. Parts Parameters
1 A→ B 10 B → A

2 T → B NT , KT 11 T → A NT , KT

3 T → B NA, KT 12 T → A NB , KT

4 T (A)→ B NT , KA 13 T (B)→ A NT , KB

5 T (A)→ B NA, KA 14 T (B)→ A NB , KB

6 A→ T NT , KT 15 B → T NT , KT

7 A→ T NB , KT 16 B → T NA, KT

8 A→ T (B) NT , KB 17 B → T (A) NT , KA

9 A→ T (B) NB , KB 18 B → T (A) NA, KA

Column No. contains a serial number assigned to the exercise to simplify
reference to it during analysis. The Parts column lists the participants in the
protocol in the order in which they appear during the protocol. T (A) means
an Intruder impersonating Alice. The notation T (B) means an Intruder imper-
sonating Bob. The Parameters column contains a cryptographic object that the
Intruder uses during execution. For example, execution number 5 is between
Trudy (who impersonates Alice) and Bob. During this execution, Trudy uses
Alice’s nonce and her public key.

3.4. Set of information

The next step in preparing the protocol to model it as a tree is generating
a set of information. This procedure implements to methodology mentioned in
[20, 31, 32]. This structure reflects the possibilities of executing a given step.
Each set of information contains the following information:

• sender and recipient of the step,
• execution number and step number,
• set of objects that the sender needs to complete the step,
• set of objects that the sender must generate,
• set of objects that the recipient will learn after completing the step.
The structure of the information set is based on the user’s initial knowledge

set and a set of publicly available objects. Each set contains only the information
necessary to build a tree; other information is not included. The content of
information sets in a given step depends on the structure of the protocol.

To understand the essence of creating this set of information, let us analyse
execution No. 14. The specification for this execution in Alice and Bob notation
is as follows:
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14.1. T (B) → A : 〈NB · i(A)〉K+
A
,

14.2. A → T (B) : 〈NB ·NA〉K+
B
, (2)

14.3. T (B) → A : 〈NA〉K+
A
.

In execution No. 14, Trudy impersonates Bob and communicates with Alice.
During this execution, Trudy uses Bob’s nonce and the public key.

To execute step 14.1, Trudy needs to make a ciphertext 〈NB · i(A)〉K+
A
. The

key K+
A and the identifier i(A) are publicly available.

One way to do this is when Trudy will have the entire ciphertext obtained
from another execution. In this situation, the sender’s set of needs will be the
ciphertext 〈NB · I(A)〉K+

A
, the set of generated objects will be empty, and the

set of the recipient’s knowledge will contain nonce NB because the recipient can
decrypt the transmitted ciphertext. For this capability, the set of information
will look as follows (semicolons separate elements):

T (B)→ A ; [14.1] ; 〈NB · i(A)〉K+
A

; ;NB. (3)

The second option to execute step 14.1 is to create the entire ciphertext after
acquiring knowledge of the nonce NB by establishing communication with Bob.
In this case, the sender’s set of needs will contain only NB, the generated objects
will be empty, and the recipient’s knowledge will also include nonce NB. The set
of information for this capability will be as follows:

T (B)→ A ; [14.1] ; NB; ;NB. (4)

The rest of the steps should be the same way. Table 3 presents information
for all steps in the 14th execution.

Table 3. The summary of a set of information for fourteen execution.

Parts Execution & step Needs Generated Knowledge
T (B)→ A [14.1] 〈NB · i(A)〉

K+
A

NB

T (B)→ A [14.1] NB NB

A→ T (B) [14.2] NB NA 〈NB ·NA〉K+
B

T (B)→ A [14.3] 〈NB ·NA〉K+
B

NA

T (B)→ A [14.3] NA NA

It is worth paying attention to step 14.2. In this step, Trudy receives a ci-
phertext that he cannot decrypt. In this situation, the user’s knowledge increases
the ciphertext without hulling its components.
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3.5. Tree of the protocol executions

We build the tree of the protocol executions on the CMMTree model base
mentioned in [29]. This model separates data from their structure. CMMTree
includes three main principles. The first is the predicate that defines the condi-
tions for joining the nodes of the created tree. The second rule allows operating
on different data types, and it is possible to use those data types that combine
existing input types. The third rule defines the simplicity of changing the rules
of connecting nodes without interfering with the code implementing the tree.

A triple describes the logical model of CMMTree:

CMMTree = (D, p, T ), (5)

where
• D = {d1, ..., sdx} is a set of a unique data values,
• T = {vi : 0 6 i < n} is the tree-structure of the data dependencies,
• p : Dk × T → {true, false}, (k = 1, ..., x) is a predicate defining the rules

of connecting nodes of T .
Figure 2 presents the schema of the CMMTree logical model. There is a sche-

ma for data of the same type in Fig. 2a. In Fig. 2b, there is a schema for different
data types belonging to a defined class hierarchy.

a)

b)

Fig. 2. The schema of the CMMTree logical model: a) for data of the same type, b) for different
types of data belonging to a defined class hierarchy [29].
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The values in dataset D should be unique. However, they can be represented
multiple times in the T tree structure. The nodes vi do not store the values of
the processed data. They contain references to dx. For example, in Fig. 2, the
nodes v0 and v1 represent the value d1 of the set D. On the other hand, nodes
v3, v5, v6 and v7 represent the value d3. We do not require the processed data
to be of the same type. In Fig. 2b, d1, d2, and d3 represent three unique values
and three different types of objects. It is enough for these types to belong to
a specific class hierarchy. Then, such data can be represented by a vector of
pointers.

The function p defines the conditions for joining each T node. This action
is crucial for the final result of processing dataset D. A positive or negative
decision to attach another node is made based on the information provided by the
candidate to the descendant of the current node. Information represented by
the other nodes of the T tree can be made based on the relationship between the
two objects (the current node and the candidate to join, as well as the knowledge
represented by a larger group of nodes (nodes on the path or sibling of the current
node and other combinations of nodes). In addition to the values of individual dx
elements, it is also possible to use the knowledge of their real type. The p function
will be able to behave polymorphically at runtime. The discussed solution gives
almost unlimited possibilities for data analysis.

The predicate has to address three significant issues while modelling the
execution of security protocols. The first is the order of the steps. As the first
node of the tree, we can add only the node relating to the first step of the
protocol. Next, we can add steps from the already-started execution or the first
one from the new execution. The second issue is users’ knowledge. At each stage
of building a tree, the sender of the attached step must have the appropriate
knowledge to perform this step. The last issue concerns the cryptographic objects
generated by an honest protocol user. In this case, the number of fair users
generated objects must be, at most, the number of generated objects defined in
the protocol specification header.

We prepared a tree-building predicate based on the possibility of an attack
by an Intruder for cryptographic protocols. The node representing the protocol
execution step can be attached to the tree if the sequence of steps is correct. The
nodes from one execution may only be attached to the tree in order other than
dictated by the protocol step numbering.

Also, the knowledge of the protocol’s participants plays a significant role in
attaching the steps to the tree. Attempting to attach another node to the tree
must involve checking the knowledge of each protocol participant and the possi-
bility of performing the given step. If the sender’s knowledge set contains objects
necessary for execution, such a node can be attached to the tree. Additionally,
the sender’s knowledge should be increased if he has generated any objects,
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and the recipient’s knowledge should be increased by the objects obtained from
the received message.

It is necessary to remember the number of nonces generated by honest users.
As mentioned, each honest user generates one nonce during the protocol only.
Thus, the tree cannot attach a node that refers to the step where the same honest
user will have to generate a second nonce on the path.

4. Experimental results

We used the same computer unit with an Intel Core i7 processor, 16 GB main
memory and Ubuntu Linux operating system for our research. If the attack upon
the protocol exists, the CMMTree will find it. We do not signify an attack type,
but generally found attacks aimed at security features such as confidentiality,
integrity, authentication and non-repudiation. We will present the experimental
results on the examples of the Needham–Schroeder protocol and Amelia protocol
from [34]. For the NSPK protocol, the tool prepared a set of 18 executions
described in Table 2. For the Amelia protocol, the tool prepared a set of 36
executions.

First, we compare verification times for three tools: our tool, the ProVerif tool
described in [5] and Tamarin described in [9]. We observed that our tool verified
mentioned protocols faster than the ProVerif and Tamarin tools (Table 4).

Table 4. Comparison of verification times.

Tool NSPK protocol [ms] Amelia protocol [s]
ProVerif 17 26
Tamarin 40 117
Our tool 3.79 12.08

Next, we execute our research. During building the tree, our tool found two at-
tacks on Needham–Schroeder protocol: Lowe’s attack and the Man-in-the-Middle
attack. The syntax of Lowe’s attack in Alice and Bob notation is as follows:

α1 A → T : 〈NA · i(A)〉K+
T
,

β1 T (A) → B : 〈NA · i(A)〉K+
B
,

β2 B → T (A) : 〈NA ·NB〉K+
A
,

α2 T → A : 〈NA ·NB〉K+
A
, (6)

α3 A → T : 〈NB〉K+
T
,

β3 T (A) → B : 〈NB〉K+
B
.
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The syntax of the Man-in-the-Middle attack in Alice and Bob notation is as
follows:

α1 A → T (B) : 〈NA · i(A)〉K+
B
,

β1 T (A) → B : 〈NA · i(A)〉K+
B
,

β2 B → T (A) : 〈NA ·NB〉K+
A
,

α2 T (B) → A : 〈NA ·NB〉K+
A
, (7)

α3 A → T (B) : 〈NB〉K+
B
,

β3 T (A) → B : 〈NB〉K+
B
.

Each attack consisted of six steps from different executions (interlacing the
two executions). During Lowe’s attack, execution no. 3 and 18 were interla-
ced, and during the Man-in-the-Middle attack, execution no. 5 and 18 were
interlaced.

Table 5 shows the summary of the tree shape built for the NSPK protocol.
We included here a number of nodes (NoN row), the number of firstborns (NoF
row), and the number of leaves (NoL row) on each built tree level. The time of
the CMMTree calculation was equal to 3.79 ms.

Table 5. Results for tree building for NSPK protocol.

Level 0 1 2 3 4 5 6 7
NoN 1 5 43 258 175 187 123 62
NoF 1 1 5 43 123 141 99 62
NoL 0 0 0 135 34 88 61 62

During building the tree, our tool did not find attacks on Amelia protocol.
Table 6 shows the summary of the tree shape created for the Amelia protocol. The
time of the CMMTree calculation was equal to 12.08 s.

Table 6. Results for tree building for the Amelia protocol.

Level 0 1 2 3 4 5 6 7 8 9 10
NoN 1 10 150 1230 3040 5860 11490 22350 41250 67350 91350
NoF 1 1 10 150 1230 3040 5850 11280 21750 41250 67350
NoL 0 0 0 0 0 10 210 600 0 0 7350

5. Conclusions

This paper has adopted the CMMTree to verify cryptographic protocols.
CMMTree makes it possible to build tree structures that reflect relationships
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between the input data elements. The mentioned model can operate on differ-
ent types of data. Also, it can quickly identify the characteristic places that
determine the shape of trees (including extensive trees with tens of millions of
nodes).

The main element of this adaptation is a specially constructed predicate.
Our predicate contains rules describing adding a new node into the tree accord-
ing to protocol structure. Thanks to this predicate, we built a tree of protocol
executions. The predicate uses an approach from [31, 32].

We examined this predicate using selected protocols. Implemented CMMTree
found an attack on this protocol. For some protocols, the implemented
CMMTree has found an attack. For the other protocols, CMMTree has built its
tree of execution trees. We compared our results with the ProVerif and Tamarin
tools, and the results are promising.

In future work, we will continue testing our Conditional Multiway Mapped
Tree to verify more complex problems.
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