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The present paper examines the crystal orientation effects on the energy at the crack-tip of nio-
bium/alumina joints. The analyses have been done using crystal plasticity theory. The single crystal
parameters are identified for each family of slips system in [21]. These identified parameters are being
used to examine the orientation effects of the niobium single crystal on the energy at the crack-tip. Dif-
ferences in the fracture energy are explained based on the plastic slip (strain) induced in different slip
systems during deformation. A qualitative comparison of the crystal plasticity analysis with the experi-
ments of [4, 15] is also been presented.
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1. INTRODUCTION

Metal/ceramic bimaterials with a mismatch in mechanical properties are frequently encountered
in engineering applications. In many of these situations cracks initiate at interfaces and advance
along or away from the interfaces. The safety of such components inevitably requires a thorough
understanding of their behaviour under load.

The J-integral method is widely used in rate-independent quasi-static fracture analyses to char-
acterize the energy release rate associated with crack growth [3, 6]. The J-integral method was
introduced by Rice [20] in 1968, since then J-based elastic plastic fracture mechanics became also
an issue of numerical computations [9, 10, 16, 17, 23]. In the beginning the user were left to their
own codes, which gave rise to additional uncertainties and errors. Brock and Scheider [3] explained
the procedure to obtain reliable values of J-integral when used in ABAQUS [1].

The J-integral is widely accepted as a fracture mechanics parameter for both linear and nonlinear
material response. Cherepanov [5] and Rice [20] were the first two who introduced path-independent
integrals into fracture mechanics [3]. Rice also showed that this “J-integral” is identical with the
energy release rate
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for a plane crack extension, Aa.
The J-integral is defined in terms of the energy release rate, associated with a fictitious small
crack advance, Aa, Fig. 1,
1
d.= A // [a,-ju]',k = Wdz-k] Amk,i dS, (2)
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where Azy, is the shift of the crack front coordinates from the initial crack tip, Aa. the correspondent
increase in crack area and the integration domain fy is the grey area in Fig. 1.
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Fig. 1. Domain for J-Integral

2. EXPERIMENTAL PROCEDURE

The finite element model is based on the experiments performed in [4, 15], in which the influence
of orientation and impurities on the fracture behaviour of Nb-sapphire interfaces were studied us-
ing notched bending tests. Single crystals were diffusion bonded in ultra high vacuum furnace for
different interface orientations. For undoped bicrystals bonded at 1400°C, the computed interfacial
fracture energy ranged from 77 to 2100J/m? depending on the interface planes of Nb and sapphire.
For fracture evaluation, interfacially notched bending test specimens of dimensions 2x4x32mm3
were prepared. The specimen is shown in Fig. 2. The notch length is 0.4 mm. The specimen is loaded
to the fracture load F¢ in a four-point bending tests device at a cross-head speed of 96.8 ym/min.
The load F' and the cross-head deflection at the load points v are simultaneously recorded.

Nb single crystals Alumina single crystals

Notch Polycrystalline Nb sheet

Fig. 2. Four point bending test specimen

3. FINITE ELEMENT ANALYSIS

Finite element simulations were done using three-dimensional model, the finite element mesh con-
sisted of twenty-noded quadratic reduced integration elements. The total number of elements in the
model is 17208. The mesh is shown in Fig. 3.

For all three-dimensional simulations, both outer Alumina shanks (ceramic) and Alumina single
crystal at the middle of the specimen were treated as purely elastic with a Young’s modulus of
390 GPa and a Poisson’s ratio of 0.27. The polycrystalline niobium sheet is always modelled with an
elastic-plastic constitutive law. The Young’s modulus and the Poison’s ratio were the same for all
simulations (E = 104.9 GPa, v = 0.397). These elastic data are adjusted to alumina and niobium,
respectively [11-13]. The plastic behaviour of the stress-strain curve of the polycrystalline niobium
sheet is approximated by a Ramberg-Osgood relation [19], which is described in the one-dimensional
case by the following equation,

Ec=a+a<i)n—la. (3)

4]



Modelling of crystal plasticity effects on crack initiation 69

100 pm

Scale

Fig. 3. Three dimensional finite element mesh of bimaterial specimen

Here, n denotes the hardening exponent, a the yield offset and o the yield stress. This material law
is nonlinear from the beginning, but for commonly used hardening exponents (n > 5) the divergence
from linearity is only slight for stresses below o . The chosen plasticity theory is the deformation
plasticity theory (for details see [18] and references therein), which describes not a plastic material
behaviour, but a nonlinear elastic material. This means, that no unloading criterion exists. The
parameters of the above equation are adjusted to the niobium stress-strain curves in [14]. The
parameters used are n = 6, ogp = 180 MPa and a = 0.3.

For the case of crystal plasticity |7, 8], the single crystal niobium is modelled using the hardening
law of Bassani & Wu [2, 24]. The hardening parameters for each slip system are derived in [21] and
are given in Table 1

A four point bending test has been simulated with the boundary conditions as shown in Fig. 3.
The displacement of 30 um is applied stepwise (increasing linearly with time) at the loading points.

Table 1. Hardening parameters for Bassani & Wu hardening law

To Ts ho hs Yo YoI f aff f apflI q qr
(MPa) | (MPa) | (MPa) | (MPa)

(110)[111] | 137 | 164 | 202.262 | 14 [0.25[0.25 100 | 9.9 | 0.0 0.0
(112)[111] | 13.07 | 16.344 | 49.03325 | 39.2266 | 0.1 | 0.1 [ 0.34 | 0.3 | 0.0 | 0.0

4. RESULTS AND DISCUSSION

As mentioned in the previous section, the crystal plasticity is included by modelling the niobium as
single crystals using Bassani & Wu [2, 24] hardening law. The set of hardening parameters used is
given in Table 1, while Alumina shanks, polycrystalline niobium sheet and Alumina single crystals
are always modelled as elastic material.

Five different orientations of niobium single crystals have been used for the simulation (see
Table 2). In what follows next, the results of the energy release rate, strain distribution around
the stationary crack-tip along with the plastic slip (strain) near the stationary crack-tip have been
discussed for different orientations.
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Table 2. Orientations of niobium single crystals used for simulations

Symbol Orientation relationship

OrientationI | Nb(100)[001]|Sp(11—-20)[0001]
Orientation II | Nb(110)[001] | Sp(11-20)[0001]
Orientation IIT | Nb(111)[-1-1-2]| Sp(11-20)[0001]
Orientation IV | Nb(100)[—0.146 —0.940.3] | Sp(11—20)[0001]
Orientation V | Nb(100)[—0.23-0.940.25] | Sp(11-20)[0001]

The energy release rates for five different orientations (mentioned above) have been plotted
against the strain at the stationary crack-tip in Fig. 4. The results depict that the change in crystal
orientation influences the energy release rates only after the plastic deformation has started. The
start of the plastic deformation is the point where the resolved shear stress of any slip system exceeds
the initial yield stress 7,, which can be monitored during the simulation run. The highest energy
release rate is found for orientation II, which is a multiple slip orientation with (1-12)[—-111],
(=211)[111] and (211)[—111] systems playing a major role in the total plastic slip and even-
tually in the plastic strain (see Fig. 5). Figure 5 shows the relative magnitudes of the slip activity,
where the slip activity at a radius of 15 pm from the crack tip is plotted for each of the activated
slip systems relative to the polar angle; 0° coincides with the prolongation of the crack and 180°
coincides with the single crystal niobium crack flank.
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Fig. 4. Total energy release rate versus the strain at Fig. 5. Plastic strain on slip systems at 15 um radius
the crack tip for various orientation from the tip of the stationary crack for orientation II

The contour plots of plastic slip (strain) on the above discussed three slip systems, as well as the
total plastic slip (strain) for the orientation II along with the total logarithmic strain are plotted in
Figs. 6(a—c), 11(b) and 12(b) to indicate the radial variation of the slip. The plastic region developed
due to the plastic slip in (1 —-12)[—111] system is the largest one (Fig. 6(a)) and the plastic slip
in this slip system dominates the total plastic slip (strain) region (Fig. 11(b)).

The orientations I and III were found to have the lowest energy release rates (see Fig. 4). For
orientation I, the major contribution to the total slip comes from (112)[11—-1], (121)[1-11],
(1=21)[111], (12-1)[-111}, (—=211)[111] and (21—-1)[1—11] slip systems (see Fig. 13).
The contour plots of the slip on these systems along with the total accumulated slip and total
logarithmic strain are plotted in Figs. 7(a—f), 11(a) and 12(a) to indicate the radial variation of the
slip. The plastic region developed due to the plastic slip in (21 —1)[1—11] system is the largest
one (Fig. 7(f)) and the plastic slip in this slip system dominates the total plastic slip (strain) region

(Fig. 11(a)).
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Fig. 6. Plastic strain on various slip systems at the tip of stationary crack for orientation II
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Fig. 7. Plastic strain on various slip systems at the tip of stationary crack for orientation I
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Fig. 8.

Plastic strain on various slip systems at the tip of stationary crack for orientation III
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Fig. 10. Plastic strain on various slip systems at the tip of stationary crack for orientation V
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Fig. 13. Plastic strain on slip systems at 15 um radius
from tip of stationary crack for orientation I

Fig. 14. Plastic strain on slip systems at 15 um radius
from tip of stationary crack for orientation III
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For orientation III, the major contribution to the total slip comes from (1-12)[-111],
(12—-1)[-111], (-112)[1-11] and (—121)[11—1] slip systems (see Fig. 14). The contour
plots of the slip on the above five slip systems, as well as the total slip for the orientation III along
with the total logarithmic strain are plotted in Figs. 8(a—d), 11(c) and 12(c) to indicate the radial
variation of the slip.

The orientations IV and V, which are single slip orientations always had one slip system activated
at the start of plastic deformation. The orientation IV always had (011)[11—1] system as primary
activated slip system while orientation V always had (—211)[111] system activated as primary
slip system. Figure 15 shows the major contribution to the total slip comes from (011)[11-1],
(10-1)[111], (112)[11—1] systems for orientation IV and it is also prominent that the con-
tribution of the primary slip system (011)[11—1] is the highest one. The energy release rate for
orientation IV (see Fig. 4) shows that slope of the increase in the energy release rate is steeper as
compared to orientations I, III and V. The energy release rate for orientation V (see Fig. 4) has
almost the same trend as other orientations I and III. Figure 16 shows that the major contribution
to the total slip comes from (011)[11-1], (101)[-111], (-121)[11-1] and (—-211)[111]
systems for orientation V and the contribution of the primary slip system (—211)[111] is the
highest one. The contour plots of the slip on the different activated slip systems, as well as the
total slip along with the total logarithmic strain are plotted in Figs. 9(a—c), 11(d) and 12(d) for
orientation IV and Figs. 10(a-d), 11(e) and 12(e) for orientation V. For orientation IV the major
plastic zones are developed due to the plastic slip in the (011)[11—1] and (10-1)[111] sys-
tems (Figs. 9(a) and 9(b) respectively). The plastic slip in these two systems dominates the total
plastic slip (strain) zone (Fig. 11(d)). For orientation V the major plastic zones are developed due
to the plastic slip in the (—211)[111] and (—121)[11—1] slip systems (Figs. 10(c) and 10(d)
respectively). The plastic slip in these two systems plays a dominating role in the total plastic slip
(strain) zone (Fig. 11(e)).

Now, we consider the first three orientations, i.e. orientation I, IT and III and compare the energy
release rate trends with the experiments of [4, 15]. The experimental results showed that the energy
release rate of orientation II was always higher than that of the other two orientations I and III.
The energy release rate values for the three orientations I, II and III were found to be 115J/m?,
370J/m? and 112 J/m? respectively, at a bonding temperature of 1400°C.

Figure 17 shows the same trend as found in [4, 15] with the highest energy release rate found
for orientation II while orientation I and III were almost having the same energy release rate values
with orientation I having slightly higher values. Based on crystal plasticity the stress-strain curves
of the uniaxial tension test simulations for the three orientations I, IT and III are plotted in Fig. 18
which shows that the orientation of niobium single crystals changes the stress-strain behaviour and
one can eventually see that for a specific strain value, higher stresses are induced for the case of
orientation II than orientation I and III. These higher stresses cause the higher total energy of the
niobium single crystals which is given by the area under the stress-strain curve. This ultimately
ends up with a higher J-integral value as shown in Fig. 17. This can also be explained on the basis
of the total slip induced in the niobium single crystals for the three orientations: Figs. 5, 13, 14
depict that orientation I and III always had higher plastic slip (strain) than orientation II for the
same loading conditions. This in fact is due to the orientation of the slip systems as the slip systems
for orientation I and III have higher Schmidt factors and, therefore, they tend to slip more easily
than the orientation II.

5. CONCLUSION

In this work, the crystal plasticity results are compared with the experimental results and show that
there is a variation in fracture energy for different orientations as was measured in experiments.
Based on the contribution of the plastic slip (strain) of activated slip systems for various orientations
the difference in the energy release rate was explained As the interface strength plays an important
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role in the fracture energy, therefore, different cohesive laws will be implemented in the future to
find a more realistic interface fracture behaviour, when compared with experiments.
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APPENDIX: BASSANI AND WU MODEL

Bassani and Wu model describes the three stage hardening of crystalline materials. This model is
based upon the analytical characterization of the hardening moduli at any stage during deformation
(Fig. 19). Their expression for self and latent hardening depends on the shear strain v of all slip
systems,

s = {(ha = seon? [Lo=P D] 1 Koot 5 4 )
has = gheale #8),
B
6 B#a) =1+ Y foptant (L),
e Yo

where, ho is the initial hardening modulus, 7y the initial yield stress, 7, the saturation stress, (®
the total shear strain in system «, hs the hardening modulus during stage I deformation, f,s the
interaction strength between slip system « and 3, and 4? the total shear strain in slip system 2.

The hardening moduli are described with an initial hardening (hg) which saturates after reach-
ing resolved shear stress (75). After the diminishing of the hyperbolic secant term, the saturation
hardening (hs) term specifies that each slip system has a finite hardening rate. The function G deals
implicitly with cross-hardening that occurs between slip systems during stage II.
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Fig. 19. Bassani & Wu Model
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